一级毛片免费不卡在线视频,国产日批视频免费在线观看,菠萝菠萝蜜在线视频免费视频,欧美日韩亚洲无线码在线观看,久久精品这里精品,国产成人综合手机在线播放,色噜噜狠狠狠综合曰曰曰,琪琪视频

高一數(shù)學必修四知識點

時間:2024-10-17 09:36:29 嘉璇 總結 我要投稿
  • 相關推薦

高一數(shù)學必修四知識點推薦

  在我們上學期間,看到知識點,都是先收藏再說吧!知識點是指某個模塊知識的重點、核心內容、關鍵部分。你知道哪些知識點是真正對我們有幫助的嗎?下面是小編為大家收集的高一數(shù)學必修四知識點推薦,僅供參考,希望能夠幫助到大家。

高一數(shù)學必修四知識點推薦

  高一數(shù)學必修四知識點 1

  【公式一】

  設α為任意角,終邊相同的角的同一三角函數(shù)的值相等:

  sin(2kπ+α)=sinα(k∈Z)

  cos(2kπ+α)=cosα(k∈Z)

  tan(2kπ+α)=tanα(k∈Z)

  cot(2kπ+α)=cotα(k∈Z)

  【公式二】

  設α為任意角,π+α的三角函數(shù)值與α的三角函數(shù)值之間的.關系:

  sin(π+α)=-sinα

  cos(π+α)=-cosα

  tan(π+α)=tanα

  cot(π+α)=cotα

  【公式三】

  任意角α與-α的三角函數(shù)值之間的關系:

  sin(-α)=-sinα

  cos(-α)=cosα

  tan(-α)=-tanα

  cot(-α)=-cotα

  【公式四】

  利用公式二和公式三可以得到π-α與α的三角函數(shù)值之間的關系:

  sin(π-α)=sinα

  cos(π-α)=-cosα

  tan(π-α)=-tanα

  cot(π-α)=-cotα

  【公式五】

  利用公式一和公式三可以得到2π-α與α的三角函數(shù)值之間的關系:

  sin(2π-α)=-sinα

  cos(2π-α)=cosα

  tan(2π-α)=-tanα

  cot(2π-α)=-cotα

  【公式六】

  π/2±α及3π/2±α與α的三角函數(shù)值之間的關系:

  sin(π/2+α)=cosα

  cos(π/2+α)=-sinα

  tan(π/2+α)=-cotα

  cot(π/2+α)=-tanα

  sin(π/2-α)=cosα

  cos(π/2-α)=sinα

  tan(π/2-α)=cotα

  cot(π/2-α)=tanα

  sin(3π/2+α)=-cosα

  cos(3π/2+α)=sinα

  tan(3π/2+α)=-cotα

  cot(3π/2+α)=-tanα

  sin(3π/2-α)=-cosα

  cos(3π/2-α)=-sinα

  tan(3π/2-α)=cotα

  cot(3π/2-α)=tanα

  (以上k∈Z)

  高一數(shù)學必修四知識點 2

  不等式

  不等關系

  了解現(xiàn)實世界和日常生活中的不等關系,了解不等式(組)的實際背景.

  (2)一元二次不等式

  ①會從實際情境中抽象出一元二次不等式模型.

 、谕ㄟ^函數(shù)圖象了解一元二次不等式與相應的二次函數(shù)、一元二次方程的`聯(lián)系.

 、蹠庖辉尾坏仁,對給定的一元二次不等式,會設計求解的程序框圖.

  (3)二元一次不等式組與簡單線性規(guī)劃問題

 、贂䦶膶嶋H情境中抽象出二元一次不等式組.

  ②了解二元一次不等式的幾何意義,能用平面區(qū)域表示二元一次不等式組.

 、蹠䦶膶嶋H情境中抽象出一些簡單的二元線性規(guī)劃問題,并能加以解決.

  (4)基本不等式:

 、倭私饣静坏仁降淖C明過程.

  ②會用基本不等式解決簡單的(小)值問題圓的輔助線一般為連圓心與切線或者連圓心與弦中點

  高一數(shù)學必修四知識點 3

  解三角形

  (1)正弦定理和余弦定理

  掌握正弦定理、余弦定理,并能解決一些簡單的三角形度量問題.

  (2)應用

  能夠運用正弦定理、余弦定理等知識和方法解決一些與測量和幾何計算有關的實際問題.

  數(shù)列

  (1)數(shù)列的概念和簡單表示法

 、倭私鈹(shù)列的.概念和幾種簡單的表示方法(列表、圖象、通項公式).

 、诹私鈹(shù)列是自變量為正整數(shù)的一類函數(shù).

  (2)等差數(shù)列、等比數(shù)列

 、倮斫獾炔顢(shù)列、等比數(shù)列的概念.

 、谡莆盏炔顢(shù)列、等比數(shù)列的通項公式與前項和公式.

 、勰茉诰唧w的問題情境中,識別數(shù)列的等差關系或等比關系,并能用有關知識解決相應的問題.

 、芰私獾炔顢(shù)列與一次函數(shù)、等比數(shù)列與指數(shù)函數(shù)的關系.

  高一數(shù)學必修四知識點 4

  【高一數(shù)學函數(shù)復習資料】

  一、定義與定義式:

  自變量x和因變量y有如下關系:

  y=kx+b

  則此時稱y是x的一次函數(shù)。

  特別地,當b=0時,y是x的正比例函數(shù)。

  即:y=kx(k為常數(shù),k≠0)

  二、一次函數(shù)的性質:

  的變化值與對應的x的變化值成正比例,比值為k

  即:y=kx+b(k為任意不為零的實數(shù)b取任何實數(shù))

  當x=0時,b為函數(shù)在y軸上的截距。

  三、一次函數(shù)的圖像及性質:

  作法與圖形:通過如下3個步驟

  (1)列表;

  (2)描點;

  (3)連線,可以作出一次函數(shù)的圖像——一條直線。因此,作一次函數(shù)的圖像只需知道2點,并連成直線即可。(通常找函數(shù)圖像與x軸和y軸的交點)

  性質:(1)在一次函數(shù)上的任意一點P(x,y),都滿足等式:y=kx+b。(2)一次函數(shù)與y軸交點的坐標總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像總是過原點。

  ,b與函數(shù)圖像所在象限:

  當k>0時,直線必通過一、三象限,y隨x的增大而增大;

  當k

  當b>0時,直線必通過一、二象限;

  當b=0時,直線通過原點

  當b

  特別地,當b=O時,直線通過原點O(0,0)表示的是正比例函數(shù)的圖像。

  這時,當k>0時,直線只通過一、三象限;當k

  四、確定一次函數(shù)的表達式:

  已知點A(x1,y1);B(x2,y2),請確定過點A、B的一次函數(shù)的表達式。

  (1)設一次函數(shù)的表達式(也叫解析式)為y=kx+b。

  (2)因為在一次函數(shù)上的任意一點P(x,y),都滿足等式y(tǒng)=kx+b。所以可以列出2個方程:y1=kx1+b……①和y2=kx2+b……②

  (3)解這個二元一次方程,得到k,b的值。

  (4)最后得到一次函數(shù)的'表達式。

  五、一次函數(shù)在生活中的應用:

  當時間t一定,距離s是速度v的一次函數(shù)。s=vt。

  當水池抽水速度f一定,水池中水量g是抽水時間t的一次函數(shù)。設水池中原有水量S。g=S-ft。

  六、常用公式:(不全,希望有人補充)

  求函數(shù)圖像的k值:(y1-y2)/(x1-x2)

  求與x軸平行線段的中點:|x1-x2|/2

  求與y軸平行線段的中點:|y1-y2|/2

  求任意線段的長:√(x1-x2)^2+(y1-y2)^2(注:根號下(x1-x2)與(y1-y2)的平方和)

  高一數(shù)學必修四知識點 5

  一、集合有關概念

  1.集合的含義

  2.集合的中元素的三個特性:

  (1)元素的確定性如:世界上的山

  (2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}

  (3)元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個集合

  3.集合的表示:{…}如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

  (1)用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

  (2)集合的表示方法:列舉法與描述法。

  注意:常用數(shù)集及其記法:

  非負整數(shù)集(即自然數(shù)集)記作:N

  正整數(shù)集:N_或N+

  整數(shù)集:Z

  有理數(shù)集:Q

  實數(shù)集:R

  (1)列舉法:{a,b,c……}

  (2)描述法:將集合中的元素的公共屬性描述出來,寫在大括號內表示集合{xR|x-3>2},{x|x-3>2}

  (3)語言描述法:例:{不是直角三角形的三角形}

  (4)Venn圖:

  4、集合的分類:

  (1)有限集含有有限個元素的集合

  (2)無限集含有無限個元素的集合

  (3)空集不含任何元素的集合例:{x|x2=-5}

  二、集合間的基本關系

  1.“包含”關系—子集

  注意:有兩種可能(1)A是B的'一部分,;(2)A與B是同一集合。

  反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA

  2.“相等”關系:A=B(5≥5,且5≤5,則5=5)

  實例:設A={x|x2-1=0}B={-1,1}“元素相同則兩集合相等”

  即:

 、偃魏我粋集合是它本身的子集。AíA

  ②真子集:如果AíB,且A1B那就說集合A是集合B的真子集,記作AB(或BA)

 、廴绻鸄íB,BíC,那么AíC

  ④如果AíB同時BíA那么A=B

  3.不含任何元素的集合叫做空集,記為Φ

  規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。

  4.子集個數(shù):

  有n個元素的集合,含有2n個子集,2n-1個真子集,含有2n-1個非空子集,含有2n-1個非空真子集

  三、集合的運算

  運算類型交集并集補集

  定義由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.記作AB(讀作‘A交B’),即AB={x|xA,且xB}。

  由所有屬于集合A或屬于集合B的元素所組成的集合,叫做A,B的并集。記作:AB(讀作‘A并B’),即AB={x|xA,或xB})。

  高一數(shù)學必修四知識點 6

  空間直角坐標系定義:

  過定點O,作三條互相垂直的數(shù)軸,它們都以O為原點且一般具有相同的長度單位、這三條軸分別叫做x軸(橫軸)、y軸(縱軸)、z軸(豎軸);統(tǒng)稱坐標軸、通常把x軸和y軸配置在水平面上,而z軸則是鉛垂線;它們的正方向要符合右手規(guī)則,即以右手握住z軸,當右手的四指從正向x軸以π/2角度轉向正向y軸時,大拇指的指向就是z軸的正向,這樣的三條坐標軸就組成了一個空間直角坐標系,點O叫做坐標原點。

  1、右手直角坐標系

 、儆沂种苯亲鴺讼档慕⒁(guī)則:x軸、y軸、z軸互相垂直,分別指向右手的拇指、食指、中指;

 、谝阎c的`坐標P(x,y,z)作點的方法與步驟(路徑法):

  沿x軸正方向(x>0時)或負方向(x<0時)移動|x|個單位,再沿y軸正方向(y>0時)或負方向(y<0時)移動|y|個單位,最后沿x軸正方向(z>0時)或負方向(z<>

 、垡阎c的位置求坐標的方法:

  過P作三個平面分別與x軸、y軸、z軸垂直于A,B,C,點A,B,C在x軸、y軸、z軸的坐標分別是a,b,c則(a,b,c)就是點P的坐標。

  2、在x軸上的點分別可以表示為(a,0,0),(0,b,0),(0,0,c)。

  在坐標平面xOy,xOz,yOz內的點分別可以表示為(a,b,0),(a,0,c),(0,b,c)。

  3、點P(a,b,c)關于x軸的對稱點的坐標為(a,-b,-c);

  點P(a,b,c)關于y軸的對稱點的坐標為(-a,b,-c);

  點P(a,b,c)關于z軸的對稱點的坐標為(-a,-b,c);

  點P(a,b,c)關于坐標平面xOy的對稱點為(a,b,-c);

  點P(a,b,c)關于坐標平面xOz的.對稱點為(a,-b,c);

  點P(a,b,c)關于坐標平面yOz的對稱點為(-a,b,c);

  點P(a,b,c)關于原點的對稱點(-a,-b,-c)。

  4、已知空間兩點P(x1,y1,z1),Q(x2,y2,z2),則線段PQ的中點坐標為

  5、空間兩點間的距離公式

  已知空間兩點P(x1,y1,z1),Q(x2,y2,z2),則兩點的距離為特殊點A(x,y,z)到原點O的距離為

  6、以C(x0,y0,z0)為球心,r為半徑的球面方程為

  特殊地,以原點為球心,r為半徑的球面方程為x2+y2+z2=r2

  高一數(shù)學必修四知識點 7

  集合間的基本關系

  1.子集,A包含于B,記為:,有兩種可能

  (1)A是B的一部分,

  (2)A與B是同一集合,A=B,A、B兩集合中元素都相同。

  反之:集合A不包含于集合B,記作。

  如:集合A={1,2,3},B={1,2,3,4},C={1,2,3,4},三個集合的關系可以表示為,B=C。A是C的'子集,同時A也是C的真子集。

  2.真子集:如果A?B,且A?B那就說集合A是集合B的真子集,記作AB(或BA)

  3、不含任何元素的集合叫做空集,記為Φ。Φ是任何集合的子集。

  4、有n個元素的集合,含有2n個子集,2n-1個真子集,含有2n-2個非空真子集。如A={1,2,3,4,5},則集合A有25=32個子集,25-1=31個真子集,25-2=30個非空真子集。

  例:集合共有個子集。(13年高考第4題,簡單)

  練習:A={1,2,3},B={1,2,3,4},請問A集合有多少個子集,并寫出子集,B集合有多少個非空真子集,并將其寫出來。

  解析:

  集合A有3個元素,所以有23=8個子集。分別為:①不含任何元素的子集Φ;②含有1個元素的子集{1}{2}{3};③含有兩個元素的子集{1,2}{1,3}{2,3};④含有三個元素的子集{1,2,3}。

  集合B有4個元素,所以有24-2=14個非空真子集。具體的子集自己寫出來。

  此處這么羅嗦主要是為了讓同學們注意寫的順序,數(shù)學就是要講究嚴謹性和邏輯性的。一定要養(yǎng)成自己的邏輯習慣。如果就是為了提高計算能力倒不如直接去菜場賣菜算了,絕對能飛速提高的,那學數(shù)學也沒什么必要了。

  高一數(shù)學必修四知識點 8

  棱錐

  棱錐的定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,這些面圍成的幾何體叫做棱錐

  棱錐的的性質:

  (1)側棱交于一點。側面都是三角形

  (2)平行于底面的截面與底面是相似的多邊形。且其面積比等于截得的棱錐的高與遠棱錐高的`比的平方

  正棱錐

  正棱錐的定義:如果一個棱錐底面是正多邊形,并且頂點在底面內的射影是底面的中心,這樣的棱錐叫做正棱錐。

  正棱錐的`性質:

  (1)各側棱交于一點且相等,各側面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。

  (3)多個特殊的直角三角形

  esp:

  a、相鄰兩側棱互相垂直的正三棱錐,由三垂線定理可得頂點在底面的射影為底面三角形的垂心。

  b、四面體中有三對異面直線,若有兩對互相垂直,則可得第三對也互相垂直。且頂點在底面的射影為底面三角形的垂心。

【高一數(shù)學必修四知識點】相關文章:

高一必修數(shù)學知識點總結08-05

高一數(shù)學必修一知識點總結05-19

高一數(shù)學必修二知識點總結歸納07-05

高一必修一數(shù)學知識點總結07-22

高一歷史必修二知識點總結01-17

高一政治必修2知識點總結04-16

高一化學必修一知識點總結02-04

高一化學必修二知識點總結12-09

高一政治必修一知識點總結歸納07-26