大學(xué)高等數(shù)學(xué)知識(shí)點(diǎn)總結(jié)
在學(xué)習(xí)中,說(shuō)起知識(shí)點(diǎn),應(yīng)該沒有人不熟悉吧?知識(shí)點(diǎn)也可以理解為考試時(shí)會(huì)涉及到的知識(shí),也就是大綱的分支。想要一份整理好的知識(shí)點(diǎn)嗎?下面是小編精心整理的大學(xué)高等數(shù)學(xué)知識(shí)點(diǎn)總結(jié),希望對(duì)大家有所幫助。
大學(xué)高等數(shù)學(xué)知識(shí)點(diǎn)總結(jié)1
第一章:函數(shù)與極限
1.理解函數(shù)的概念,掌握函數(shù)的表示方法。
2.會(huì)建立簡(jiǎn)單應(yīng)用問(wèn)題中的函數(shù)關(guān)系式。
3.了解函數(shù)的奇偶性、單調(diào)性、周期性、和有界性。
4.掌握基本初等函數(shù)的性質(zhì)及圖形。
5.理解復(fù)合函數(shù)及分段函數(shù)的有關(guān)概念,了解反函數(shù)及隱函數(shù)的概念。
6.理解函數(shù)連續(xù)性的概念(含左連續(xù)和右連續(xù))會(huì)判別函數(shù)間斷點(diǎn)的類型。
7.理解極限的概念,理解函數(shù)左極限與右極限的概念,以及極限存在與左右極限間的關(guān)系。
8.掌握極限存在的兩個(gè)準(zhǔn)則,并會(huì)利用它們求極限,掌握利用兩個(gè)重要極限求極限的方法。
9.掌握極限性質(zhì)及四則運(yùn)算法則。
10.理解無(wú)窮孝無(wú)窮大的概念,掌握無(wú)窮小的比較方法,會(huì)用等價(jià)無(wú)窮小求極限。
第二章:導(dǎo)數(shù)與微分
1.理解導(dǎo)數(shù)與微分的概念,理解導(dǎo)數(shù)與微分的關(guān)系,理解導(dǎo)數(shù)的幾何意義,會(huì)求平面曲線的切線方程和法線方程,了解導(dǎo)數(shù)的物理意義,會(huì)用導(dǎo)數(shù)描寫一些物理量,理解函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系。
2.掌握導(dǎo)數(shù)的四則運(yùn)算法則和復(fù)合函數(shù)的求導(dǎo)法則,掌握初等函數(shù)的求導(dǎo)公式,了解微分的四則運(yùn)算法則和一階微分形式的不變性,會(huì)求初等函數(shù)的微分。
3.會(huì)求隱函數(shù)和參數(shù)方程所確定的函數(shù)以及反函數(shù)的導(dǎo)數(shù)。
4.會(huì)求分段函數(shù)的導(dǎo)數(shù),了解高階導(dǎo)數(shù)的概念,會(huì)求簡(jiǎn)單函數(shù)的高階導(dǎo)數(shù)。
第三章:微分中值定理與導(dǎo)數(shù)的應(yīng)用
1.熟練運(yùn)用微分中值定理證明簡(jiǎn)單命題。
2.熟練運(yùn)用羅比達(dá)法則和泰勒公式求極限和證明命題。
3.了解函數(shù)圖形的作圖步驟。了解方程求近似解的兩種方法:二分法、切線法。
4.會(huì)求函數(shù)單調(diào)區(qū)間、凸凹區(qū)間、極值、拐點(diǎn)以及漸進(jìn)線、曲率。
第四章:不定積分
1.理解原函數(shù)和不定積分的概念,掌握不定積分的基本公式和性質(zhì)。
2.會(huì)求有理函數(shù)、三角函數(shù)、有理式和簡(jiǎn)單無(wú)理函數(shù)的`不定積分
3.掌握不定積分的分步積分法。
4.掌握不定積分的換元積分法。
第五章:定積分
1.理解定積分的概念,掌握定積分的性質(zhì)及定積分中值定理。
2.掌握定積分的換元積分法與分步積分法。
3.了解廣義積分的概念,并會(huì)計(jì)算廣義積分,
4.掌握反常積分的運(yùn)算。
5.理解變上限定積分定義的函數(shù),會(huì)求它的導(dǎo)數(shù),掌握牛頓萊布尼茨公式。
第六章:定積分的應(yīng)用
1.掌握用定積分計(jì)算一些物理量(功、引力、壓力)。
2.掌握用定積分表達(dá)和計(jì)算一些幾何量(平面圖形的面積、平面曲線的弧長(zhǎng)、旋轉(zhuǎn)體的體積和側(cè)面積、平行截面面積為已知的立體體積)及函數(shù)的平均值。
第七章:微分方程
1.了解微分方程及其解、階、通解、初始條件和特解等概念。
2.會(huì)解奇次微分方程,會(huì)用簡(jiǎn)單變量代換解某些微分方程.
3.掌握可分離變量的微分方程,會(huì)用簡(jiǎn)單變量代換 解某些微分方程。
4.掌握二階常系數(shù)齊次微分方程的解法,并會(huì)解某些高于二階的常系數(shù)齊次微分方程。
5.掌握一階線性微分方程的解法,會(huì)解伯努利方程.
6.會(huì)用降階法解下列微分方程y=f(x,y).
7.會(huì)解自由項(xiàng)為多項(xiàng)式,指數(shù)函數(shù),正弦函數(shù),余弦函數(shù),以及它們的和與積的二階常系數(shù)非齊次線性微分方程。
8.會(huì)解歐拉方程。
第八章:空間解析幾何與向量代數(shù)
1.理解空間直線坐標(biāo)系,理解向量的概念及其表示。
2.掌握向量的數(shù)量、積向量積、混合積并能用坐標(biāo)表達(dá)式進(jìn)行運(yùn)算,了解兩個(gè)向量垂直、平行的條件。
3.掌握向量的線性運(yùn)算,掌握單位向量、方向角與方向余弦,掌握向量的坐標(biāo)表達(dá)式掌握用坐標(biāo)表達(dá)式進(jìn)行向量運(yùn)算方法。
4.掌握直線方程的求法,會(huì)利用平面、直線的相互關(guān)系解決有關(guān)問(wèn)題,會(huì)求點(diǎn)到直線及點(diǎn)到平面的距離。
5.掌握平面方程及其求法,會(huì)求平面與平面的夾角,并會(huì)用平面的相互關(guān)系(平行相交垂直)解決有關(guān)問(wèn)題。
6.理解曲面方程的概念,了解二次曲面方程及其圖形,會(huì)求以坐標(biāo)軸為旋轉(zhuǎn)軸的旋轉(zhuǎn)曲面及母線平行于坐標(biāo)軸的柱面方程。
7.了解空間曲線的概念,了解空間曲線的參數(shù)方程和一般方程,了解空間曲線在坐標(biāo)平面上的投影,并會(huì)求其方程。
大學(xué)高等數(shù)學(xué)知識(shí)點(diǎn)總結(jié)2
1、一元函數(shù)微分學(xué)。主要考查導(dǎo)數(shù)與微分的求解;隱函數(shù)求導(dǎo);分段函數(shù)和絕對(duì)值函數(shù)可導(dǎo)性;洛比達(dá)法則求不定式極限;函數(shù)極值;方程的根;
2、證明函數(shù)不等式;羅爾定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理及輔助函數(shù)的構(gòu)造;值、最小值在物理、經(jīng)濟(jì)等方面實(shí)際應(yīng)用;用導(dǎo)數(shù)研究函數(shù)性態(tài)和描繪函數(shù)圖形,求曲線漸近線。
3、一元函數(shù)積分學(xué)。主要考查不定積分、定積分及廣義積分的計(jì)算;變上限積分的求導(dǎo)、極限等;積分中值定理和積分性質(zhì)的證明題;定積分的應(yīng)用,如計(jì)算旋轉(zhuǎn)面面積、旋轉(zhuǎn)體體積、變力作功等。
4、向量代數(shù)和空間解析幾何。主要考查求向量的數(shù)量積、向量積及混合積;求直線方程和平面方程;平面與直線間關(guān)系及夾角的判定;旋轉(zhuǎn)面方程。
5、多元函數(shù)微分學(xué)。主要考查偏導(dǎo)數(shù)存在、可微、連續(xù)的判斷;多元函數(shù)和隱函數(shù)的
一階、二階偏導(dǎo)數(shù);二元、三元函數(shù)的方向?qū)?shù)和梯度;曲面和空間曲線的切平面和法線;多元函數(shù)極值或條件極值在幾何、物理與經(jīng)濟(jì)上的應(yīng)用;二元連續(xù)函數(shù)在有界平面區(qū)域上的.值和最小值。
6、多元函數(shù)的積分學(xué)。這部分是數(shù)學(xué)一的內(nèi)容,主要包括二、三重積分在各種坐標(biāo)下的計(jì)算,累次積分交換次序;第一型曲線和曲面積分計(jì)算;第二型(對(duì)坐標(biāo))曲線積分計(jì)算、格林公式、斯托克斯公式;第二型(對(duì)坐標(biāo))曲面積分計(jì)算、高斯公式;梯度、散度、旋度的綜合計(jì)算;重積分和線面積分應(yīng)用;求面積,體積,重量,重心,引力,變力作功等。
7、無(wú)窮級(jí)數(shù)。主要考查級(jí)數(shù)的收斂、發(fā)散、絕對(duì)收斂和條件收斂;冪級(jí)數(shù)的收斂半徑和收斂域;冪級(jí)數(shù)的和函數(shù)或數(shù)項(xiàng)級(jí)數(shù)的和;函數(shù)展開為冪級(jí)數(shù)(包括寫出收斂域)或傅立葉級(jí)數(shù);由傅立葉級(jí)數(shù)確定其在某點(diǎn)的和(通常要用狄里克雷定理)。
8、微分方程,主要考查一階微分方程的通解或特解;可降階方程;線性常系數(shù)齊次和非齊次方程的特解或通解;微分方程的建立與求解。
除了以上分章節(jié)的考查重點(diǎn),還有跨章節(jié)乃至跨科目的綜合考查題,近幾年出現(xiàn)的有:級(jí)數(shù)與積分的綜合題;微積分與微分方程的綜合題;求極限的綜合題;空間解析幾何與多元函數(shù)微分的綜合題;線性代數(shù)與空間解析幾何的綜合題等。
大學(xué)高等數(shù)學(xué)知識(shí)點(diǎn)總結(jié)3
知識(shí)點(diǎn)一:函數(shù)、極限與連續(xù)
重點(diǎn)考查極限的計(jì)算、已知極限確定原式中的未知參數(shù)、函數(shù)連續(xù)性的討論、間斷點(diǎn)類型的判斷、無(wú)窮小階的比較、討論連續(xù)函數(shù)在給定區(qū)間上零點(diǎn)的個(gè)數(shù)、確定方程在給定區(qū)間上有無(wú)實(shí)根。
知識(shí)點(diǎn)二:一元函數(shù)微分學(xué)
重點(diǎn)考查導(dǎo)數(shù)與微分的定義、函數(shù)導(dǎo)數(shù)與微分的計(jì)算(包括隱函數(shù)求導(dǎo))、利用洛比達(dá)法則求不定式極限、函數(shù)極值與最值、方程根的個(gè)數(shù)、函數(shù)不等式的證明、與中值定理相關(guān)的證明、在物理和經(jīng)濟(jì)等方面的實(shí)際應(yīng)用、曲線漸近線的求法。
知識(shí)點(diǎn)三:一元函數(shù)積分學(xué)
重點(diǎn)考查不定積分的計(jì)算、定積分的計(jì)算、廣義積分的計(jì)算及判斂、變上限函數(shù)的求導(dǎo)和極限、利用積分中值定理和積分性質(zhì)的證明、定積分的幾何應(yīng)用和物理應(yīng)用。
知識(shí)點(diǎn)四:向量代數(shù)與空間解析幾何(數(shù)一)
主要考查向量的運(yùn)算、平面方程和直線方程及其求法、平面與平面、平面與直線、直線與直線之間的夾角,并會(huì)利用平面、直線的相互關(guān)系(平行、垂直、相交等))解決有關(guān)問(wèn)題等,該部分一般不單獨(dú)考查,主要作為曲線積分和曲面積分的基礎(chǔ)。
知識(shí)點(diǎn)五:多元函數(shù)微分學(xué)
重點(diǎn)考查多元函數(shù)極限存在、連續(xù)性、偏導(dǎo)數(shù)存在、可微分及偏導(dǎo)連續(xù)等問(wèn)題、多元函數(shù)和隱函數(shù)的一階、二階偏導(dǎo)數(shù)求法、有條件極值和無(wú)條件極值。另外,數(shù)一還要求掌握方向?qū)?shù)、梯度、曲線的切線與法平面、曲面的切平面與法線。
知識(shí)點(diǎn)六:多元函數(shù)積分學(xué)
重點(diǎn)考查二重積分在直角坐標(biāo)和極坐標(biāo)下的計(jì)算、累次積分、積分換序。此外,數(shù)一還要求掌握三重積分的`計(jì)算、兩類曲線積分和兩種曲面積分的計(jì)算、格林公式、高斯公式及斯托克斯公式。
知識(shí)點(diǎn)七:無(wú)窮級(jí)數(shù)(數(shù)一、數(shù)三)
重點(diǎn)考查正項(xiàng)級(jí)數(shù)的基本性質(zhì)和斂散性判別、一般項(xiàng)級(jí)數(shù)絕對(duì)收斂和條件收斂的判別、冪級(jí)數(shù)收斂半徑、收斂域及和函數(shù)的求法以及冪級(jí)數(shù)在特定點(diǎn)的展開問(wèn)題。
知識(shí)點(diǎn)八:常微分方程及差分方程
重點(diǎn)考查一階微分方程的通解或特解、二階線性常系數(shù)齊次和非齊次方程的特解或通解、微分方程的建立與求解。此外,數(shù)三考查差分方程的基本概念與一介常系數(shù)線形方程求解方法。數(shù)一還要求會(huì)伯努利方程、歐拉公式等。
【大學(xué)高等數(shù)學(xué)知識(shí)點(diǎn)總結(jié)】相關(guān)文章:
大學(xué)高等數(shù)學(xué)二知識(shí)點(diǎn)總結(jié)08-17
同濟(jì)大學(xué)高等數(shù)學(xué)知識(shí)點(diǎn)總結(jié)07-01
高等數(shù)學(xué)函數(shù)知識(shí)點(diǎn)總結(jié)07-31
高等數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)總結(jié)07-17
高等數(shù)學(xué)大二知識(shí)點(diǎn)總結(jié)07-23
高等數(shù)學(xué)知識(shí)點(diǎn)10-24
高職高等數(shù)學(xué)知識(shí)點(diǎn)總結(jié)09-03
高等數(shù)學(xué)第四版知識(shí)點(diǎn)總結(jié)09-17