高三數(shù)學(xué)知識點總結(jié)
總結(jié)是把一定階段內(nèi)的有關(guān)情況分析研究,做出有指導(dǎo)性的經(jīng)驗方法以及結(jié)論的書面材料,它能夠使頭腦更加清醒,目標(biāo)更加明確,因此我們要做好歸納,寫好總結(jié)。總結(jié)一般是怎么寫的呢?下面是小編收集整理的高三數(shù)學(xué)知識點總結(jié),歡迎閱讀,希望大家能夠喜歡。
高三數(shù)學(xué)知識點總結(jié)1
1、直線的傾斜角
定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與x軸平行或重合時,我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°
2、直線的斜率
、俣x:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。
、谶^兩點的直線的斜率公式:
注意下面四點:
(1)當(dāng)時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;
(2)k與P1、P2的順序無關(guān);
(3)以后求斜率可不通過傾斜角而由直線上兩點的坐標(biāo)直接求得;
(4)求直線的傾斜角可由直線上兩點的坐標(biāo)先求斜率得到。
3、直線方程
點斜式:
直線斜率k,且過點
注意:當(dāng)直線的斜率為0°時,k=0,直線的方程是y=y1。當(dāng)直線的斜率為90°時,直線的斜率不存在,它的方程不能用點斜式表示.但因l上每一點的橫坐標(biāo)都等于x1,所以它的方程是x=x1。
高三數(shù)學(xué)知識點總結(jié)2
一、函數(shù)的定義域的常用求法:
1、分式的分母不等于零;
2、偶次方根的被開方數(shù)大于等于零;
3、對數(shù)的真數(shù)大于零;
4、指數(shù)函數(shù)和對數(shù)函數(shù)的底數(shù)大于零且不等于1;
5、三角函數(shù)正切函數(shù)y=tanx中x≠kπ+π/2;
6、如果函數(shù)是由實際意義確定的解析式,應(yīng)依據(jù)自變量的實際意義確定其取值范圍。
二、函數(shù)的解析式的常用求法:
1、定義法;
2、換元法;
3、待定系數(shù)法;
4、函數(shù)方程法;
5、參數(shù)法;
6、配方法
三、函數(shù)的值域的常用求法:
1、換元法;
2、配方法;
3、判別式法;
4、幾何法;
5、不等式法;
6、單調(diào)性法;
7、直接法
四、函數(shù)的最值的常用求法:
1、配方法;
2、換元法;
3、不等式法;
4、幾何法;
5、單調(diào)性法
五、函數(shù)單調(diào)性的常用結(jié)論:
1、若f(x),g(x)均為某區(qū)間上的增(減)函數(shù),則f(x)+g(x)在這個區(qū)間上也為增(減)函數(shù)。
2、若f(x)為增(減)函數(shù),則-f(x)為減(增)函數(shù)。
3、若f(x)與g(x)的單調(diào)性相同,則f[g(x)]是增函數(shù);若f(x)與g(x)的單調(diào)性不同,則f[g(x)]是減函數(shù)。
4、奇函數(shù)在對稱區(qū)間上的單調(diào)性相同,偶函數(shù)在對稱區(qū)間上的單調(diào)性相反。
5、常用函數(shù)的單調(diào)性解答:比較大小、求值域、求最值、解不等式、證不等式、作函數(shù)圖象。
六、函數(shù)奇偶性的常用結(jié)論:
1、如果一個奇函數(shù)在x=0處有定義,則f(0)=0,如果一個函數(shù)y=f(x)既是奇函數(shù)又是偶函數(shù),則f(x)=0(反之不成立)。
2、兩個奇(偶)函數(shù)之和(差)為奇(偶)函數(shù);之積(商)為偶函數(shù)。
3、一個奇函數(shù)與一個偶函數(shù)的積(商)為奇函數(shù)。
4、兩個函數(shù)y=f(u)和u=g(x)復(fù)合而成的函數(shù),只要其中有一個是偶函數(shù),那么該復(fù)合函數(shù)就是偶函數(shù);當(dāng)兩個函數(shù)都是奇函數(shù)時,該復(fù)合函數(shù)是奇函數(shù)。
5、若函數(shù)f(x)的定義域關(guān)于原點對稱,則f(x)可以表示為f(x)=1/2[f(x)+f(-x)]+1/2[f(x)+f(-x)],該式的特點是:右端為一個奇函數(shù)和一個偶函數(shù)的和。
高三數(shù)學(xué)知識點總結(jié)3
a(1)=a,a(n)為公差為r的等差數(shù)列
通項公式:
a(n)=a(n-1)+r=a(n-2)+2r=...=a[n-(n-1)]+(n-1)r=a(1)+(n-1)r=a+(n-1)r
可用歸納法證明。
n=1時,a(1)=a+(1-1)r=a。成立。
假設(shè)n=k時,等差數(shù)列的通項公式成立。a(k)=a+(k-1)r
則,n=k+1時,a(k+1)=a(k)+r=a+(k-1)r+r=a+[(k+1)-1]r
通項公式也成立。
因此,由歸納法知,等差數(shù)列的通項公式是正確的。
求和公式:
S(n)=a(1)+a(2)+...+a(n)
=a+(a+r)+...+[a+(n-1)r]
=na+r[1+2+...+(n-1)]
=na+n(n-1)r/2
同樣,可用歸納法證明求和公式。
a(1)=a,a(n)為公比為r(r不等于0)的等比數(shù)列
通項公式:
a(n)=a(n-1)r=a(n-2)r^2=...=a[n-(n-1)]r^(n-1)=a(1)r^(n-1)=ar^(n-1)
可用歸納法證明等比數(shù)列的通項公式。
求和公式:
S(n)=a(1)+a(2)+...+a(n)
=a+ar+...+ar^(n-1)
=a[1+r+...+r^(n-1)]
r不等于1時,
S(n)=a[1-r^n]/[1-r]
r=1時,
S(n)=na
同樣,可用歸納法證明求和公式。
高三數(shù)學(xué)知識點總結(jié)4
1.函數(shù)的奇偶性
(1)若f(x)是偶函數(shù),那么f(x)=f(-x);
(2)若f(x)是奇函數(shù),0在其定義域內(nèi),則f(0)=0(可用于求參數(shù));
(3)判斷函數(shù)奇偶性可用定義的等價形式:f(x)±f(-x)=0或(f(x)≠0);
(4)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先化簡,再判斷其奇偶性;
(5)奇函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相同的單調(diào)性;偶函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相反的單調(diào)性;
2.復(fù)合函數(shù)的有關(guān)問題
(1)復(fù)合函數(shù)定義域求法:若已知的定義域為[a,b],其復(fù)合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域為[a,b],求f(x)的定義域,相當(dāng)于x∈[a,b]時,求g(x)的值域(即f(x)的定義域);研究函數(shù)的問題一定要注意定義域優(yōu)先的原則。
(2)復(fù)合函數(shù)的單調(diào)性由“同增異減”判定;
3.函數(shù)圖像(或方程曲線的對稱性)
(1)證明函數(shù)圖像的對稱性,即證明圖像上任意點關(guān)于對稱中心(對稱軸)的對稱點仍在圖像上;
(2)證明圖像C1與C2的對稱性,即證明C1上任意點關(guān)于對稱中心(對稱軸)的對稱點仍在C2上,反之亦然;
(3)曲線C1:f(x,y)=0,關(guān)于y=x+a(y=-x+a)的對稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);
(4)曲線C1:f(x,y)=0關(guān)于點(a,b)的對稱曲線C2方程為:f(2a-x,2b-y)=0;
(5)若函數(shù)y=f(x)對x∈R時,f(a+x)=f(a-x)恒成立,則y=f(x)圖像關(guān)于直線x=a對稱;
(6)函數(shù)y=f(x-a)與y=f(b-x)的圖像關(guān)于直線x=對稱;
4.函數(shù)的周期性
(1)y=f(x)對x∈R時,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,則y=f(x)是周期為2a的周期函數(shù);
(2)若y=f(x)是偶函數(shù),其圖像又關(guān)于直線x=a對稱,則f(x)是周期為2︱a︱的周期函數(shù);
(3)若y=f(x)奇函數(shù),其圖像又關(guān)于直線x=a對稱,則f(x)是周期為4︱a︱的周期函數(shù);
(4)若y=f(x)關(guān)于點(a,0),(b,0)對稱,則f(x)是周期為2的周期函數(shù);
(5)y=f(x)的圖象關(guān)于直線x=a,x=b(a≠b)對稱,則函數(shù)y=f(x)是周期為2的周期函數(shù);
(6)y=f(x)對x∈R時,f(x+a)=-f(x)(或f(x+a)=,則y=f(x)是周期為2的周期函數(shù);
5.方程k=f(x)有解k∈D(D為f(x)的值域);
6.a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;
7.(1)(a>0,a≠1,b>0,n∈R+);
(2)logaN=(a>0,a≠1,b>0,b≠1);
(3)logab的符號由口訣“同正異負(fù)”記憶;
(4)alogaN=N(a>0,a≠1,N>0);
8.判斷對應(yīng)是否為映射時,抓住兩點:
(1)A中元素必須都有象且;
(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;
9.能熟練地用定義證明函數(shù)的單調(diào)性,求反函數(shù),判斷函數(shù)的奇偶性。
10.對于反函數(shù),應(yīng)掌握以下一些結(jié)論:
(1)定義域上的單調(diào)函數(shù)必有反函數(shù);
(2)奇函數(shù)的反函數(shù)也是奇函數(shù);
(3)定義域為非單元素集的偶函數(shù)不存在反函數(shù);
(4)周期函數(shù)不存在反函數(shù);
(5)互為反函數(shù)的兩個函數(shù)具有相同的單調(diào)性;
(6)y=f(x)與y=f-1(x)互為反函數(shù),設(shè)f(x)的定義域為A,值域為B,則有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A);
11.處理二次函數(shù)的問題勿忘數(shù)形結(jié)合
二次函數(shù)在閉區(qū)間上必有最值,求最值問題用“兩看法”:一看開口方向;二看對稱軸與所給區(qū)間的相對位置關(guān)系;
12.依據(jù)單調(diào)性
利用一次函數(shù)在區(qū)間上的保號性可解決求一類參數(shù)的范圍問題;
13.恒成立問題的處理方法
(1)分離參數(shù)法;
(2)轉(zhuǎn)化為一元二次方程的根的分布列不等式(組)求解;
高三數(shù)學(xué)知識點總結(jié)5
等式的性質(zhì):
、俨坏仁降男再|(zhì)可分為不等式基本性質(zhì)和不等式運算性質(zhì)兩部分。
不等式基本性質(zhì)有:
(1)a>bb
(2)a>b,b>ca>c(傳遞性)
(3)a>ba+c>b+c(c∈R)
(4)c>0時,a>bac>bc
c<0時,a>bac
運算性質(zhì)有:
(1)a>b,c>da+c>b+d。
(2)a>b>0,c>d>0ac>bd。
(3)a>b>0an>bn(n∈N,n>1)。
(4)a>b>0>(n∈N,n>1)。
、陉P(guān)于不等式的性質(zhì)的考察,主要有以下三類問題:
(1)根據(jù)給定的不等式條件,利用不等式的性質(zhì),判斷不等式能否成立。
(2)利用不等式的性質(zhì)及實數(shù)的性質(zhì),函數(shù)性質(zhì),判斷實數(shù)值的大小。
(3)利用不等式的性質(zhì),判斷不等式變換中條件與結(jié)論間的充分或必要關(guān)系。
高三數(shù)學(xué)知識點總結(jié)6
任一A,B,記做AB
AB,BA,A=B
AB={|A|,且|B|}
AB={|A|,或|B|}
Card(AB)=card(A)+card(B)-card(AB)
(1)命題
原命題若p則q
逆命題若q則p
否命題若p則q
逆否命題若q,則p
(2)AB,A是B成立的充分條件
BA,A是B成立的必要條件
AB,A是B成立的充要條件
1.集合元素具有①確定性;②互異性;③無序性
2.集合表示方法①列舉法;②描述法;③韋恩圖;④數(shù)軸法
(3)集合的運算
、貯∩(B∪C)=(A∩B)∪(A∩C)
②Cu(A∩B)=CuA∪CuB
Cu(A∪B)=CuA∩CuB
(4)集合的性質(zhì)
n元集合的字集數(shù):2n
真子集數(shù):2n-1;
非空真子集數(shù):2n-2
高三數(shù)學(xué)知識點總結(jié)7
1.不等式的定義
在客觀世界中,量與量之間的不等關(guān)系是普遍存在的,我們用數(shù)學(xué)符號連接兩個數(shù)或代數(shù)式以表示它們之間的不等關(guān)系,含有這些不等號的式子,叫做不等式。
2.比較兩個實數(shù)的大小
兩個實數(shù)的大小是用實數(shù)的運算性質(zhì)來定義的,
有a-b>0;a-b=0;a-b<0
另外,若b>0,則有>1;=1;<1
概括為:作差法,作商法,中間量法等
3.不等式的性質(zhì)
(1)對稱性:a>b
(2)傳遞性:a>b,b>c;
(3)可加性:a>b a+cb+c,a>b,c>d a+cb+d;
(4)可乘性:a>b,c>0?ac>bc;a>b>0,c>d>0;
(5)可乘方:a>b>0(n∈N,n≥2);
(6)可開方:a>b>0(n∈N,n≥2)
高三數(shù)學(xué)知識點總結(jié)8
1、三類角的求法:
、僬页龌蜃鞒鲇嘘P(guān)的角。
、谧C明其符合定義,并指出所求作的角。
③計算大。ń庵苯侨切,或用余弦定理)。
2、正棱柱——底面為正多邊形的直棱柱
正棱錐——底面是正多邊形,頂點在底面的射影是底面的中心。
正棱錐的計算集中在四個直角三角形中:
3、怎樣判斷直線l與圓C的位置關(guān)系?
圓心到直線的距離與圓的半徑比較。
直線與圓相交時,注意利用圓的“垂徑定理”。
4、對線性規(guī)劃問題:
作出可行域,作出以目標(biāo)函數(shù)為截距的直線,在可行域內(nèi)平移直線,求出目標(biāo)函數(shù)的最值。
高三數(shù)學(xué)知識點總結(jié)9
1.數(shù)列的定義、分類與通項公式
(1)數(shù)列的定義:
、贁(shù)列:按照一定順序排列的一列數(shù)
、跀(shù)列的項:數(shù)列中的每一個數(shù)
(2)數(shù)列的分類:
分類標(biāo)準(zhǔn)類型滿足條件
項數(shù)有窮數(shù)列項數(shù)有限
無窮數(shù)列項數(shù)無限
項與項間的大小關(guān)系遞增數(shù)列an+1>an其中n∈N
遞減數(shù)列an+1
常數(shù)列an+1=an
(3)數(shù)列的通項公式:
如果數(shù)列{an}的第n項與序號n之間的關(guān)系可以用一個式子來表示,那么這個公式叫做這個數(shù)列的通項公式。
2.數(shù)列的遞推公式
如果已知數(shù)列{an}的首項(或前幾項),且任一項an與它的前一項an-1(n≥2)(或前幾項)間的關(guān)系可用一個公式來表示,那么這個公式叫數(shù)列的遞推公式。
3.對數(shù)列概念的理解
(1)數(shù)列是按一定“順序”排列的一列數(shù),一個數(shù)列不僅與構(gòu)成它的“數(shù)”有關(guān),而且還與這些“數(shù)”的排列順序有關(guān),這有別于集合中元素的無序性,因此,若組成兩個數(shù)列的數(shù)相同而排列次序不同,那么它們就是不同的兩個數(shù)列。
(2)數(shù)列中的數(shù)可以重復(fù)出現(xiàn),而集合中的元素不能重復(fù)出現(xiàn),這也是數(shù)列與數(shù)集的區(qū)別。
高三數(shù)學(xué)知識點總結(jié)10
不等式的解集:
①能使不等式成立的未知數(shù)的值,叫做不等式的解。
、谝粋含有未知數(shù)的不等式的所有解,組成這個不等式的解集。
、矍蟛坏仁浇饧倪^程叫做解不等式。
不等式的判定:
、俪R姷牟坏忍栍小>”“<”“≤”“≥”及“≠”。分別讀作“大于,小于,小于等于,大于等于,不等于”,其中“≤”又叫作不大于,“≥”叫作不小于;
②在不等式“a>b”或“a
、鄄坏忍柕拈_口所對的數(shù)較大,不等號的尖頭所對的數(shù)較;
、茉诹胁坏仁綍r,一定要注意不等式關(guān)系的關(guān)鍵字,如:正數(shù)、非負(fù)數(shù)、不大于、小于等等。
【高三數(shù)學(xué)知識點總結(jié)】相關(guān)文章:
高三數(shù)學(xué)必考知識點總結(jié)04-25
高三數(shù)學(xué)復(fù)習(xí)知識點總結(jié)12-26
理科高三數(shù)學(xué)知識點總結(jié)04-25
精選高三數(shù)學(xué)知識點總結(jié)歸納三篇10-09
高三物理知識點總結(jié)09-08
高三化學(xué)的知識點總結(jié)12-09