一级毛片免费不卡在线视频,国产日批视频免费在线观看,菠萝菠萝蜜在线视频免费视频,欧美日韩亚洲无线码在线观看,久久精品这里精品,国产成人综合手机在线播放,色噜噜狠狠狠综合曰曰曰,琪琪视频

高一下冊數(shù)學(xué)教學(xué)工作計劃

時間:2022-12-25 09:53:50 教學(xué)工作計劃 我要投稿
  • 相關(guān)推薦

有關(guān)高一下冊數(shù)學(xué)教學(xué)工作計劃三篇

  光陰迅速,一眨眼就過去了,我們又將接觸新的知識,學(xué)習(xí)新的技能,積累新的經(jīng)驗,來為以后的工作做一份計劃吧。那么你真正懂得怎么制定計劃嗎?下面是小編為大家整理的高一下冊數(shù)學(xué)教學(xué)工作計劃3篇,歡迎閱讀,希望大家能夠喜歡。

有關(guān)高一下冊數(shù)學(xué)教學(xué)工作計劃三篇

高一下冊數(shù)學(xué)教學(xué)工作計劃 篇1

  一、內(nèi)容及其解析

  1。內(nèi)容:這是一節(jié)建立直線的點斜式方程(斜截式方程)的概念課。學(xué)生在此之前已學(xué)習(xí)了在直角坐標(biāo)系內(nèi)確定直線一條直線幾何要素,已知直線上的一點和直線的傾斜角(斜率)可以確定一條直線,已知兩點也可以確定一條直線。本節(jié)要求利用確定一條直線的幾何要素直線上的一點和直線的傾斜角,建立直線方程,通過方程研究直線。

  2。解析:直線方程屬于解析幾何的基礎(chǔ)知識,是研究解析幾何的開始。從整體來看,直線方程初步體現(xiàn)了解析幾何的實質(zhì)用代數(shù)的知識研究幾何問題。從集合與對應(yīng)的角度構(gòu)建了平面上的直線與二元一次方程的一一對應(yīng)關(guān)系,是學(xué)習(xí)解析幾何的基礎(chǔ)。對后續(xù)圓、直線與圓的位置關(guān)系等內(nèi)容的學(xué)習(xí),無論是知識上還是方法上都有著積極的意義。從本節(jié)來看,學(xué)生對直線既是熟悉的,又是陌生的。熟悉是學(xué)生知道一次函數(shù)的圖像是直線,陌生是用解析幾何的方法求直線的方程。直線的點斜式方程是推導(dǎo)其它直線方程的基礎(chǔ),在直線方程中占有重要地位。

  二、目標(biāo)及其解析

  1。目標(biāo)

  掌握直線的點斜式和斜截式方程的推導(dǎo)過程,并能根據(jù)條件熟練求出直線的點斜式方程和斜截式方程。

  2。解析

  ①知道直線上的一點和直線的傾斜角的代數(shù)含義是這個點的坐標(biāo)和這條直線的斜率。知道建立直線方程就是將確定直線的幾何要素用代數(shù)形式表示出來。

 、诶斫饨⒅本點斜式方程就是用直線上任意一點與已知點這兩個點的坐標(biāo)表示斜率。

 、劢(jīng)歷直線的點斜式方程的推導(dǎo)過程,體會直線和直線方程之間的關(guān)系,滲透解析幾何的基本思想。

 、茉谟懻撝本的點斜式方程的應(yīng)用條件與建立直線的斜截式方程中,體會分類討論的思想,體會特殊與一般思想。

 、菰诮⒅本方程的過程中,體會數(shù)形結(jié)合思想。在直線的斜截式方程與一次函數(shù)的比較中,體會兩者區(qū)別與聯(lián)系,特別是體會兩者數(shù)形結(jié)合的區(qū)別,進(jìn)一步體會解析幾何的基本思想。

  三、教學(xué)問題診斷分析

  1。學(xué)生在初中已經(jīng)學(xué)習(xí)了一次函數(shù),知道一次函數(shù)的圖像是一條直線,因此學(xué)生對研究直線的方程可能心存疑慮,產(chǎn)生疑慮的原因是學(xué)生初次接觸到解析幾何,不明確解析幾何的實質(zhì),因此應(yīng)跟學(xué)生講請解析幾何與函數(shù)的區(qū)別。

  2。學(xué)生能聽懂建立直線的點斜式的過程,但可能會不知道為什么要這么做。因此還是要跟學(xué)生講清坐標(biāo)法的實質(zhì)把幾何問題轉(zhuǎn)化成代數(shù)問題,用代數(shù)運算研究幾何圖形性質(zhì)。

  3。由于學(xué)生沒有學(xué)習(xí)曲線與方程,因此學(xué)生難以理解直線與直線的方程,甚至認(rèn)為驗證直線是方程的直線是多余的。這里讓學(xué)生初步理解就行,隨著后面教學(xué)的深入和反復(fù)滲透,學(xué)生會逐步理解的。

  四、教法與學(xué)法分析

  1、教法分析

  新課標(biāo)指出,學(xué)生是教學(xué)的主體。教師要以學(xué)生活動為主線。在原有知識的基礎(chǔ)上,構(gòu)建新的知識體系。本節(jié)課可采用啟發(fā)式問題教學(xué)法教學(xué)。通過問題串,啟發(fā)學(xué)生自主探究來達(dá)到對知識的發(fā)現(xiàn)和接受。通過縱向挖掘知識的深度,橫向加強知識間的聯(lián)系,培養(yǎng)學(xué)生的創(chuàng)新精神。并且使學(xué)生的有效思維量加大,隨著對新知識和方法產(chǎn)生有意注意,使能力與知識的形成相伴而行,使學(xué)生在解決問題的同時,形成方法。

  2、學(xué)法分析

  改善學(xué)生的學(xué)習(xí)方式是高中數(shù)學(xué)課程追求的基本理念。學(xué)生的數(shù)學(xué)學(xué)習(xí)活動不僅僅限于對概念結(jié)論和技能的記憶、模仿和積累。獨立思考,自主探索,動手實踐,合作交流,閱讀自學(xué)等都是學(xué)習(xí)數(shù)學(xué)的重要方式,這些方式有助于發(fā)揮學(xué)生學(xué)習(xí)主觀能動性,使學(xué)生的學(xué)習(xí)過程成為在教師引導(dǎo)下的再創(chuàng)造的過程。為學(xué)生形成積極主動的、多樣的學(xué)習(xí)方式創(chuàng)造有利的條件。以激發(fā)學(xué)生的學(xué)習(xí)興趣和創(chuàng)新潛能,幫助學(xué)生養(yǎng)成獨立思考,積極探索的習(xí)慣。

  通過直線的點斜式方程的推導(dǎo),加深對用坐標(biāo)求方程的理解;通過求直線的點斜式方程,理解一個點和方向可以確定一條直線;通過求直線的斜截式方程,熟悉用待定系數(shù)法求的過程,讓學(xué)生利用圖形直觀啟迪思維,實現(xiàn)從感性認(rèn)識到理性思維質(zhì)的飛躍。讓學(xué)生從問題中質(zhì)疑、嘗試、歸納、總結(jié),培養(yǎng)學(xué)生發(fā)現(xiàn)問題、研究問題和分析解決問題的能力。

  五、教學(xué)過程設(shè)計

  問題1:在直角坐標(biāo)系內(nèi)確定直線一條直線幾何要素是什么?如何將這些幾何要素代數(shù)化?

  [設(shè)計意圖]讓學(xué)生理解直線上的一點和直線的傾斜角的代數(shù)含義是這個點的坐標(biāo)和這條直線的斜率。

  問題2:建立直線方程的實質(zhì)是什么?

  [設(shè)計意圖]建立直線方程就是將確定直線的幾何要素用代數(shù)形式表示出來。也就是將直線上點的坐標(biāo)滿足的條件用方程表示出來。

  引例:若直線經(jīng)過點,斜率為,點在直線上運動,那么點的坐標(biāo)滿足什么條件?

  [設(shè)計意圖]讓學(xué)生通過具體例子經(jīng)歷求直線的點斜式方程的過程,初步了解求直線方程的步驟。

  問題2。1要得到坐標(biāo)滿足什么條件,就是找出與、斜率為之間的關(guān)系,它們之間有何種關(guān)系?

 。ㄟ^與兩點的直線的斜率為)

  [設(shè)計意圖]讓學(xué)生尋找確定直線的條件,體會動中找靜。

  問題2。2如何將上述條件用代數(shù)形式表示出來?

  [設(shè)計意圖]讓學(xué)生理解和體會用坐標(biāo)表示確定直線的條件。

  用代數(shù)式表示出來就是,即。

  問題2。3為什么說是滿足條件的直線方程?

  [設(shè)計意圖]讓學(xué)生初步感受直線與直線方程的關(guān)系。

  此時的坐標(biāo)也滿足此方程。所以當(dāng)點在直線上運動時,其坐標(biāo)滿足。

  另外以方程的解為坐標(biāo)的點也在直線上。

  所以我們得到經(jīng)過點,斜率為的直線方程是。

  問題2。4:能否說方程是經(jīng)過,斜率為的直線方程?

  [設(shè)計意圖]讓學(xué)生初步感受直線(曲線)方程的完備性。盡管學(xué)生不可能深刻理解直線(曲線)方程的完備性,但在這里仍要滲透,為后因理解曲線方程的埋下伏筆。

  問題3:推廣:已知一直線過一定點,且斜率為k,怎樣求直線的方程?

  [設(shè)計意圖]由特殊到一般的學(xué)習(xí)思路,培養(yǎng)學(xué)生的是歸納概括能力。

  問題4:直線上有無數(shù)個點,如何才能選取所有的點?以前學(xué)習(xí)中有沒有類似的處理問題的方法?

  [設(shè)計意圖]引導(dǎo)學(xué)生掌握解析幾何取點的方法。

  引導(dǎo)學(xué)生求出直線的點斜式方程

  注:在求直線方程的過程中要說明直線上的點的坐標(biāo)滿足方程,也要說明以方程的解為坐標(biāo)的點在直線上,即方程的解與直線上的點的坐標(biāo)是一一對應(yīng)的。為以后學(xué)習(xí)曲線與方程打好基礎(chǔ)。教學(xué)中讓學(xué)生感覺到這一點就可以。不必做過多解釋。

  問題5:從求直線方程的過程中,你知道了求幾何圖形的方程的步驟有哪些嗎?

  [設(shè)計意圖]讓學(xué)生初步感受解析幾何求曲線方程的步驟。

 、僭O(shè)點———用表示曲線上任一點的坐標(biāo);

 、趯ふ覘l件————寫出適合條件;

 、哿谐龇匠獭米鴺(biāo)表示條件,列出方程

 、芑啞匠虨樽詈喰问;

  ⑤證明————證明以化簡后的方程的解為坐標(biāo)的點都是曲線上的點。

  例1分別求經(jīng)過點,且滿足下列條件的直線的方程,并畫出直線。

 、艃A斜角

 、菩甭

  ⑶與軸平行;

 、扰c軸平行。

  [設(shè)計意圖]讓學(xué)生掌握直線的點斜式的使用條件,把直線的點斜式方程作公式用,讓學(xué)生熟練掌握直線的點斜式方程,并理解直線的點斜式方程使用條件。

  注:⑴應(yīng)用直線的點斜式方程的條件是:①定點,②斜率存在,即直線的傾斜角。

 、婆c的區(qū)別。后者表示過,且斜率為k的直線方程,而前者不包括。

 、钱(dāng)直線的傾斜角時,直線的斜率,直線方程是。

 、犬(dāng)直線的傾斜角時,此時不能直線的點斜式方程表示直線,直線方程是。

  練習(xí):1。。

  2。已知直線的方程是,則直線的斜率為,傾斜角為,這條直線經(jīng)過的一個已知點為。

  [設(shè)計意圖]在直線的.點斜式方程的逆用過程中,進(jìn)一步體會和理解直線的點斜式方程。

  問題6:特別地,如果直線的斜率為,且與軸的交點坐標(biāo)為(0,b),求直線的方程。

  [設(shè)計意圖]由一般到特殊,培養(yǎng)學(xué)生的推理能力,同時引出截距的概念和直線斜截式方程。

  將斜率與定點代入點斜式直線方程可得:

  說明:我們把直線與y軸交點(0,b)的縱坐標(biāo)b叫做直線在y軸上的截距。這個方程是由直線的斜率與它在y軸上的截距b確定,所以叫做直線的斜截式方程。

  注(1)截距可取任意實數(shù),它不同于距離。直線在軸上截距的是。

 。2)斜截式方程中的k和b有明顯的幾何意義。

 。3)斜截式方程的使用范圍和斜截式一樣。

  問題7:直線的斜截式方程與我們學(xué)過的一次函數(shù)的類似。我們知道,一次函數(shù)的圖像是一條直線。你如何從直線方程的角度認(rèn)識一次函數(shù)?一次函數(shù)中k和b的幾何意義是什么?

  [設(shè)計意圖]讓學(xué)生理解直線方程與一次函數(shù)的區(qū)別與聯(lián)系,進(jìn)一步理解解析幾何的實質(zhì)。函數(shù)圖像是以形助數(shù),而解析幾何是以數(shù)論形。

  練習(xí):1。。

  2。直線的斜率為2,在軸上的截距為,求直線的方程。

  [設(shè)計意圖]讓學(xué)生明確截距的含義。

  3。直線過點,它的斜率與直線的斜率相等,求直線的方程。

  [設(shè)計意圖]讓學(xué)生進(jìn)一步理解直線斜截式方程的結(jié)構(gòu)特征。

  4。已知直線過兩點和,求直線的方程。

  [設(shè)計意圖]讓學(xué)生能合理選擇直線方程的不同形式求直線方程,同時為下節(jié)學(xué)習(xí)直線的兩點式方程埋下伏筆。

  例2:已知直線,試討論

 。1)與平行的條件是什么?

  (2)與重合的條件是什么?

 。3)與垂直的條件是什么?

  說明:①平行、重合、垂直都是幾何上位置關(guān)系,如何用代數(shù)的數(shù)量關(guān)系來刻畫。

  ②教學(xué)中從兩個方面來說明,若兩直線平行,則且反過來,若且,則兩直線平行。

 、廴糁本的斜率不存在,與之平行、垂直的條件分別是什么?

  練習(xí):

  問題8:本節(jié)課你有哪些收獲?

  要點:

 。1)直線方程的點斜式、斜截式的命名都是顧名思義的,要會加以區(qū)別。

 。2)兩種形式的方程要在熟記的基礎(chǔ)上靈活運用。

  總結(jié):制定教學(xué)計劃的主要目的是為了全面了解學(xué)生的數(shù)學(xué)學(xué)習(xí)歷程,激勵學(xué)生的學(xué)習(xí)和改進(jìn)教師的教學(xué)。

高一下冊數(shù)學(xué)教學(xué)工作計劃 篇2

  高一年級學(xué)生往往對課程增多、課堂學(xué)習(xí)容量加大不適應(yīng),顧此失彼,精力分散,使聽課效率下降,要重視聽法的指導(dǎo)。數(shù)學(xué)網(wǎng)高中頻道整理了高一數(shù)學(xué)下冊教學(xué)計劃,希望能幫助教師授課!

  本學(xué)期高一數(shù)學(xué)備課組的工作緊緊圍繞學(xué)校、教科處及教研組的計劃安排來開展,以教學(xué)改革為動力、以學(xué)校創(chuàng)建為前提、以提高課堂效率為目的、以自主教育為模式、以現(xiàn)代信息技術(shù)為手段、以培養(yǎng)學(xué)生的創(chuàng)新能力為目標(biāo),全面改進(jìn)教育教學(xué)方法,更新教育觀念,改變傳統(tǒng)教學(xué)模式,培養(yǎng)學(xué)生綜合素質(zhì),搞好本學(xué)期工作。

  一、指導(dǎo)思想

  以教研組工作計劃為指導(dǎo),按照均衡、優(yōu)質(zhì)、高效原則,精誠團(tuán)結(jié),和諧創(chuàng)新,加強科組建設(shè),提高高一數(shù)學(xué)備課組的整體實力;努力完成本學(xué)期的教學(xué)目標(biāo),進(jìn)一步提高作為未來公民所必要的數(shù)學(xué)素養(yǎng),以滿足學(xué)生發(fā)展與社會進(jìn)步的需要。這學(xué)期的工作重點是繼續(xù)進(jìn)行新課標(biāo)和新教材的研究,要著重抓好差生輔導(dǎo)和尖子生的培養(yǎng),讓絕大部分學(xué)生跟上教學(xué)進(jìn)度。

  二、工作思路

  1.在學(xué)?蒲刑幒徒虅(wù)處的領(lǐng)導(dǎo)下,有計劃地組織好全組教師的學(xué)習(xí)與培訓(xùn)工作,特別是搞好新課程標(biāo)準(zhǔn)和新教材的學(xué)習(xí)、研究和交流,落實學(xué)校的辦學(xué)理念。推廣現(xiàn)代教育科研成果,定期開展多種形式的教研活動。

  2.以組風(fēng)建設(shè)為主線,以新課程標(biāo)準(zhǔn)為指導(dǎo),以教法探索為重點,以構(gòu)建主動發(fā)展型課堂教學(xué)模式為主題,以提高隊伍素質(zhì),提高課堂效率,提高教學(xué)質(zhì)量為目的。深化課堂教學(xué)改革,努力改善教與學(xué)的方式。

  3.教學(xué)研究要以集體備課為基礎(chǔ),以作課、聽課、評課活動以及出考卷活動為載體,以課題研究、論文、案例撰寫為提高,在研究狀態(tài)下理性的工作。培養(yǎng)本組教師養(yǎng)成教學(xué)反思的習(xí)慣,

  三、教材分析(結(jié)構(gòu)系統(tǒng)、單元內(nèi)容、重難點)

  必修5:

  第一章:解三角形;重點是正弦定理與余弦定理;難點是正弦定理與余弦定理的應(yīng)用;

  第二章:數(shù)列;重點是等差數(shù)列與等比數(shù)列的前n項的和;難點是等差數(shù)列與等比數(shù)列前n項的和與應(yīng)用;

  第三章:不等式;重點是一元二次不等式及其解法、二元一次不等式(組)與基本不等式;難點是二元一次不等式(組)及應(yīng)用;

  必修2:

  第一章:立體幾何初步。重點是空間幾何體的三視圖和直觀圖及表面積與體積,直線與平面平行及垂直的判定及其性質(zhì);難點是空間幾何體的三視圖,直線與平面平行及垂直的判定及其性質(zhì);

  第二章:直線與方程;重點是直線的傾斜角與斜率及直線方程;難點是如何選擇恰當(dāng)?shù)闹本方程求解題目;圓與方程;重點是圓的方程及直線與圓的位置關(guān)系;難點是直線與圓的位置關(guān)系。

  四、學(xué)情分析

  經(jīng)過一學(xué)期的觀察發(fā)現(xiàn)學(xué)生的基礎(chǔ)知識水平、學(xué)習(xí)自覺性與基本學(xué)習(xí)方法比較欠缺,學(xué)生心理不穩(wěn)定,空間思維、抽象思維、邏輯思維較差,而本學(xué)期所要學(xué)習(xí)的內(nèi)容包含了高中數(shù)學(xué)中重要而難學(xué)的數(shù)列、不等式、立體幾何部分,因而教學(xué)時盡可能以課本為本,注重基礎(chǔ)和規(guī)范,不隨意拔高難度,努力使絕大部分學(xué)生打好三基。教學(xué)時在完成市教學(xué)進(jìn)度的前提下,盡可能的放慢速度,確保絕大部分學(xué)生的學(xué)習(xí)質(zhì)量。平時教學(xué)中老師要注意不斷鼓勵和欣賞學(xué)生的優(yōu)點和進(jìn)步,使學(xué)生不斷體驗到學(xué)習(xí)數(shù)學(xué)的樂趣。平時測試要注重考查三基,嚴(yán)格控制難度,使絕大部分學(xué)生及格,使學(xué)生體驗到進(jìn)步和成功的喜悅。同時需進(jìn)一步加強學(xué)法指導(dǎo),多于學(xué)生進(jìn)行情感交流。

  五、工作目標(biāo)

  1、狠抓教學(xué)常規(guī)和學(xué)習(xí)常規(guī)的貫徹落實。在數(shù)學(xué)教學(xué)研究中努力做到三主(教學(xué)研究以學(xué)習(xí)理論為主導(dǎo)、大綱教材課程標(biāo)準(zhǔn)為主體、探索教學(xué)模式為主線)和三有(教學(xué)研究要對教學(xué)實踐有指導(dǎo)、對教學(xué)質(zhì)量有促進(jìn)、對教師有提高)。

  2、加強現(xiàn)代教育教學(xué)理論的.學(xué)習(xí),積極進(jìn)行課堂教學(xué)改革試驗、逐步形成本學(xué)科特色,把我組建設(shè)成一個團(tuán)結(jié)協(xié)作、富有開拓創(chuàng)新精神的先進(jìn)集體。

  3、把對新課程標(biāo)準(zhǔn)的學(xué)習(xí)與對新教材的研究結(jié)合起來,力求使每一位數(shù)學(xué)老師都能較好地領(lǐng)會新課程標(biāo)準(zhǔn)的基本理念和目標(biāo),較好地把握數(shù)學(xué)學(xué)習(xí)內(nèi)容中有關(guān)數(shù)感、符號感、空間觀念、統(tǒng)計觀念、應(yīng)用意識、推理能力等核心概念的內(nèi)涵和要求,初步掌握所教教材的結(jié)構(gòu)特點、每章每節(jié)教材的地位、作用和目標(biāo)要求。

  4、認(rèn)真做好義務(wù)教育數(shù)學(xué)實驗教材和高中新教材的階段總結(jié),加強教法的研究,注意總結(jié)和發(fā)現(xiàn)典型的教學(xué)案例,積極組織本組教師做好資料、信息收集工作,撰寫教育教學(xué)論文、案例,爭取在全國等各級論文評比中獲獎。

  六、具體措施:

  1、激發(fā)學(xué)生的學(xué)習(xí)興趣。由數(shù)學(xué)活動、故事、吸引人的課、合理的要求、師生談話等途徑樹立學(xué)生的學(xué)習(xí)信心,提高學(xué)習(xí)興趣,在主觀作用下上升和進(jìn)步。

  2、注意從實例出發(fā),從感性提高到理性;注意運用對比的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說明抽象的知識;注意從已有的知識出發(fā),啟發(fā)學(xué)生思考。

  3、加強培養(yǎng)學(xué)生的邏輯思維能力就解決實際問題的能力,以及培養(yǎng)提高學(xué)生的自學(xué)能力,養(yǎng)成善于分析問題的習(xí)慣,進(jìn)行辨證唯物主義教育。

  4、抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強復(fù)習(xí)檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問題的能力。

  5、自始至終貫徹教學(xué)四環(huán)節(jié),針對不同的教材內(nèi)容選擇不同教法。

  6、重視數(shù)學(xué)應(yīng)用意識及應(yīng)用能力的培養(yǎng)。

  7、積極做好集體備課工作,達(dá)到內(nèi)容統(tǒng)一、進(jìn)度統(tǒng)一、目標(biāo)統(tǒng)一、例習(xí)題統(tǒng)一、資料統(tǒng)一、測試統(tǒng)一;上好每一節(jié)課,及時對學(xué)生的學(xué)習(xí)進(jìn)行觀察與指導(dǎo);課后進(jìn)行有效的輔導(dǎo);進(jìn)行有效的課堂反思。

高一下冊數(shù)學(xué)教學(xué)工作計劃 篇3

  一、教材依據(jù)

  本節(jié)課是北師大版數(shù)學(xué)(必修2)第二章《解析幾何初步》第一節(jié)《1.2直線的方程》第一部分《直線方程的點斜式》內(nèi)容。

  二、教材分析

  直線方程的點斜式給出了根據(jù)已知一個點和斜率求直線方程的方法和途徑。在求直線的方程中,直線方程的點斜式是基本的,直線方程的斜截式

  、兩點式都是由點斜式推出的。從初中代數(shù)中的一次函數(shù)引入,自然過渡到本節(jié)課想要解決的問題求直線方程問題。在引入,過程中要讓學(xué)生弄清

  直線與方程的一一對應(yīng)關(guān)系,理解研究直線可以從研究方程和方程的特征入手。

  在推導(dǎo)直線方程的點斜式時,根據(jù)直線這一結(jié)論,先猜想確定一條直線的條件,再根據(jù)猜想得到的條件求出直線方程。

  三、教學(xué)目標(biāo)

  知識與技能:

  (1)理解直線方程的點斜式、斜截式的形式特點和適用范圍;

 。2)能正確利用直線的點斜式、斜截式公式求直線方程。

  (3)體會直線的斜截式方程與一次函數(shù)的關(guān)系。

  過程與方法:在已知直角坐標(biāo)系內(nèi)確定一條直線的幾何要素直線上的一點和直線的傾斜角的基礎(chǔ)上,通過師生探討,得出直線的點斜式方程;學(xué)生

  通過對比理解截距與距離的區(qū)別。

  情態(tài)與價值觀:通過讓學(xué)生體會直線的斜截式方程與一次函數(shù)的關(guān)系,進(jìn)一步培養(yǎng)學(xué)生數(shù)形結(jié)合的思想,滲透數(shù)學(xué)中普遍存在相互聯(lián)系、相互轉(zhuǎn)化

  等觀點,使學(xué)生能用聯(lián)系的觀點看問題。

  四、教學(xué)重點

  重點:直線的點斜式方程和斜截式方程。

  五、教學(xué)難點

  難點:直線的點斜式方程和斜截式方程的應(yīng)用。

  要點:運用數(shù)形結(jié)合的'思想方法,幫助學(xué)生分析描述幾何圖形。

  六、教學(xué)準(zhǔn)備

  1.教學(xué)方法的選擇:啟發(fā)、引導(dǎo)、討論.

  創(chuàng)設(shè)問題情境,采用啟發(fā)誘導(dǎo)式的教學(xué)模式引導(dǎo)學(xué)生探索討論,學(xué)生主動參與提出問題、探索問題和解決問題的過程,突出以學(xué)生為主體的探究性

  學(xué)習(xí)活動。

  2.通過讓學(xué)生觀察、討論、辨析、畫圖,親身實踐,調(diào)動多感官去體驗數(shù)學(xué)建模的思想;學(xué)生要學(xué)會用數(shù)形結(jié)合的方法建立起代數(shù)問題與幾何問題

  間的密切聯(lián)系。為使學(xué)生積極參與課堂學(xué)習(xí),我主要指導(dǎo)了以下的學(xué)習(xí)方法:

 、.讓學(xué)生自己發(fā)現(xiàn)問題,自己通過觀察圖像歸納總結(jié),自己評析解題對錯,從而提高學(xué)生的參與意識和數(shù)學(xué)表達(dá)能力。

 、.分組討論。

【高一下冊數(shù)學(xué)教學(xué)工作計劃】相關(guān)文章:

高一下冊數(shù)學(xué)教學(xué)計劃08-17

數(shù)學(xué)下冊教學(xué)工作計劃12-30

高一下冊數(shù)學(xué)教學(xué)工作計劃三篇10-21

下冊數(shù)學(xué)教學(xué)工作計劃11-05

數(shù)學(xué)下冊教學(xué)計劃02-09

高一下冊數(shù)學(xué)教學(xué)計劃6篇03-19

高一下冊數(shù)學(xué)教學(xué)計劃(精選8篇)06-29

高一下冊數(shù)學(xué)教學(xué)計劃9篇01-06

高一下冊數(shù)學(xué)教學(xué)計劃11篇01-09