三角函數(shù)的高中數(shù)學題
解.f(x)=2sinx[1-cos(x+π/2)]+1-2sinx=2sinx(1+sinx)+1-2sinx=2sinx+1
(1)y=f(wx)=2sinwx+1
因在區(qū)間[-π/2,2π/3]上是增函數(shù),所以最小正同期T=2π/w≥2(π/2+2π/3)
即0<w≤6/7,即-3π/7≤wx≤4π/7
而-π/2+2kπ≤wx≤π/2+2kπ時,f(x)單調(diào)遞增
則必有k=0,即-π/2≤wx≤π/2時遞增,
則必有2πw/3≤π/2,即w≤3/4
所以w的取值范圍(0,3/4]
(2)|f(x)-m|=|2sinx+1-m|<2,則m-3<2sinx<1+m即(m-3)/2<sinx<(1+m)/2
而當π/6≤x≤2π/3時,有1/2≤sinx≤1
因為A屬于B,必有
(m-3)/2<1 2="">1
解得1<m<4