- 初中數(shù)學《圓 》教案 推薦度:
- 相關推薦
初中數(shù)學圓教案
作為一位杰出的教職工,總不可避免地需要編寫教案,借助教案可以更好地組織教學活動。那么教案應該怎么寫才合適呢?下面是小編為大家整理的初中數(shù)學圓教案,歡迎大家分享。
初中數(shù)學圓教案1
一、課題
27.3過三點的圓
二、教學目標
1.經(jīng)歷過一點、兩點和不在同一直線上的三點作圓的過程.
2..知道過不在同一條直線上的三個點畫圓的方法
3.了解三角形的外接圓和外心.
三、教學重點和難點
重點:經(jīng)歷過一點、兩點和不在同一直線上的三點作圓的過程.
難點:知道過不在同一條直線上的三個點畫圓的方法.
四、教學手段
現(xiàn)代課堂教學手段
五、教學方法
學生自己探索
六、教學過程設計
(一)、新授
1.過已知一個點A畫圓,并考慮這樣的圓有多少個?
2.過已知兩個點A、B畫圓,并考慮這樣的圓有多少個?
3.過已知三個點A、B、C畫圓,并考慮這樣的圓有多少個?
讓學生以小組為單位,進行探索、思考、交流后,小組選派代表向全班學生展示本小組的探索成果,在展示后,接受其他學生的質(zhì)疑.
得出結(jié)論:過一點可以畫無數(shù)個圓;過兩點也可以畫無數(shù)個圓;這些圓的圓心都在連結(jié)這兩點的線段的垂直平分線上;經(jīng)過不在同一直線上的三個點可以畫一個圓,并且這樣的圓只有一個.
不在同一直線上的三個點確定一個圓.
給出三角形外接圓的概念:經(jīng)過三角形三個頂點可以作一個圓,這個圓叫作三角形的外接圓,外接圓的圓心叫做三角形的外心.
例:畫已知三角形的外接圓.
讓學生探索課本第15頁習題1.
一起探究
八年級(一)班的學生為老區(qū)的小朋友捐款500元,準備為他們購買甲、乙兩種圖書共12套.已知甲種圖書每套45元,乙種圖書每套40元.這些錢最多能買甲種圖書多少套?
分析:帶領學生完成課本第13頁的表格,并完成2、3問題,使學生清楚通過列表可以更好的分析題目,對于情景較為復雜的問題情景可采用這種分析方法解題.另外通過此題,使學生認識到:在應不等式解決實際問題時,當求出不等式的解集后,還要根據(jù)問題的實際意義確定問題的解.
。ǘ、小結(jié)
七、練習設計
P15習題2、3
八、教學后記
后備練習:
1.已知一個三角形的三邊長分別是,則這個三角形的外接圓面積等于、
2.如圖,有A,,C三個居民小區(qū)的位置成三角形,現(xiàn)決定在三個小區(qū)之間修建一個購物超市,使超市到三個小區(qū)的距離相等,則超市應建在()
A、在AC,BC兩邊高線的交點處
B、在AC,BC兩邊中線的交點處
C、在AC,BC兩邊垂直平分線的交點處
D、在A,B兩內(nèi)角平分線的交點處
初中數(shù)學圓教案3
公開課教案
授課時間:20xx.11.17早上第二節(jié)授課班級:初三、1班授課教師:
教學內(nèi)容:7.7直線和圓的位置關系
教學目標:
知識與技能目標:
1、理解直線和圓相交、相切、相離的概念。
2.初步掌握直線和圓的`位置關系的性質(zhì)和判定及其靈活的應用。
過程與方法目標:
1、通過直線和圓的位置關系的探究,向?qū)W生滲透分類、數(shù)形結(jié)合的思想,培養(yǎng)學生觀察、分析、概括、知識遷移的能力;
2.通過例題教學,培養(yǎng)學生靈活運用知識的解決能力。
情感與態(tài)度目標:讓學生從運動的觀點來觀察直線和圓相交、相切、相離的關系、關注知識的生成,發(fā)展與變化的過程,主動探索,勇于發(fā)現(xiàn)。從而領悟世界上的一切物體都是運動變化著的,并且在一定的條件下可以轉(zhuǎn)化的辯證唯物主義觀點。
初中數(shù)學圓教案2
教學目標
1、初步掌握用直接開平方法解一元二次方程,會用直接開平方法解形如的方程;
2、初步掌握用配方法解一元二次方程,會用配方法解數(shù)字系數(shù)的一元二次方程;
3、掌握一元二次方程的求根公式的推導,能夠運用求根公式解一元二次方程;
4、會用因式分解法解某些一元二次方程。
5、通過對一元二次方程解法的教學,使學生進一步理解“降次”的數(shù)學方法,進一步獲得對事物可以轉(zhuǎn)化的'認識。
教學重點和難點
重點:一元二次方程的四種解法。
難點:選擇恰當?shù)姆椒ń庖辉畏匠獭?/p>
教學建議:
一、教材分析:
1、知識結(jié)構(gòu):一元二次方程的解法
2、重點、難點分析
(1)熟練掌握開平方法解一元二次方程
用開平方法解一元二次方程,一種是直接開平方法,另一種是配方法。
如果一元二次方程的一邊是未知數(shù)的平方或含有未知數(shù)的一次式的平方,另一邊是一個非負數(shù),或完全平方式,如方程,和方程就可以直接開平方法求解,在開平方時注意取正、負兩個平方根。
配方法解一元二次方程,就是利用完全平方公式,把一般形式的一元二次方程,轉(zhuǎn)化為的形式來求解。配方時要注意把二次項系數(shù)化為1和方程兩邊都加上一次項系數(shù)一半的平方這兩個關鍵步驟。
。2)熟記求根公式和公式中字母的意義在使用求根公式時要注意以下三點:
1)把方程化為一般形式,并做到、之間沒有公因數(shù),且二次項系數(shù)為正整數(shù),這樣代入公式計算較為簡便。
2)把一元二次方程的各項系數(shù)、、代入公式時,注意它們的符號。
3)當時,才能求出方程的兩根。
。3)抓住方程特點,選用因式分解法解一元二次方程
如果一個一元二次方程的一邊是零,另一邊易于分解成兩個一次因式時,就可以用因式分解法求解。這時只要使每個一次因式等于零,分別解兩個一元一次方程,得到兩個根就是一元二次方程的解。
我們共學習了四種解一元二次方程的方法:直接開平方法;配方法;公式法和因式分解法。解方程時,要認真觀察方程的特征,選用適當?shù)姆椒ㄇ蠼狻?/p>
二、教法建議
1、教學方法建議采用啟發(fā)引導,講練結(jié)合的授課方式,發(fā)揮教師主導作用,體現(xiàn)學生主體地位,學生獲取知識必須通過學生自己一系列思維活動完成,啟發(fā)誘導學生深入思考問題,有利于培養(yǎng)學生思維靈活、嚴謹、深刻等良好思維品質(zhì)、
2.注意培養(yǎng)應用意識、教學中應不失時機地使學生認識到數(shù)學源于實踐并反作用于實踐、
初中數(shù)學圓教案3
教學目標:
1、使學生理解直線和圓的相交、相切、相離的概念。
2、掌握直線與圓的位置關系的性質(zhì)與判定并能夠靈活運用來解決實際問題。
3、培養(yǎng)學生把實際問題轉(zhuǎn)化為數(shù)學問題的能力及分類和化歸的能力。
重點難點:
1、重點:直線與圓的三種位置關系的概念。
2、難點:運用直線與圓的位置關系的性質(zhì)及判定解決相關的問題。
教學過程:
一、復習引入
1、提問:復習點和圓的三種位置關系。
。康模鹤寣W生將點和圓的位置關系與直線和圓的位置關系進行類比,以便更好的掌握直線和圓的位置關系)
2、由日出升起過程當中的三個特殊位置引入直線與圓的位置關系問題。
。康模鹤寣W生感知直線和圓的位置關系,并培養(yǎng)學生把實際問題抽象成數(shù)學模型的能力)
二、定義、性質(zhì)和判定
1、結(jié)合關于日出的三幅圖形,通過學生討論,給出直線與圓的三種位置關系的定義。
(1)線和圓有兩個公共點時,叫做直線和圓相交。這時直線叫做圓的割線。
(2)直線和圓有唯一的公點時,叫做直線和圓相切。這時直線叫做圓的切線。唯一的公共點叫做切點。
(3)直線和圓沒有公共點時,叫做直線和圓相離。
2、直線和圓三種位置關系的性質(zhì)和判定:
如果⊙O半徑為r,圓心O到直線l的距離為d,那么:
。1)線l與⊙O相交d<r
。2)直線l與⊙O相切d=r
。3)直線l與⊙O相離d>r
三、例題分析:
例(1)在Rt△ABC中,AC=3cm,BC=4cm,以C為圓心,r為半徑。
、佼攔=時,圓與AB相切。
、诋攔=2cm時,圓與AB有怎樣的`位置關系,為什么?
③當r=3cm時,圓與AB又是怎樣的位置關系,為什么?
、芩伎迹寒攔滿足什么條件時圓與斜邊AB有一個交點?
四、小結(jié)(學生完成)
五、隨堂練習:
(1)直線和圓有種位置關系,是用直線和圓的個數(shù)來定義的;這也是判斷直線和圓的位置關系的重要方法。
(2)已知⊙O的直徑為13cm,直線L與圓心O的距離為d。
、佼攄=5cm時,直線L與圓的位置關系是;
②當d=13cm時,直線L與圓的位置關系是;
、郛攄=6。5cm時,直線L與圓的位置關系是;
。康模褐本和圓的位置關系的判定的應用)
(3)⊙O的半徑r=3cm,點O到直線L的距離為d,若直線L與⊙O至少有一個公共點,則d應滿足的條件是()
(A)d=3 (B)d≤3 (C)d<3 d="">3
。康模褐本和圓的位置關系的性質(zhì)的應用)
(4)⊙O半徑=3cm。點P在直線L上,若OP=5 cm,則直線L與⊙O的位置關系是()
(A)相離(B)相切(C)相交(D)相切或相交
。康模狐c和圓,直線和圓的位置關系的結(jié)合,提高學生的綜合、開放性思維)
想一想:
在平面直角坐標系中有一點A(-3,-4),以點A為圓心,r長為半徑時,思考:隨著r的變化,⊙A與坐標軸交點的變化情況。(有五種情況)
六、作業(yè):P100—2、3
【初中數(shù)學圓教案】相關文章:
初中數(shù)學《圓 》教案12-30
初中數(shù)學教案《圓》03-05
數(shù)學圓的認識教案04-09
圓數(shù)學教案03-29
數(shù)學圓的面積教案02-14
數(shù)學教案-圓09-29
《過三點的圓》初中數(shù)學教案08-26
數(shù)學教案-圓和圓的位置關系09-29