- 相關(guān)推薦
數(shù)學(xué)建模的學(xué)習(xí)心得
當(dāng)我們有一些感想時(shí),可以將其記錄在心得體會(huì)中,如此可以一直更新迭代自己的想法。那么好的心得體會(huì)是什么樣的呢?下面是小編為大家整理的數(shù)學(xué)建模的學(xué)習(xí)心得,希望能夠幫助到大家。
數(shù)學(xué)建模的學(xué)習(xí)心得1
通過對(duì)專題七的學(xué)習(xí),我知道了數(shù)學(xué)探究與數(shù)學(xué)建模在中學(xué)中學(xué)習(xí)的重要性,知道了什么是數(shù)學(xué)建模,數(shù)學(xué)建模就是把一個(gè)具體的實(shí)際問題轉(zhuǎn)化為一個(gè)數(shù)學(xué)問題,然后用數(shù)學(xué)方法去解決它,之后我們?cè)侔阉呕氐綄?shí)際當(dāng)中去,用我們的模型解釋現(xiàn)實(shí)生活中的種種現(xiàn)象和規(guī)律。
知道了數(shù)學(xué)建模的幾點(diǎn)要求:一個(gè)是問題一定源于學(xué)生的日常生活和現(xiàn)實(shí)當(dāng)中,了解和經(jīng)歷解決實(shí)際問題的過程,并且根據(jù)學(xué)生已有的經(jīng)驗(yàn)發(fā)現(xiàn)要提出的問題。同時(shí),希望同學(xué)們?cè)谶@一過程中感受數(shù)學(xué)的實(shí)用價(jià)值和獲得良好的'情感體驗(yàn)。當(dāng)然也希望同學(xué)們?cè)谶@樣的過程當(dāng)中,學(xué)會(huì)通過實(shí)際上數(shù)學(xué)探究本身應(yīng)該說在平時(shí)教學(xué)當(dāng)中,老師有些在課堂上也是這樣教學(xué)的,他更重要的意義就是引導(dǎo)老師增加一種教學(xué)方式,首先就是這個(gè)問題就是有點(diǎn)兒全新性,解決的方案不是很明了,這樣學(xué)生要有一個(gè)嘗試,一個(gè)探索的過程查詢資料等手段來獲取信息,之后采取各種合作的方式解決問題,養(yǎng)成與人交流的能力。
實(shí)際上數(shù)學(xué)探究本身應(yīng)該說在平時(shí)教學(xué)當(dāng)中,老師有些在課堂上也是這樣教學(xué)的,他更重要的意義就是引導(dǎo)老師增加一種教學(xué)方式,首先就是這個(gè)問題就是有點(diǎn)兒全新性,解決的方案不是很明了,這樣的話學(xué)生要有一個(gè)嘗試,一個(gè)探索的過程。數(shù)學(xué)探究活動(dòng)的關(guān)健詞就是探究,探究是一個(gè)活動(dòng)或者是一個(gè)過程,也是一種學(xué)習(xí)方式,我們比較強(qiáng)調(diào)是用這樣的方式影響學(xué)生,讓他主動(dòng)的參與,在這個(gè)活動(dòng)當(dāng)中得到更多的知識(shí)。
探究的結(jié)果我們認(rèn)為不一定是最重要的,當(dāng)然我們希望探究出來一個(gè)結(jié)果,通過這種活動(dòng)影響學(xué)生,改變他的學(xué)習(xí)方式,增加他的學(xué)習(xí)興趣和能力。我們也關(guān)心,大家也可以看到在標(biāo)準(zhǔn)里面,有非常突出的數(shù)學(xué)建模的這些內(nèi)容,但是它的要求、定位和為什么把這些領(lǐng)域加到我的標(biāo)準(zhǔn)當(dāng)中,你應(yīng)該怎么看待這部分內(nèi)容。
數(shù)學(xué)建模的學(xué)習(xí)心得2
一、數(shù)學(xué)建模推廣月活動(dòng)。
為了讓更多的同學(xué)了解數(shù)學(xué)建模,以便于本協(xié)會(huì)其他活動(dòng)的順利開展,在新生報(bào)到后,我們以高教社杯全國大學(xué)生數(shù)學(xué)建模競賽為契機(jī),通過宣傳和組織,展開數(shù)學(xué)建模推廣活動(dòng),向廣大同學(xué)介紹數(shù)學(xué)建模相關(guān)知識(shí),推廣月的主要內(nèi)容有:數(shù)學(xué)建模競賽的介紹,數(shù)學(xué)建模所涉及的數(shù)學(xué)知識(shí)的介紹,數(shù)學(xué)建模相關(guān)軟件的推廣等。推廣月活動(dòng)的主要形式是:橫幅、宣傳材料、人工咨詢等。
二、組織學(xué)生參加每年高教社杯全國大學(xué)生數(shù)學(xué)建模競賽。
一年一度的高教社杯大學(xué)生數(shù)學(xué)建模競賽將于9月15日左右如期舉行,屆時(shí)本協(xié)會(huì)將在相關(guān)指導(dǎo)老師的統(tǒng)一安排下,組織參賽隊(duì)伍參加此次大賽,力爭為我校爭取榮譽(yù)。
三、年度會(huì)員招收工作。
在校社團(tuán)管理部統(tǒng)一安排的時(shí)間,展開新會(huì)員招收工作,主要針對(duì)大一新生,并適量吸收大二學(xué)生,為協(xié)會(huì)增加一些新鮮力量,為協(xié)會(huì)的長足發(fā)展注入新的活力,招新活動(dòng)將持續(xù)兩到三天,在兩校區(qū)同時(shí)進(jìn)行。
四、干事招聘會(huì)。
在招新活動(dòng)結(jié)束后,我們將在全校范圍內(nèi)的,由協(xié)會(huì)內(nèi)部主要負(fù)責(zé)人組成評(píng)審團(tuán),通過公開招聘的形式,招收一批具有突出能力的新干事,組成一支新的工作人員隊(duì)伍,為更好的開展協(xié)會(huì)活動(dòng)和服務(wù)會(huì)員打下基礎(chǔ)。招收新干事部門有:辦公室、外聯(lián)部、實(shí)踐部、宣傳部、科研部、網(wǎng)絡(luò)信息部。
五、數(shù)學(xué)建模專題講座。
邀請(qǐng)本協(xié)會(huì)指導(dǎo)老師廖虎教授、余慶紅、吳文海等,舉辦三到四次數(shù)學(xué)建模專題講座,為廣大同學(xué)提供一個(gè)了解數(shù)學(xué)建模、學(xué)習(xí)建模知識(shí)的平臺(tái)。
六、會(huì)員大會(huì)。
擬于每年10月下旬和12月上旬,召開兩次西安電力高等?茖W(xué)校數(shù)學(xué)建模協(xié)會(huì)會(huì)員大會(huì);會(huì)間將有請(qǐng)協(xié)會(huì)的輔導(dǎo)老師:廖虎教授、余慶紅、吳文
數(shù)學(xué)建模學(xué)習(xí)體會(huì)(2) 海等和其他兄弟協(xié)會(huì)。屆時(shí)幾位輔導(dǎo)老師將介紹數(shù)學(xué)建模的意義和魅力,并講述大學(xué)生數(shù)學(xué)建模大賽的來歷、發(fā)展、參賽形式和我校每屆參與大賽的獲獎(jiǎng)情況等,讓新會(huì)員更快的認(rèn)識(shí)數(shù)學(xué)建模,并激發(fā)其學(xué)習(xí)數(shù)學(xué)的積極性,讓其更好的參與以后協(xié)會(huì)的活動(dòng)。
七、西安電力高等?茖W(xué)校第二屆大學(xué)生數(shù)學(xué)建模競賽。
為進(jìn)一步提升我校學(xué)生參與數(shù)學(xué)建模的積極性,提高數(shù)學(xué)建模的廣泛參與性,我們擬于每年11月中旬舉辦西安電力高等專科學(xué)校第二屆大學(xué)生數(shù)學(xué)建模競賽;大賽將分為4組,針對(duì)不同層次的.大學(xué)生評(píng)選出獲獎(jiǎng)作品。比賽結(jié)束之后將舉行頒獎(jiǎng)大會(huì),為各個(gè)參賽組獲獎(jiǎng)選手頒發(fā)獎(jiǎng)品。
八、數(shù)學(xué)建模經(jīng)驗(yàn)交流會(huì)。
為加深我校學(xué)生對(duì)數(shù)學(xué)建模知識(shí)的了解,幫助同學(xué)們參與到數(shù)學(xué)建模事業(yè)中去,我們擬邀請(qǐng)全國大學(xué)生數(shù)學(xué)建模競賽獲獎(jiǎng)選手與協(xié)會(huì)會(huì)員一起交流比賽經(jīng)驗(yàn),并由獲獎(jiǎng)選手回答提問。
九、大學(xué)生數(shù)學(xué)建模協(xié)會(huì)網(wǎng)站的建設(shè)與信息服務(wù)。
在有關(guān)領(lǐng)導(dǎo)的關(guān)心幫助下,本協(xié)會(huì)的網(wǎng)站本著服務(wù)會(huì)員、交流心得、學(xué)習(xí)經(jīng)驗(yàn)、傳播知識(shí)的原則,對(duì)各種數(shù)學(xué)建模相關(guān)知識(shí)(論文、軟件)進(jìn)行發(fā)布,對(duì)校園內(nèi)各種相關(guān)新聞信息進(jìn)行報(bào)道,對(duì)各種同學(xué)們關(guān)心的數(shù)學(xué)問題進(jìn)行討論。本學(xué)期,我們將利用網(wǎng)站這一優(yōu)勢,我們將充分利用網(wǎng)絡(luò)信息傳遞速度快的特點(diǎn),在發(fā)揮網(wǎng)站宣傳平臺(tái)這一作用的基礎(chǔ)上,著手舉辦一些時(shí)代性強(qiáng)、參與性強(qiáng)、靈活生動(dòng)的網(wǎng)絡(luò)活動(dòng)。 心得體會(huì)范文
數(shù)學(xué)建模的學(xué)習(xí)心得3
一年一度的全國數(shù)學(xué)建模大賽在今年的9月22日上午8點(diǎn)拉開戰(zhàn)幕,各隊(duì)將在3天72小時(shí)內(nèi)對(duì)一個(gè)現(xiàn)實(shí)中的實(shí)際問題進(jìn)行模型建立,求解和分析,確定題目后,我們隊(duì)三人分頭行動(dòng),一人去圖書館查閱資料,一人在網(wǎng)上搜索相關(guān)信息,一人建立模型,通過三人的努力,在前兩天中建立出兩個(gè)模型并編程求解,經(jīng)過艱苦的奮斗,終于在第三天完成了論文的寫作,在這三天里我感觸很深,現(xiàn)將心得體會(huì)寫出,希望與大家交流。
1.團(tuán)隊(duì)精神:團(tuán)隊(duì)精神是數(shù)學(xué)建模是否取得好成績的最重要的因素,一隊(duì)三個(gè)人要相互支持,相互鼓勵(lì)。切勿自己只管自己的一部分(數(shù)學(xué)好的只管建模,計(jì)算機(jī)好的只管編程,寫作好的只管論文寫作),很多時(shí)候,一個(gè)人的思考是不全面的,只有大家一起討論才有可能把問題搞清楚,因此無論做任何板塊,三個(gè)人要一起齊心才行,只靠一個(gè)人的力量,要在三天之內(nèi)寫出一篇高水平的文章幾乎是不可能的。
2.有影響力的leader:在比賽中,leader是很重要的,他的作用就相當(dāng)與計(jì)算機(jī)中的CPU,是全隊(duì)的核心,如果一個(gè)隊(duì)的leader不得力,往往影響一個(gè)隊(duì)的正常發(fā)揮,就拿選題來說,有人想做A題,有人想做B題,如果爭論一天都未確定方案的話,可能就沒有足夠時(shí)間完成一篇論文了,又比如,當(dāng)隊(duì)中有人信心動(dòng)搖時(shí)(特別是第三天,人可能已經(jīng)心力交瘁了),leader應(yīng)發(fā)揮其作用,讓整個(gè)隊(duì)伍重整信心,否則可能導(dǎo)致隊(duì)伍的前功盡棄。
3.合理的時(shí)間安排:做任何事情,合理的時(shí)間安排非常重要,建模也是一樣,事先要做好一個(gè)規(guī)劃,建模一共分十個(gè)板塊(摘要,問題提出,模型假設(shè),問題分析,模型假設(shè),模型建立,模型求解,結(jié)果分析,模型的評(píng)價(jià)與推廣,參考文獻(xiàn),附錄)。你每天要做完哪幾個(gè)板塊事先要確定好,這樣做才會(huì)使自己游刃有余,保證在規(guī)定時(shí)間內(nèi)完成論文,以避免由于時(shí)間上的不妥,以致于最后無法完成論文。
4.正確的論文格式:論文屬于科學(xué)性的文章,它有嚴(yán)格的書寫格式規(guī)范,因此一篇好的論文一定要有正確的格式,就拿摘要來說吧,它要包括6要素(問題,方法,模型,算法,結(jié)論,特色),它是一篇論文的概括,摘要的好壞將決定你的論文是否吸引評(píng)委的目光,但聽閱卷老師說,這次有些論文的摘要里出現(xiàn)了大量的圖表和程序,這都是不符合論文格式的,這種論文也不會(huì)取得好成績,因此我們寫論文時(shí)要端正態(tài)度,注意書寫格式。
5.論文的寫作:我個(gè)人認(rèn)為論文的寫作是至關(guān)重要的,其實(shí)大家最后的模型和結(jié)果都差不多,為什么有些隊(duì)可以送全國,有些隊(duì)可以拿省獎(jiǎng),而有些隊(duì)卻什么都拿不到,這關(guān)鍵在于論文的寫作上面。一篇好的'論文首先讀上去便使人感到邏輯清晰,有條例性,能打動(dòng)評(píng)委;其次,論文在語言上的表述也很重要,要注意用詞的準(zhǔn)確性;另外,一篇好的論文應(yīng)有閃光點(diǎn),有自己的特色,有自己的想法和思考在里面,總之,論文寫作的好壞將直接影響到成績的優(yōu)劣。
6.算法的設(shè)計(jì):算法的設(shè)計(jì)的好壞將直接影響運(yùn)算速度的快慢,建議大家多用數(shù)學(xué)軟件(Mathematice,Matlab,Maple,Mathcad,Lindo,Lingo,SAS等),這里提供十種數(shù)學(xué)建模常用算法,僅供參考:
1、蒙特卡羅算法(該算法又稱隨機(jī)性模擬算法,是通過計(jì)算機(jī)仿真來解決問題的算法,同時(shí)可以通過模擬可以來檢驗(yàn)自己模型的正確性,是比賽時(shí)必用的方法)
2、數(shù)據(jù)擬合、參數(shù)估計(jì)、插值等數(shù)據(jù)處理算法(比賽中通常會(huì)遇到大量的數(shù)據(jù)需要處理,而處理數(shù)據(jù)的關(guān)鍵就在于這些算法,通常使用Matlab作為工具)
3、線性規(guī)劃、整數(shù)規(guī)劃、多元規(guī)劃、二次規(guī)劃等規(guī)劃類問題(建模競賽大多數(shù)問題屬于最優(yōu)化問題,很多時(shí)候這些問題可以用數(shù)學(xué)規(guī)劃算法來描述,通常使用Lindo、Lingo軟件實(shí)現(xiàn))
4、圖論算法(這類算法可以分為很多種,包括最短路、網(wǎng)絡(luò)流、二分圖等算法,涉及到圖論的問題可以用這些方法解決,需要認(rèn)真準(zhǔn)備)
5、動(dòng)態(tài)規(guī)劃、回溯搜索、分治算法、分支定界等計(jì)算機(jī)算法(這些算法是算法設(shè)計(jì)中比較常用的方法,很多場合可以用到競賽中)
6、最優(yōu)化理論的三大非經(jīng)典算法:模擬退火法、神經(jīng)網(wǎng)絡(luò)、遺傳算法(這些問題是用來解決一些較困難的最優(yōu)化問題的算法,對(duì)于有些問題非常有幫助,但是算法的實(shí)現(xiàn)比較困難,需慎重使用)
7、網(wǎng)格算法和窮舉法(網(wǎng)格算法和窮舉法都是暴力搜索最優(yōu)點(diǎn)的算法,在很多競賽題中有應(yīng)用,當(dāng)重點(diǎn)討論模型本身而輕視算法的時(shí)候,可以使用這種暴力方案,最好使用一些高級(jí)語言作為編程工具)
8、一些連續(xù)離散化方法(很多問題都是實(shí)際來的,數(shù)據(jù)可以是連續(xù)的,而計(jì)算機(jī)只認(rèn)的是離散的數(shù)據(jù),因此將其離散化后進(jìn)行差分代替微分、求和代替積分等思想是非常重要的)
9、數(shù)值分析算法(如果在比賽中采用高級(jí)語言進(jìn)行編程的話,那一些數(shù)值分析中常用的算法比如方程組求解、矩陣運(yùn)算、函數(shù)積分等算法就需要額外編寫庫函數(shù)進(jìn)行調(diào)用)
10、圖象處理算法(賽題中有一類問題與圖形有關(guān),即使與圖形無關(guān),論文中也應(yīng)該要不乏圖片的,這些圖形如何展示以及如何處理就是需要解決的問題,通常使用Matlab進(jìn)行處理)
數(shù)學(xué)建模的學(xué)習(xí)心得4
到目前為止,我們已經(jīng)學(xué)習(xí)科學(xué)計(jì)算與數(shù)學(xué)建模這門課程半個(gè)學(xué)期了,漸漸的對(duì)這門課程有點(diǎn)了解了。我覺得開設(shè)數(shù)學(xué)建模這一門學(xué)科是應(yīng)了時(shí)代的發(fā)展要求,因?yàn)椋S著科學(xué)技術(shù)的發(fā)展,特別是計(jì)算機(jī)技術(shù)的飛速發(fā)展和廣泛應(yīng)用,科學(xué)研究與工程技術(shù)對(duì)實(shí)際問題的研究不斷精確化、定量化、數(shù)字化,使得數(shù)學(xué)在各學(xué)科、各領(lǐng)域的作用日益增強(qiáng),而數(shù)學(xué)建模在這一過程中的作用尤為突出。在前一階段的學(xué)習(xí)中我了解到它不僅僅是參加數(shù)學(xué)建模比賽的學(xué)生才要學(xué)的,也不僅僅是純理論性的研究學(xué)習(xí),這門課程是在實(shí)際生產(chǎn)生活中有很大的應(yīng)用,突破了以前大家對(duì)數(shù)學(xué)的誤解,也在一定程度上培養(yǎng)了我們應(yīng)用數(shù)學(xué)工具解決實(shí)際問題的能力。
具體結(jié)合教材內(nèi)容說,在很多時(shí)候課本里的都是引用實(shí)際生產(chǎn)生活的例子,這樣我們更能夠切切實(shí)實(shí)感受到這門課程對(duì)實(shí)際生產(chǎn)生活的.幫助,而并非是我們空想著學(xué)這門課有什么作用啊,簡直是浪費(fèi)時(shí)間啊什么的。
現(xiàn)在我就說說我到目前為止學(xué)到了什么,首先,我知道了數(shù)學(xué)建模的基本步驟:第一步我們肯定是要將現(xiàn)實(shí)問題的信息歸納表述為我們的數(shù)學(xué)模型,然后對(duì)我們建立的數(shù)學(xué)模型進(jìn)行求解,這一步也可以說是數(shù)學(xué)模型的解答,最后一步我們要需要從那個(gè)數(shù)學(xué)世界回歸到現(xiàn)實(shí)世界,也就是將數(shù)學(xué)模型的解答轉(zhuǎn)化為對(duì)現(xiàn)實(shí)問題的解答,從而進(jìn)一步來驗(yàn)證現(xiàn)實(shí)問題的信息,這一步是非常重要的一個(gè)環(huán)節(jié),這些結(jié)果也需要用實(shí)際的信息加以驗(yàn)證。
這個(gè)步驟在一定程度上揭示了現(xiàn)實(shí)問題和數(shù)學(xué)建模的關(guān)系,一方面,數(shù)學(xué)建模是將現(xiàn)實(shí)生活中的現(xiàn)象加以歸納、抽象的產(chǎn)物,它源于現(xiàn)實(shí),卻又高于現(xiàn)實(shí),另一方面,只有當(dāng)數(shù)學(xué)模型的結(jié)果經(jīng)受住現(xiàn)實(shí)問題的檢驗(yàn)時(shí),才可以用來指導(dǎo)實(shí)踐,完成實(shí)踐到理論再回歸到實(shí)踐的這一循環(huán)。
在課本第二章的時(shí)候我們開始接觸實(shí)際問題,在第二章片頭我們看到的就是某城市供水量的預(yù)測問題,在這一章里,老師通過城市供水量的預(yù)測問題介紹了求函數(shù)近似表達(dá)式的插值法和擬合法、城市供水量預(yù)測的簡單方法、供水量增長率估與數(shù)值微分,其中插值法主要介紹Lagrange法、Newton法、分段低次插值和三次樣條插值。至此我們才真正體會(huì)了數(shù)學(xué)建模對(duì)實(shí)際生產(chǎn)的幫助。
但同時(shí),我們也發(fā)現(xiàn),要學(xué)好數(shù)學(xué)建模這一門學(xué)科,或者說應(yīng)用數(shù)學(xué)建模的知識(shí)去解決其他問題,不僅僅只要求我們有扎實(shí)的數(shù)學(xué)知識(shí),還需要我們學(xué)習(xí)更多的數(shù)學(xué)分支學(xué)科,例如有時(shí)候我們還需要其他的數(shù)學(xué)軟件來幫我們解決問題,同時(shí)還要考察實(shí)際情況學(xué)會(huì)從實(shí)際問題中提煉數(shù)學(xué)問題。
總的來說,學(xué)習(xí)數(shù)學(xué)建模這一門學(xué)科對(duì)我們的幫助很大,因?yàn)樗粌H增強(qiáng)了我的知識(shí)面,我們可以在學(xué)習(xí)這一門學(xué)科的過程中鍛煉我們學(xué)習(xí)積極性,逐步培養(yǎng)很強(qiáng)的自學(xué)能力和分析、解決問題的能力,這對(duì)于我們師范生以后走上教育工作崗位也是很有幫助的。
數(shù)學(xué)建模的學(xué)習(xí)心得5
剛參加工作那陣子就接觸到“建!边@個(gè)概念,也曾對(duì)之有過關(guān)注和嘗試,但終因功力不濟(jì),未能持之以恒給力研究,也就一陣煙云飄過了一下罷了。
xx的講座再次激起了我們對(duì)這個(gè)曾經(jīng)的相識(shí)思考的熱情。同樣一個(gè)名詞,但在新的時(shí)代背景下xx賦予了其更多新的內(nèi)涵。
首先是對(duì)“建!钡睦斫獠町悺D菚r(shí)更多的是一種短視或者說應(yīng)試背景下的行為,“建模”的理解就是給學(xué)生一個(gè)固定的模式的東西,通過教學(xué)行為讓學(xué)生接受而成為其解決問題的一種工具;而xx的“建模”更多的是一種動(dòng)態(tài)的或者說是一種有型而又不可僵化定型的東西,應(yīng)該是可以助力學(xué)生發(fā)展最終可以成為學(xué)生數(shù)學(xué)素養(yǎng)的一部分。
其次,對(duì)于如何建模我們可以看到更多不同。過去更多的'是一種對(duì)數(shù)學(xué)模型簡單重復(fù)的強(qiáng)化行為,顯得單調(diào)而生硬;而xx的“建模”則更多的強(qiáng)調(diào)不同層面上引導(dǎo)學(xué)生通過“悟”、“辨”、“用”等環(huán)節(jié),讓學(xué)生立體式全方位的理解模型、建立模型,從而避免了過去那種“死模”而將學(xué)生“模死”的現(xiàn)象。
xx的“模”,強(qiáng)調(diào)應(yīng)該是一個(gè)利于學(xué)生可發(fā)展的模,可以進(jìn)入到無意識(shí)和骨子里,成為學(xué)生真正的數(shù)學(xué)素養(yǎng),最終能夠跳出模,從而達(dá)到模而不模的去形式化境界。
數(shù)學(xué)建模的學(xué)習(xí)心得6
數(shù)學(xué)建模是一個(gè)經(jīng)歷觀察、思考、歸類、抽象與總結(jié)的過程,也是一個(gè)信息捕捉、篩選、整理的過程,更是一個(gè)思想與方法的產(chǎn)生與選擇的過程。它給學(xué)生再現(xiàn)了一種“微型科研”的過程。數(shù)學(xué)建模教學(xué)有利于激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,豐富學(xué)生數(shù)學(xué)探索的情感體驗(yàn);有利于學(xué)生自覺檢驗(yàn)、鞏固所學(xué)的數(shù)學(xué)知識(shí),促進(jìn)知識(shí)的深化、發(fā)展;有利于學(xué)生體會(huì)和感悟數(shù)學(xué)思想方法。同時(shí)教師自身具備數(shù)學(xué)模型的構(gòu)建意識(shí)與能力,才能指導(dǎo)和要求學(xué)生通過主動(dòng)思維,自主構(gòu)建有效的數(shù)學(xué)模型,從而使數(shù)學(xué)課堂彰顯科學(xué)的魅力。
為了使描述更具科學(xué)性,邏輯性,客觀性和可重復(fù)性,人們采用一種普遍認(rèn)為比較嚴(yán)格的語言來描述各種現(xiàn)象,這種語言就是數(shù)學(xué)。使用數(shù)學(xué)語言描述的事物就稱為數(shù)學(xué)模型。有時(shí)候我們需要做一些實(shí)驗(yàn),但這些實(shí)驗(yàn)往往用抽象出來了的數(shù)學(xué)模型作為實(shí)際物體的代替而進(jìn)行相應(yīng)的實(shí)驗(yàn),實(shí)驗(yàn)本身也是實(shí)際操作的一種理論替代。
1、只有經(jīng)歷這樣的探索過程,數(shù)學(xué)的思想、方法才能沉積、凝聚,從而使知識(shí)具有更大的智慧價(jià)值。
動(dòng)手實(shí)踐、自主探索與合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式。學(xué)生的數(shù)學(xué)學(xué)習(xí)活動(dòng)應(yīng)當(dāng)是一個(gè)主動(dòng)、活潑的、生動(dòng)和富有個(gè)性的過程。因此,在教學(xué)時(shí)我們要善于引導(dǎo)學(xué)生自主探索、合作交流,對(duì)學(xué)習(xí)過程、學(xué)習(xí)材料、學(xué)習(xí)發(fā)現(xiàn)主動(dòng)歸納、提升,力求建構(gòu)出人人都能理解的數(shù)學(xué)模型。教師不應(yīng)只是“講演者”,而應(yīng)不時(shí)扮演下列角色:參謀——提一些求解的建議,提供可參考的信息,但并不代替學(xué)生做出決斷。詢問者——故作不知,問原因、找漏洞,督促學(xué)生弄清楚、說明白,完成進(jìn)度。仲裁者和鑒賞者——評(píng)判學(xué)生工作成果的價(jià)值、意義、優(yōu)劣,鼓勵(lì)學(xué)生有創(chuàng)造性的想法和作法。
2、數(shù)學(xué)建模對(duì)教師、對(duì)學(xué)生都有一個(gè)逐步的學(xué)習(xí)和適應(yīng)的過程。
教師在設(shè)計(jì)數(shù)學(xué)建;顒(dòng)時(shí),特別應(yīng)考慮學(xué)生的實(shí)際能力和水平,起始點(diǎn)要低,形式應(yīng)有利于更多的學(xué)生能參與。在開始的教學(xué)中,在講解知識(shí)的同時(shí)有意識(shí)地介紹知識(shí)的應(yīng)用背景,在數(shù)學(xué)模型的應(yīng)用環(huán)節(jié)進(jìn)行比較多的訓(xùn)練;然后逐步擴(kuò)展到讓學(xué)生用已有的`數(shù)學(xué)知識(shí)解釋一些實(shí)際結(jié)果,描述一些實(shí)際現(xiàn)象,模仿地解決一些比較確定的應(yīng)用問題;再到獨(dú)立地解決教師提供的數(shù)學(xué)應(yīng)用問題和建模問題;最后發(fā)展成能獨(dú)立地發(fā)現(xiàn)、提出一些實(shí)際問題,并能用數(shù)學(xué)建模的方法解決它。
3、老師既要重視實(shí)際問題背景的分析、參數(shù)的簡化、假設(shè)的約定,還要重視分析數(shù)學(xué)模型建立的原理、過程,數(shù)學(xué)知識(shí)、方法的轉(zhuǎn)化、應(yīng)用。
不能僅僅講授數(shù)學(xué)建模結(jié)果,忽略數(shù)學(xué)建模的建立過程。
4、數(shù)學(xué)應(yīng)用與數(shù)學(xué)建模的目的并不是僅僅為了給學(xué)生擴(kuò)充大量的數(shù)學(xué)課外知識(shí),也不是僅僅為了解決一些具體問題,而是要培養(yǎng)學(xué)生的應(yīng)用意識(shí),提高學(xué)生數(shù)學(xué)能力和數(shù)學(xué)素質(zhì)。
因此我們不應(yīng)該沿用老師講題、學(xué)生模仿練習(xí)的套路,而應(yīng)該重過程、重參與,從小培養(yǎng)學(xué)數(shù)學(xué)已經(jīng)成為當(dāng)代高科技的一個(gè)重要組成部分和思想庫,培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)的意識(shí)和能力也已經(jīng)成為數(shù)學(xué)教學(xué)的一個(gè)重要方面。而應(yīng)用數(shù)學(xué)去解決各類實(shí)際問題就必須建立數(shù)學(xué)模型。小學(xué)數(shù)學(xué)教學(xué)的過程其實(shí)就是教師引導(dǎo)學(xué)生不斷建模和用模的過程。因此,用建模思想指導(dǎo)小學(xué)數(shù)學(xué)教學(xué)顯得愈發(fā)重要。
數(shù)學(xué)建模的學(xué)習(xí)心得7
自從大二下學(xué)期真正開了數(shù)學(xué)模型這一門課之后,我對(duì)數(shù)學(xué)認(rèn)識(shí)又進(jìn)一步加深。雖然我是學(xué)純數(shù)學(xué)即數(shù)學(xué)與應(yīng)用數(shù)學(xué),但是在我的認(rèn)知中,數(shù)學(xué)最多的是單純地證明一些定理抑或是反復(fù)的計(jì)算一些步驟比較多的題進(jìn)而求解。隨著老師在課堂上一點(diǎn)一點(diǎn)的引導(dǎo)、介紹、講解,我漸漸地發(fā)現(xiàn)數(shù)學(xué)真的是很萬能啊(在我看來),任何實(shí)際問題只要運(yùn)用數(shù)學(xué)建立模型都可以抽象成一個(gè)數(shù)學(xué)方面的問題,進(jìn)而單純的分析、計(jì)算、求解。這只是我大體的認(rèn)識(shí)。
首先,通過數(shù)學(xué)模型這一門課我解開了數(shù)學(xué)模型的神秘面紗,與數(shù)學(xué)模型緊密相連的就是數(shù)學(xué)建模,簡而言之來說數(shù)學(xué)建模就是應(yīng)用數(shù)學(xué)模型來解決各種實(shí)際問題的過程,也就是通過對(duì)實(shí)際問題的抽象、簡化、確定變量和參數(shù),并應(yīng)用某些規(guī)律建立變量與參數(shù)之間的關(guān)系的數(shù)學(xué)問題(或稱一個(gè)數(shù)學(xué)模型),在借用計(jì)算機(jī)求解該數(shù)學(xué)問題,并解釋,檢驗(yàn),評(píng)價(jià)所得的解,從而確定能否將其用于解決實(shí)際問題的多次循環(huán),不斷深化的過程。
以下是我學(xué)習(xí)數(shù)學(xué)模型的一些心得:
第一,數(shù)學(xué)模型是數(shù)學(xué)的一個(gè)分支,它還沒有脫離數(shù)學(xué),眾所周知數(shù)學(xué)是一門比較抽象的課程,主要需要和訓(xùn)練的還是邏輯思維。因此數(shù)學(xué)模型需要和訓(xùn)練的都基本是思維,但和純數(shù)學(xué)區(qū)別的是數(shù)學(xué)模型只要抽象出數(shù)學(xué)問題的本質(zhì),進(jìn)而建模,那之后不是非得自己一步步地演算、求解。
第二,數(shù)學(xué)模型最后的求解很多時(shí)候都不可避免地要用到計(jì)算機(jī),比如像matlab,spss,linggo之類的數(shù)學(xué)軟件。因此在學(xué)習(xí)過程中我們也得對(duì)這些軟件有一定的了解和認(rèn)識(shí)。這也就與平常的學(xué)習(xí)方式產(chǎn)生了區(qū)別,平常的數(shù)學(xué)方式因?yàn)槠鋬?nèi)容和講授被限制在了平常的階梯教室,但數(shù)學(xué)模型這一門課就必須通過自己的實(shí)踐運(yùn)用計(jì)算機(jī)來達(dá)到自己的目的。因此我們的學(xué)習(xí)方式就多了一項(xiàng)(通過計(jì)算機(jī)進(jìn)一步了解數(shù)學(xué)模型的魅力)。
第三,因?yàn)閿?shù)學(xué)模型是對(duì)現(xiàn)實(shí)問題的分析,因此老師在課堂上進(jìn)行的授課通常會(huì)是老師引導(dǎo)、師生之間相互商量,因此課堂氛圍一般都比較活潑,學(xué)習(xí)起來會(huì)相對(duì)的比較輕松。這樣對(duì)學(xué)生的思維的開拓有很大的好處。因?yàn)槲覀冊(cè)谏詈蛯W(xué)習(xí)的過程中都接觸過很多問題的數(shù)學(xué)問題的.模型,所以思考其整個(gè)過程及其影響因素就不會(huì)出現(xiàn)無從下手的感覺。相反的,在考慮問題的時(shí)候,我們更能提出自己的一些見解并能積極地與老師展開討論。
第四,數(shù)學(xué)模型充分挖掘了我們的潛能,使我們對(duì)自己的能力有了新的認(rèn)識(shí),特別是自學(xué)能力得到了極大的提高,而且思想的交鋒也迸發(fā)了智慧的火花,從而增加了繼續(xù)深入學(xué)習(xí)數(shù)學(xué)的主動(dòng)性和積極性。再次,它也培養(yǎng)了我們的概括力和想象力,也就是要一眼就能抓住問題的本質(zhì)所在。我們只有先對(duì)實(shí)際問題進(jìn)行概括歸納,同時(shí)在允許的情況下盡量忽略各種次要因素,僅僅抓住問題的本質(zhì)方面,是問題盡可能簡單化,這樣才能解決問題。
第五,說到數(shù)學(xué)模型就必不可免得會(huì)聯(lián)系到數(shù)學(xué)建模大賽。因?yàn)榻逃仨氝m應(yīng)社會(huì)的需要,數(shù)學(xué)建模進(jìn)入大學(xué)課堂,既順應(yīng)時(shí)代發(fā)展的潮流,也符合教育改革的需求,對(duì)于數(shù)學(xué)教育而言,既應(yīng)該讓學(xué)生掌握準(zhǔn)確快捷的計(jì)算方法和嚴(yán)密的邏輯推理,也需要培養(yǎng)學(xué)生用數(shù)學(xué)工具分析和解決實(shí)際問題的意識(shí)和能力。數(shù)學(xué)建模大賽就是順應(yīng)這一要求,此外,數(shù)學(xué)建模還可以提高學(xué)生的競賽能力,抗壓能力,問題設(shè)計(jì)的能力,搜索資料的能力,計(jì)算機(jī)運(yùn)用能力,論文寫作與修改完善能力,語言表達(dá)能力,創(chuàng)新能力等科學(xué)綜合素養(yǎng)。
第六,雖然我沒參加過數(shù)學(xué)建模大賽,但是我曾去過數(shù)學(xué)建模的培訓(xùn)課程,通過老師的介紹,我知道數(shù)學(xué)建模對(duì)團(tuán)隊(duì)合作要求很高。一個(gè)人的能力畢竟有限,不能把什么都做得很好,即使少數(shù)人能方方面面都顧全到,那得多么的累,況且真正的數(shù)學(xué)建模大賽是對(duì)時(shí)間有限制的,不會(huì)讓你不限時(shí)地讓你做。正所謂‘三個(gè)臭皮匠,勝過諸葛亮’,可見思想與思想之間的交流產(chǎn)生的結(jié)果是多么的好,此外,每個(gè)人因?yàn)樗幁h(huán)境與經(jīng)歷還有專業(yè)的限制,每個(gè)人思考問題的角度都不盡相同。所以集結(jié)每個(gè)人的優(yōu)點(diǎn)才會(huì)使自己的團(tuán)隊(duì)所做出來的結(jié)果更優(yōu)秀。
以上只是我在這短短幾個(gè)月對(duì)數(shù)學(xué)模型的淺顯的認(rèn)識(shí),不用說大家肯定都只道數(shù)學(xué)模型更像是一個(gè)工具,所以說它的魅力作用及影響肯定不會(huì)僅僅是這些,有時(shí)現(xiàn)實(shí)生活中及各個(gè)學(xué)科都需要它來解決問題,所以這更要求我們要認(rèn)真學(xué)好這門課。
通過上課我也有一點(diǎn)建議,就是希望老師可以讓同學(xué)們結(jié)成小組再在課上可以討論某幾道題,這樣可以加強(qiáng)同學(xué)們?cè)谶@方面的能力,也可以提高課堂氛圍。
數(shù)學(xué)建模的學(xué)習(xí)心得8
這學(xué)期,我學(xué)習(xí)了數(shù)學(xué)建模這門課,我覺得他與其他科的不同是與現(xiàn)實(shí)聯(lián)系密切,而且能引導(dǎo)我們把以前學(xué)得到的枯燥的數(shù)學(xué)知識(shí)應(yīng)用到實(shí)際問題中去,用建模的思想、方法來解決實(shí)際問題,很神奇,而且也接觸了一些計(jì)算機(jī)軟件,使問題求解很快就出了答案。
在學(xué)習(xí)的過程中,我獲得了很多知識(shí),對(duì)我有非常大的提高。同時(shí)我有了一些感想和體會(huì)。
本來在學(xué)習(xí)數(shù)學(xué)的過程中就遇到過很多困難,感覺很枯燥,很難學(xué),概念抽象、邏輯嚴(yán)密等等,所以我的學(xué)習(xí)積極性慢慢就降低了,而且不知道學(xué)了要怎么用,不知道現(xiàn)實(shí)生活中哪里到。通過學(xué)習(xí)了數(shù)學(xué)模型中的好多模型后,我發(fā)現(xiàn)數(shù)學(xué)應(yīng)用的廣泛性。數(shù)學(xué)模型是一種模擬,使用數(shù)學(xué)符號(hào)、數(shù)學(xué)式子、程序、圖形等對(duì)實(shí)際課題本質(zhì)屬性的抽象而又簡潔的刻畫,他或能解釋默寫客觀現(xiàn)象,或能預(yù)測未來的發(fā)展規(guī)律,或能為控制某一現(xiàn)象的發(fā)展提供某種意義下的最優(yōu)策略或較好策略。數(shù)學(xué)模型一般并非現(xiàn)實(shí)問題的直接翻版,它的建立常常既需要人們對(duì)現(xiàn)實(shí)問題深入細(xì)微的觀察和分析,又需要人們靈活巧妙地利用各種數(shù)學(xué)知識(shí)。這種應(yīng)用知識(shí)從實(shí)際課題中抽象、提煉出數(shù)學(xué)模型的過程就稱為數(shù)學(xué)建模。不論是用數(shù)學(xué)方法在科技和生產(chǎn)領(lǐng)域解決哪類實(shí)際問題,還是與其他學(xué)科相結(jié)合形成的交叉學(xué)科,首要的和關(guān)鍵的一步是建立研究對(duì)象的數(shù)學(xué)模型,并加以計(jì)算求解。數(shù)學(xué)建模和計(jì)算機(jī)技術(shù)在知識(shí)經(jīng)濟(jì)的作用可謂是如虎添翼。
數(shù)學(xué)建模屬于一門應(yīng)用數(shù)學(xué),學(xué)習(xí)這門課要求我們學(xué)會(huì)如何將實(shí)際問題經(jīng)過分析、簡化轉(zhuǎn)化為個(gè)數(shù)學(xué)問題,然后用適用的數(shù)學(xué)方法去解決。數(shù)學(xué)建模是一種數(shù)學(xué)的思考方法,是運(yùn)用數(shù)學(xué)的語言和方法,通過抽象、簡化建立能近似刻畫并解決實(shí)際問題的一種強(qiáng)有力地?cái)?shù)學(xué)手段。在學(xué)習(xí)中,我知道了數(shù)學(xué)建模的過程,其過程如下:
(1)模型準(zhǔn)備:了解問題的實(shí)際背景,明確其實(shí)際意義,掌握對(duì)象的各種信息。用數(shù)學(xué)語言來描述問題。
(2)模型假設(shè):根據(jù)實(shí)際對(duì)象的特征和建模的目的,對(duì)問題進(jìn)行必要的簡化,并用精確地語言提出一些恰當(dāng)?shù)募僭O(shè)。
(3)模型建立:在假設(shè)的`基礎(chǔ)上,利用適當(dāng)?shù)臄?shù)學(xué)工具來刻畫各變量之間的數(shù)學(xué)關(guān)系,建立相應(yīng)的數(shù)學(xué)結(jié)構(gòu)。
(4)模型求解:利用或取得的數(shù)據(jù)資料,對(duì)模型的所有參數(shù)做出計(jì)算。
(5)模型分析:對(duì)所得的結(jié)果進(jìn)行數(shù)學(xué)上的分析。
(6)模型檢驗(yàn):將模型分析結(jié)果與實(shí)際情形進(jìn)行比較,以此來驗(yàn)證模型的準(zhǔn)確性、合理性和適用性。如果模型與實(shí)際較吻合,則要對(duì)計(jì)算結(jié)果給出其實(shí)際含義,并進(jìn)行解釋。如果模型與實(shí)際吻合較差,則應(yīng)該修改假設(shè),再次進(jìn)行建模過程。
數(shù)學(xué)模型既順應(yīng)時(shí)代發(fā)展的潮流,也符合教育改革的要求。對(duì)于數(shù)學(xué)教育而言,既應(yīng)該讓學(xué)生掌握準(zhǔn)確快捷的計(jì)算方法和嚴(yán)密的邏輯推理,也需要培養(yǎng)學(xué)生用數(shù)學(xué)工具分析解決實(shí)際問題的意識(shí)和能力,傳統(tǒng)的數(shù)學(xué)教學(xué)體系和內(nèi)容無疑偏重于前者,而開設(shè)數(shù)學(xué)建模課程則是加強(qiáng)后者的一種嘗試,數(shù)學(xué)建模的初衷是為了幫助大家提升分析問題,解決問題的能力。我認(rèn)為學(xué)習(xí)數(shù)學(xué)模型的意義有如下幾點(diǎn):一學(xué)習(xí)數(shù)學(xué)模型我們可以參加數(shù)學(xué)建模競賽,而數(shù)學(xué)建模競賽是為了促進(jìn)數(shù)學(xué)建模的發(fā)展而應(yīng)運(yùn)而生的,它可以培養(yǎng)大家的競賽能力、抗壓能力、問題設(shè)計(jì)能力、搜索資料的能力、計(jì)算機(jī)運(yùn)用能力、論文寫作與修改完善能力、語言表達(dá)能力、創(chuàng)新能力等科學(xué)綜合素養(yǎng),它讓大家從傳統(tǒng)的知識(shí)培養(yǎng)轉(zhuǎn)變到能力的培養(yǎng),讓我們的思想追求有了質(zhì)的變化!這也是我們現(xiàn)代教育所追求的;二學(xué)習(xí)數(shù)學(xué)可以提升我的邏輯思維能力和運(yùn)算等抽象能力,但好多人覺得數(shù)學(xué)和實(shí)際遙不可及,可是呢,數(shù)學(xué)建模則成為了解決這種現(xiàn)象的殺手锏,因?yàn)閿?shù)學(xué)建模就是為了培養(yǎng)大家的分析問題和分解決問題的能力。
在學(xué)習(xí)了數(shù)學(xué)模型后,它所教給我們的不單是一些數(shù)學(xué)方面的知識(shí),比如說一些數(shù)學(xué)計(jì)算軟件,學(xué)習(xí)建模的同時(shí),借用各種建模軟件解決問題是必不可少的Matlab,Lingo,等都是非常方便的。數(shù)學(xué)模型是數(shù)學(xué)學(xué)習(xí)的新的方式,他為我們提供了自主學(xué)習(xí)的空間,有助于我們體驗(yàn)數(shù)學(xué)在解決實(shí)際問題中的價(jià)值和作用,體驗(yàn)數(shù)學(xué)與日常生化和其他學(xué)科的聯(lián)系,體驗(yàn)綜合運(yùn)用知識(shí)和方法解決實(shí)際問題的過程,增強(qiáng)應(yīng)用意識(shí);而且數(shù)學(xué)模型還對(duì)我們有綜合能力的培養(yǎng)、鍛煉與提高。它培養(yǎng)了我們?nèi)、多角度考慮問題的能力,使我們的邏輯推理能力和量化分析能力得到很好地鍛煉和提高。而且我認(rèn)為數(shù)學(xué)模型帶給我的是發(fā)散性思維,各種研究方法和手段。教會(huì)我凡事要有自己的創(chuàng)新,自己的嚴(yán)密思維,不能局限于俗套?傊畬W(xué)習(xí)數(shù)學(xué)模型有利于激發(fā)我們的學(xué)習(xí)數(shù)學(xué)的興趣,豐富我們學(xué)習(xí)數(shù)學(xué)探索的情感體驗(yàn);有利于我們自覺體驗(yàn)、鞏固所學(xué)的的數(shù)學(xué)知識(shí)。還鍛煉了我們的耐心和意志力。
數(shù)學(xué)建模的學(xué)習(xí)心得9
通過一個(gè)月的集訓(xùn),我受益匪淺。我進(jìn)一步的認(rèn)識(shí)到數(shù)學(xué)建模的實(shí)質(zhì)和對(duì)參賽隊(duì)員的要求。數(shù)學(xué)建模就是培養(yǎng)學(xué)生運(yùn)用數(shù)學(xué)知識(shí)解決實(shí)際問題的能力。它要求參賽隊(duì)員有較強(qiáng)的創(chuàng)新精神,有較大的靈活性和隨機(jī)應(yīng)變能力,要求參賽隊(duì)員之間有良好的團(tuán)隊(duì)精神和相互協(xié)作意識(shí)。在一個(gè)月里,我們學(xué)了許多知識(shí)放方法,可以說數(shù)學(xué)建模需要的知識(shí)我們都了解了一點(diǎn),關(guān)鍵在于如何應(yīng)用這些知識(shí)。這種即學(xué)即用的能力是我們以后學(xué)習(xí)、工作所必須的能力。在此我對(duì)建模是出現(xiàn)的一些現(xiàn)象發(fā)表一些看法。
隨著信息的高速化,我們很容易找到和建模有關(guān)的資料,這對(duì)我們理解題目意思和促發(fā)新思路、新想法是有幫助的.。但是有的集訓(xùn)小組或集訓(xùn)隊(duì)員他們建模完全依靠找資料,建出來的模型就是幾本參考書的綜合,他們所用的方法完全是別人研究過的東西,連一點(diǎn)改進(jìn)也沒有。如果這樣的話,數(shù)學(xué)建模就失去了意義。我始終堅(jiān)持一個(gè)觀點(diǎn):數(shù)學(xué)建模最重要的是創(chuàng)新。無論是你創(chuàng)造一種新方法還是創(chuàng)造性的運(yùn)用一種方法,還是改進(jìn)別人的方法都是很重要的。沒有創(chuàng)新,模型就失去了靈魂;沒有創(chuàng)新,模型就不是你的模型。
我們隊(duì)配合不是很理想。主要是有個(gè)隊(duì)員他總認(rèn)為自己是正確的,別人找到的資料不如他好,別人提出的觀點(diǎn)、思想思想無論正確與否,他總是會(huì)反對(duì)一下。他總是十分注重小的方面,不從大局考慮。由于這些原因,我們建的模型總是不好。
數(shù)學(xué)建模的學(xué)習(xí)心得10
剛參加工作那陣子就接觸到“建模”這個(gè)概念,也曾對(duì)之有過關(guān)注和嘗試,但終因功力不濟(jì),未能持之以恒給力研究,也就一陣煙云飄過了一下罷了。
許校的講座再次激起了我們對(duì)這個(gè)曾經(jīng)的相識(shí)思考的熱情。
同樣一個(gè)名詞,但在新的時(shí)代背景下許校賦予了其更多新的內(nèi)涵。
首先是對(duì)“建!钡睦斫獠町。那時(shí)更多的是一種短視或者說應(yīng)試背景下的行為,“建!钡睦斫饩褪墙o學(xué)生一個(gè)固定的模式的東西,通過教學(xué)行為讓學(xué)生接受而成為其解決問題的'一種工具;而許校的“建!备嗟氖且环N動(dòng)態(tài)的或者說是一種有型而又不可僵化定型的東西,應(yīng)該是可以助力學(xué)生發(fā)展最終可以成為學(xué)生數(shù)學(xué)素養(yǎng)的一部分。
其次,對(duì)于如何建模我們可以看到更多不同。過去更多的是一種對(duì)數(shù)學(xué)模型簡單重復(fù)的強(qiáng)化行為,顯得單調(diào)而生硬;而許校的“建!眲t更多的強(qiáng)調(diào)不同層面上引導(dǎo)學(xué)生通過“悟”、“辨”、“用”等環(huán)節(jié),讓學(xué)生立體式全方位的理解模型、建立模型,從而避免了過去那種“死!倍鴮W(xué)生“模死”的現(xiàn)象。
許校的“!,強(qiáng)調(diào)應(yīng)該是一個(gè)利于學(xué)生可發(fā)展的模,可以進(jìn)入到無意識(shí)和骨子里,成為學(xué)生真正的數(shù)學(xué)素養(yǎng),最終能夠跳出模,從而達(dá)到模而不模的去形式化境界。
數(shù)學(xué)建模是一個(gè)經(jīng)歷觀察、思考、歸類、抽象與的過程,也是一個(gè)信息捕捉、篩選、整理的過程,更是一個(gè)思想與方法的產(chǎn)生與選擇的過程。它給學(xué)生再現(xiàn)了一種“微型科研”的過程。數(shù)學(xué)建模教學(xué)有利于激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,豐富學(xué)生數(shù)學(xué)探索的情感體驗(yàn);有利于學(xué)生自覺檢驗(yàn)、鞏固所學(xué)的數(shù)學(xué)知識(shí),促進(jìn)知識(shí)的深化、發(fā)展;有利于學(xué)生體會(huì)和感悟數(shù)學(xué)思想方法。同時(shí)教師自身具備數(shù)學(xué)模型的構(gòu)建意識(shí)與能力,才能指導(dǎo)和要求學(xué)生通過主動(dòng)思維,自主構(gòu)建有效的數(shù)學(xué)模型,從而使數(shù)學(xué)課堂彰顯科學(xué)的魅力。
為了使描述更具科學(xué)性,邏輯性,客觀性和可重復(fù)性,人們采用一種普遍認(rèn)為比較嚴(yán)格的語言來描述各種現(xiàn)象,這種語言就是數(shù)學(xué)。使用數(shù)學(xué)語言描述的事物就稱為數(shù)學(xué)模型。有時(shí)候我們需要做一些實(shí)驗(yàn),但這些實(shí)驗(yàn)往往用抽象出來了的數(shù)學(xué)模型作為實(shí)際物體的代替而進(jìn)行相應(yīng)的實(shí)驗(yàn),實(shí)驗(yàn)本身也是實(shí)際操作的一種理論替代。 1.只有經(jīng)歷這樣的探索過程,數(shù)學(xué)的思想、方法才能沉積、凝聚,從而使知識(shí)具有更大的智慧價(jià)值。動(dòng)手實(shí)踐、自主探索與合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式。學(xué)生的數(shù)學(xué)學(xué)習(xí)活動(dòng)應(yīng)當(dāng)是一個(gè)主動(dòng)、活潑的、生動(dòng)和富有個(gè)性的過程。因此,在教學(xué)時(shí)我們要善于引導(dǎo)學(xué)生自主探索、合作交流,對(duì)學(xué)習(xí)過程、學(xué)習(xí)材料、學(xué)習(xí)發(fā)現(xiàn)主動(dòng)歸納、提升,力求建構(gòu)出人人都能理解的數(shù)學(xué)模型。
教師不應(yīng)只是“講演者”,而應(yīng)不時(shí)扮演下列角色:參謀提一些求解的建議,提供可參考的信息,但并不代替學(xué)生做出決斷。詢問者故作不知,問原因、找漏洞,督促學(xué)生弄清楚、說明白,完成進(jìn)度。仲裁者和鑒賞者評(píng)判學(xué)生工作成果的價(jià)值、意義、優(yōu)劣,鼓勵(lì)學(xué)生有創(chuàng)造性的想法和作法。
數(shù)學(xué)建模的學(xué)習(xí)心得11
隨著科學(xué)技術(shù)的飛速發(fā)展,人們?cè)絹碓秸J(rèn)識(shí)到數(shù)學(xué)科學(xué)的重要性:數(shù)學(xué)的思考方式具有根本的重要性,數(shù)學(xué)為組織和構(gòu)造知識(shí)提供了方法,將它用于技術(shù)時(shí)能使科學(xué)家和工程師生產(chǎn)出系統(tǒng)的、能復(fù)制的、且可以傳播的知識(shí)……數(shù)學(xué)科學(xué)對(duì)于經(jīng)濟(jì)競爭是必不可少的,數(shù)學(xué)科學(xué)是一種關(guān)鍵性的、普遍的、可實(shí)行的技術(shù)。
在當(dāng)今高科技與計(jì)算機(jī)技術(shù)日新月異且日益普及的社會(huì)里,高新技術(shù)的發(fā)展離不開數(shù)學(xué)的支持,沒有良好的數(shù)學(xué)素養(yǎng)已無法實(shí)現(xiàn)工程技術(shù)的創(chuàng)新與突破。因此,如何在數(shù)學(xué)教育的過程中培養(yǎng)人們的數(shù)學(xué)素養(yǎng),讓人們學(xué)會(huì)用數(shù)學(xué)的知識(shí)與方法去處理實(shí)際問題,值得數(shù)學(xué)工作者的思考。大學(xué)生數(shù)學(xué)建;顒(dòng)及全國大學(xué)生數(shù)學(xué)建模競賽正是在這種形勢下開展并發(fā)展起來的,其目的在于激勵(lì)學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性,提高學(xué)生建立數(shù)學(xué)模型和運(yùn)用計(jì)算機(jī)技術(shù)解決實(shí)際問題的綜合能力,拓寬學(xué)生的知識(shí)面,培養(yǎng)創(chuàng)造精神及合作意識(shí),推動(dòng)大學(xué)數(shù)學(xué)教學(xué)體系、教學(xué)內(nèi)容和教學(xué)方法的改革。
這項(xiàng)極富意義的活動(dòng),大學(xué)組隊(duì)參加了全國大學(xué)生數(shù)學(xué)建模競賽。為了更好地組織、指導(dǎo)此項(xiàng)活動(dòng),讓更多的學(xué)生投入此項(xiàng)活動(dòng)并從中受益,學(xué)生根據(jù)組織與指導(dǎo)的實(shí)踐,對(duì)數(shù)學(xué)建;顒(dòng)的作用與實(shí)施談一些認(rèn)識(shí),以期起到深化數(shù)學(xué)教學(xué)改革、推動(dòng)課程建設(shè)的作用。方法,去近似刻畫、建立相應(yīng)數(shù)學(xué)模型并加以解決的過程。為檢驗(yàn)大學(xué)生數(shù)學(xué)建模的能力,而我國大學(xué)生數(shù)學(xué)建模競賽。參加過數(shù)學(xué)建模活動(dòng)的教師與學(xué)生普遍反映,數(shù)學(xué)建;顒(dòng)既豐富了學(xué)生的課外生活,又培養(yǎng)了學(xué)生各方面的能力,同時(shí)也促進(jìn)了大學(xué)數(shù)學(xué)教學(xué)的改革。通過數(shù)學(xué)建;顒(dòng),教師與學(xué)生對(duì)數(shù)學(xué)的作用有了進(jìn)一步的認(rèn)識(shí)。激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,F(xiàn)今大學(xué)工科數(shù)學(xué)教學(xué)普遍存在內(nèi)容多、學(xué)時(shí)少的情況,為此很多教師采取了犧牲應(yīng)用、偏重理論講解以完成教學(xué)進(jìn)度的方法,使學(xué)生對(duì)數(shù)學(xué)的重要性認(rèn)識(shí)不夠,影響了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,很多學(xué)生進(jìn)入專業(yè)課學(xué)習(xí)階段才感覺到數(shù)學(xué)的重要,但為時(shí)已晚。
數(shù)學(xué)建;顒(dòng)及競賽的題目是社會(huì)、經(jīng)濟(jì)和生產(chǎn)實(shí)踐中經(jīng)過適當(dāng)簡化的實(shí)際問題,體現(xiàn)了數(shù)學(xué)應(yīng)用的廣泛性;學(xué)生參與數(shù)學(xué)建模及競賽活動(dòng),感受到了數(shù)學(xué)的生機(jī)與活力,感受到了對(duì)自己各方面能力的促進(jìn),從而激發(fā)起他們學(xué)習(xí)數(shù)學(xué)的興趣。培養(yǎng)學(xué)生多方面的能力,培養(yǎng)綜合應(yīng)用數(shù)學(xué)知識(shí)及方法進(jìn)行分析、推理、計(jì)算的能力。由于數(shù)學(xué)建模的過程是反復(fù)應(yīng)用數(shù)學(xué)知識(shí)與方法對(duì)實(shí)際問題進(jìn)行分析、推理與計(jì)算,以得出實(shí)際問題的最佳數(shù)學(xué)模型及模型最優(yōu)解的過程,因而學(xué)生明顯感到自己這一方面的能力在具體的建模過程中得到了較大提高學(xué)習(xí)數(shù)學(xué)建模也有一段時(shí)間了,說實(shí)話在還沒學(xué)數(shù)學(xué)建模時(shí),我以為這門課程是跟幾何圖形相關(guān)的,但在學(xué)了之后才發(fā)現(xiàn)完全理解錯(cuò)了,通過這段時(shí)間的學(xué)習(xí)使得我對(duì)數(shù)學(xué)建模有了一個(gè)全新的認(rèn)識(shí),數(shù)學(xué)建模就是當(dāng)人們面對(duì)各種實(shí)際問題時(shí),根據(jù)人們對(duì)問題的理解,完成對(duì)模型的假設(shè),建立和確定求解問題的方法與途徑,然后建立好方程組,然后再與計(jì)算機(jī)的軟件相結(jié)合,最終得到該實(shí)際問題的最佳求解答案。
以前在高中時(shí)學(xué)過些簡單的線形規(guī)劃,但那時(shí)都是些簡單的問題,在列解出方程后通常只有兩個(gè)未知數(shù),但這明顯不符合現(xiàn)實(shí)生活中的問題,因?yàn)橥婕暗揭恍⿲?shí)際生產(chǎn)問題時(shí)通常都是比較麻煩的,列出方程后的未知數(shù)也不可能只有兩個(gè),因此就要用到數(shù)學(xué)模型與計(jì)算機(jī)相結(jié)合來處理了。
通過對(duì)數(shù)學(xué)建模的學(xué)習(xí),使得我對(duì)數(shù)學(xué)有了全新的看法,也因此感覺到數(shù)學(xué)這門課程對(duì)于生產(chǎn)的利益是密不可分的,開展數(shù)學(xué)建模的學(xué)習(xí)是提升我們綜合能力的好機(jī)會(huì),使得我們不再是紙上談兵了,并且也使得我們又多了一門技能。數(shù)學(xué)建模所解決的問題不是一個(gè)單一的數(shù)學(xué)問題,它要求我們除了有扎實(shí)的數(shù)學(xué)功底外,還需要我們?nèi)ゲ粩嗟牟殚嗁Y料,并且還要能熟練的應(yīng)用計(jì)算機(jī)的軟件。所以它能極大的拓寬我們的.知識(shí)面,這些知識(shí)也能為我們將來的工作打下堅(jiān)實(shí)的基礎(chǔ),也讓我理會(huì)到學(xué)習(xí)是不斷發(fā)現(xiàn)真理的過程,并且它給我們帶來的知識(shí)面不是任何專業(yè)都能涉及到的在學(xué)習(xí)數(shù)學(xué)建模的過程中,我充分的體會(huì)到了數(shù)學(xué)給人們帶便利實(shí)在太大了,在涉及到現(xiàn)實(shí)的工業(yè)生產(chǎn)中,它能給企業(yè)的利益最大化,并且也能節(jié)省國內(nèi)的能源,所以人類要是離開了數(shù)學(xué)建模,那后果真是不堪設(shè)想。其實(shí)數(shù)學(xué)建模對(duì)于我們并不陌生,在我們的日常生活和工作中,經(jīng)常會(huì)用到有關(guān)建模的概念,而在學(xué)習(xí)數(shù)學(xué)建模以前,我們面對(duì)這些問題時(shí),解決它的方法往往是一種習(xí)慣性的思維方式,只知道要這樣做,卻不知道為什么會(huì)這樣做,現(xiàn)在我們這種陳舊的思考方式已經(jīng)被數(shù)學(xué)建模轉(zhuǎn)化成多層次,多角度的從問題的本質(zhì)出發(fā)的一種新穎的思維方式了,這種凝聚了多種優(yōu)秀方法為一體的思考方式一旦被掌握了,它能轉(zhuǎn)化成你自身的素質(zhì),并且能在你以后的生活和工作中繼續(xù)發(fā)揮著作用的。
數(shù)學(xué)建模是一種運(yùn)用數(shù)學(xué)符號(hào),數(shù)學(xué)式子,計(jì)算機(jī)程序等相結(jié)合的對(duì)實(shí)際問題做出規(guī)劃而得出最佳的解決方法。不論是用數(shù)學(xué)方法解決在科技和生產(chǎn)領(lǐng)域解決哪類生產(chǎn)實(shí)際問題,還是與其他學(xué)科相結(jié)合形成交叉學(xué)科,首先和關(guān)鍵一步是建立研究對(duì)象的數(shù)學(xué)模型,并加以計(jì)算求解,我就簡單說明一下具體的操作方法:首先是模型的準(zhǔn)備,了解問題的實(shí)際背景,明確其實(shí)際意義,掌握對(duì)像的各種信息,用數(shù)學(xué)語言來描述問題。第二步是模型的假設(shè),根據(jù)實(shí)際問題的特征和建模的目的,對(duì)問題做出必要的簡化,并用精準(zhǔn)的語言做出恰當(dāng)?shù)募僭O(shè)。第三步是模型的建立,在假設(shè)的基礎(chǔ)上,用適當(dāng)?shù)臄?shù)學(xué)工具來刻劃各變量之間的數(shù)學(xué)關(guān)系,建立相應(yīng)的數(shù)學(xué)架構(gòu)。第四步是模型的求解,利用獲取的數(shù)學(xué)資料,對(duì)模型所有參數(shù)做出計(jì)算。第五步是模型的分析,對(duì)所得的結(jié)果做出數(shù)學(xué)上的分析。第六步是模型檢測,將模型的分析結(jié)果與實(shí)際情況進(jìn)行比較,以此來確定模型的合理性,如果模型與實(shí)際比較吻合,則要對(duì)計(jì)算結(jié)果給出其實(shí)際含義,并做書解釋。第七步是模型應(yīng)用,應(yīng)用的方式因問題的性質(zhì)和建模的目的而異。
在一般的工程技術(shù)領(lǐng)域,數(shù)學(xué)建模仍然大有用武之地,因此數(shù)學(xué)建模的普遍性和重要性不言而喻,由于新工業(yè)和新技術(shù)的不斷涌現(xiàn),提出了許多需要用數(shù)學(xué)建模來解決的問題,因此使得許多的問題迎刃而解,建立數(shù)學(xué)建模和計(jì)算機(jī)的軟件,大量的代替了以前的復(fù)雜的計(jì)算問題。隨著數(shù)學(xué)向這儲(chǔ)如經(jīng)濟(jì)了等領(lǐng)域進(jìn)行滲透,人們?cè)谟?jì)算如何使得經(jīng)濟(jì)利益最大化時(shí),數(shù)學(xué)建模毫無疑問在這里面發(fā)揮出巨大的作用,當(dāng)用數(shù)學(xué)方法研究這些領(lǐng)域中的定量關(guān)系時(shí),數(shù)學(xué)建模就成為首要的。數(shù)學(xué)建模過程是一種創(chuàng)新過程,在思考方法和思維方式上與學(xué)習(xí)其他課程有著較大的區(qū)別,它需要我們?cè)趯W(xué)習(xí)時(shí)能冷靜的單獨(dú)思考,并且要有一定的分析問題的能力。
我相信隨著科技的不斷創(chuàng)新發(fā)展,數(shù)學(xué)建模在其中的地位會(huì)越來越高,所以對(duì)于一個(gè)大學(xué)生來說,學(xué)好數(shù)學(xué)建模固然是非常重要的。
【數(shù)學(xué)建模的學(xué)習(xí)心得】相關(guān)文章:
數(shù)學(xué)建模的學(xué)習(xí)心得體會(huì)04-25
數(shù)學(xué)建模論文模板07-22
數(shù)學(xué)建模論文模板07-22
數(shù)學(xué)建模在數(shù)學(xué)中的應(yīng)用12-10
數(shù)學(xué)建模策略的教學(xué)原則12-08
淺談數(shù)學(xué)建模的教學(xué)方法12-11