一级毛片免费不卡在线视频,国产日批视频免费在线观看,菠萝菠萝蜜在线视频免费视频,欧美日韩亚洲无线码在线观看,久久精品这里精品,国产成人综合手机在线播放,色噜噜狠狠狠综合曰曰曰,琪琪视频

數(shù)學(xué)等差數(shù)列教案

時間:2021-08-16 20:14:51 數(shù)學(xué)教案 我要投稿

數(shù)學(xué)等差數(shù)列教案

  作為一位優(yōu)秀的人民教師,常常需要準(zhǔn)備教案,教案是教學(xué)活動的總的組織綱領(lǐng)和行動方案。那要怎么寫好教案呢?下面是小編為大家整理的數(shù)學(xué)等差數(shù)列教案,希望對大家有所幫助。

數(shù)學(xué)等差數(shù)列教案

數(shù)學(xué)等差數(shù)列教案1

  教學(xué)目標(biāo)

  1.明確等差數(shù)列的定義.

  2.掌握等差數(shù)列的通項公式,會解決知道中的三個,求另外一個的問題

  3.培養(yǎng)學(xué)生觀察、歸納能力.

  教學(xué)重點

  1. 等差數(shù)列的概念;

  2. 等差數(shù)列的通項公式

  教學(xué)難點

  等差數(shù)列“等差”特點的理解、把握和應(yīng)用

  教學(xué)方法

  啟發(fā)式數(shù)學(xué)

  教具準(zhǔn)備

  投影片1張(內(nèi)容見下面)

  教學(xué)過程

  (I)復(fù)習(xí)回顧

  師:上兩節(jié)課我們共同學(xué)習(xí)了數(shù)列的定義及給出數(shù)列的兩種方法——通項公式和遞推公式。這兩個公式從不同的角度反映數(shù)列的特點,下面看一些例子。(放投影片)

 。á颍┲v授新課

  師:看這些數(shù)列有什么共同的特點?

  1,2,3,4,5,6; ①

  10,8,6,4,2,…; ②

 、

  生:積極思考,找上述數(shù)列共同特點。

  對于數(shù)列① (1≤n≤6); (2≤n≤6)

  對于數(shù)列② -2n(n≥1)

 。╪≥2)

  對于數(shù)列③

  (n≥1)

 。╪≥2)

  共同特點:從第2項起,第一項與它的前一項的差都等于同一個常數(shù)。

  師:也就是說,這些數(shù)列均具有相鄰兩項之差“相等”的特點。具有這種特點的數(shù)列,我們把它叫做等差數(shù)。

  一、定義:

  等差數(shù)列:一般地,如果一個數(shù)列從第2項起,每一項與空的前一項的差等于同一個常數(shù),那么這個數(shù)列就叫做等差數(shù)列,這個常數(shù)叫做等差數(shù)列的公差,通常用字母d表示。

  如:上述3個數(shù)列都是等差數(shù)列,它們的公差依次是1,-2, 。

  二、等差數(shù)列的通項公式

  師:等差數(shù)列定義是由一數(shù)列相鄰兩項之間關(guān)系而得。若一等差數(shù)列 的首項是 ,公差是d,則據(jù)其定義可得:

  若將這n-1個等式相加,則可得:

  即:

  即:

  即:

  ……

  由此可得:

  師:看來,若已知一數(shù)列為等差數(shù)列,則只要知其首項 和公差d,便可求得其通項 。

  如數(shù)列① (1≤n≤6)

  數(shù)列②: (n≥1)

  數(shù)列③:

 。╪≥1)

  由上述關(guān)系還可得:

  即:

  則: =

  如:

  三、例題講解

  例1:(1)求等差數(shù)列8,5,2…的第20項

 。2)-401是不是等差數(shù)列-5,-9,-13…的項?如果是,是第幾項?

  解:(1)由

  n=20,得

 。2)由

  得數(shù)列通項公式為:

  由題意可知,本題是要回答是否存在正整數(shù)n,使得-401=-5-4(n-1)成立解之得n=100,即-401是這個數(shù)列的第100項。

  (Ⅲ)課堂練習(xí)

  生:(口答)課本P118練習(xí)3

 。〞婢毩(xí))課本P117練習(xí)1

  師:組織學(xué)生自評練習(xí)(同桌討論)

  (Ⅳ)課時小結(jié)

  師:本節(jié)主要內(nèi)容為:①等差數(shù)列定義。

  即 (n≥2)

  ②等差數(shù)列通項公式 (n≥1)

  推導(dǎo)出公式:

 。╒)課后作業(yè)

  一、課本P118習(xí)題3.2 1,2

  二、1.預(yù)習(xí)內(nèi)容:課本P116例2—P117例4

  2.預(yù)習(xí)提綱:①如何應(yīng)用等差數(shù)列的定義及通項公式解決一些相關(guān)問題?

 、诘炔顢(shù)列有哪些性質(zhì)?

  板書設(shè)計

  課題

  一、定義

  1.(n≥2)

  一、通項公式

  2.公式推導(dǎo)過程

  例題

  教學(xué)后記

數(shù)學(xué)等差數(shù)列教案2

  【教學(xué)目標(biāo)】

  1.知識與技能

  (1)理解等差數(shù)列的定義,會應(yīng)用定義判斷一個數(shù)列是否是等差數(shù)列:

  (2)賬務(wù)等差數(shù)列的通項公式及其推導(dǎo)過程:

  (3)會應(yīng)用等差數(shù)列通項公式解決簡單問題。

  2.過程與方法

  在定義的理解和通項公式的推導(dǎo)、應(yīng)用過程中,培養(yǎng)學(xué)生的觀察、分析、歸納能力和嚴(yán)密的邏輯思維的能力,體驗從特殊到一般,一般到特殊的認(rèn)知規(guī)律,提高熟悉猜想和歸納的能力,滲透函數(shù)與方程的思想。

  3.情感、態(tài)度與價值觀通過教師指導(dǎo)下學(xué)生的自主學(xué)習(xí)、相互交流和探索活動,培養(yǎng)學(xué)生主動探索、用于發(fā)現(xiàn)的求知精神,激發(fā)學(xué)生的學(xué)習(xí)興趣,讓學(xué)生感受到成功的喜悅。在解決問題的過程中,使學(xué)生養(yǎng)成細(xì)心觀察、認(rèn)真分析、善于總結(jié)的良好習(xí)慣。

  【教學(xué)重點】

 、俚炔顢(shù)列的概念;

 、诘炔顢(shù)列的通項公式

  【教學(xué)難點】

  ①理解等差數(shù)列“等差”的特點及通項公式的含義;

 、诘炔顢(shù)列的通項公式的推導(dǎo)過程.

  【學(xué)情分析】

  我所教學(xué)的學(xué)生是我校高一(7)班的學(xué)生(平行班學(xué)生),經(jīng)過一年的高中數(shù)學(xué)學(xué)習(xí),大部分學(xué)生知識經(jīng)驗已較為豐富,他們的智力發(fā)展已到了形式運演階段,具備了較強的抽象思維能力和演繹推理能力,但也有一部分學(xué)生的基礎(chǔ)較弱,學(xué)習(xí)數(shù)學(xué)的興趣還不是很濃,所以我在授課時注重從具體的生活實例出發(fā),注重引導(dǎo)、啟發(fā)、研究和探討以符合這類學(xué)生的心理發(fā)展特點,從而促進思維能力的進一步發(fā)展.

  【設(shè)計思路】

  1.教法

  ①啟發(fā)引導(dǎo)法:這種方法有利于學(xué)生對知識進行主動建構(gòu);有利于突出重點,突破難點;有利于調(diào)動學(xué)生的主動性和積極性,發(fā)揮其創(chuàng)造性.

 、诜纸M討論法:有利于學(xué)生進行交流,及時發(fā)現(xiàn)問題,解決問題,調(diào)動學(xué)生的積極性.

 、壑v練結(jié)合法:可以及時鞏固所學(xué)內(nèi)容,抓住重點,突破難點.

  2.學(xué)法引導(dǎo)學(xué)生首先從三個現(xiàn)實問題(數(shù)數(shù)問題、水庫水位問題、儲蓄問題)概括出數(shù)組特點并抽象出等差數(shù)列的概念;接著就等差數(shù)列概念的特點,推導(dǎo)出等差數(shù)列的通項公式;可以對各種能力的同學(xué)引導(dǎo)認(rèn)識多元的推導(dǎo)思維方法.

  【教學(xué)過程】

  一:創(chuàng)設(shè)情境,引入新課

  1.從0開始,將5的倍數(shù)按從小到大的順序排列,得到的數(shù)列是什么?

  2.水庫管理人員為了保證優(yōu)質(zhì)魚類有良好的生活環(huán)境,用定期放水清庫的辦法清理水庫中的雜魚.如果一個水庫的水位為18m,自然放水每天水位降低2.5m,最低降至5m.那么從開始放水算起,到可以進行清理工作的那天,水庫每天的水位(單位:m)組成一個什么數(shù)列?

  3.我國現(xiàn)行儲蓄制度規(guī)定銀行支付存款利息的方式為單利,即不把利息加入本息計算下一期的利息.按照單利計算本利和的公式是:本利和=本金×(1+利率×存期).按活期存入10 000元錢,年利率是0.72%,那么按照單利,5年內(nèi)各年末的本利和(單位:元)組成一個什么數(shù)列?

  教師:以上三個問題中的數(shù)蘊涵著三列數(shù).

  學(xué)生:

  1:0,5,10,15,20,25,….

  2:18,15.5,13,10.5,8,5.5.

  3:10072,10144,10216,10288,10360.

  (設(shè)置意圖:從實例引入,實質(zhì)是給出了等差數(shù)列的現(xiàn)實背景,目的是讓學(xué)生感受到等差數(shù)列是現(xiàn)實生活中大量存在的數(shù)學(xué)模型.通過分析,由特殊到一般,激發(fā)學(xué)生學(xué)習(xí)探究知識的自主性,培養(yǎng)學(xué)生的歸納能力.

  二:觀察歸納,形成定義

 、0,5,10,15,20,25,….

 、18,15.5,13,10.5,8,5.5.

 、10072,10144,10216,10288,10360.

  思考1上述數(shù)列有什么共同特點?

  思考2根據(jù)上數(shù)列的共同特點,你能給出等差數(shù)列的一般定義嗎?

  思考3你能將上述的文字語言轉(zhuǎn)換成數(shù)學(xué)符號語言嗎?

  教師:引導(dǎo)學(xué)生思考這三列數(shù)具有的共同特征,然后讓學(xué)生抓住數(shù)列的特征,歸納得出等差數(shù)列概念.

  學(xué)生:分組討論,可能會有不同的答案:前數(shù)和后數(shù)的差符合一定規(guī)律;這些數(shù)都是按照一定順序排列的…只要合理教師就要給予肯定.

  教師引導(dǎo)歸納出:等差數(shù)列的定義;另外,教師引導(dǎo)學(xué)生從數(shù)學(xué)符號角度理解等差數(shù)列的定義.

  (設(shè)計意圖:通過對一定數(shù)量感性材料的觀察、分析,提煉出感性材料的本質(zhì)屬性;使學(xué)生體會到等差數(shù)列的規(guī)律和共同特點;一開始抓。骸皬牡诙椘,每一項與它的前一項的差為同一常數(shù)”,落實對等差數(shù)列概念的準(zhǔn)確表達.)

  三:舉一反三,鞏固定義

  1.判定下列數(shù)列是否為等差數(shù)列?若是,指出公差d.

  (1)1,1,1,1,1;

  (2)1,0,1,0,1;

  (3)2,1,0,-1,-2;

  (4)4,7,10,13,16.

  教師出示題目,學(xué)生思考回答.教師訂正并強調(diào)求公差應(yīng)注意的問題.

  注意:公差d是每一項(第2項起)與它的前一項的差,防止把被減數(shù)與減數(shù)弄顛倒,而且公差可以是正數(shù),負(fù)數(shù),也可以為0 .

  (設(shè)計意圖:強化學(xué)生對等差數(shù)列“等差”特征的理解和應(yīng)用).

  2.思考4:設(shè)數(shù)列{an}的通項公式為an=3n+1,該數(shù)列是等差數(shù)列嗎?為什么?

  (設(shè)計意圖:強化等差數(shù)列的證明定義法)

  四:利用定義,導(dǎo)出通項

  1.已知等差數(shù)列:8,5,2,…,求第200項?

  2.已知一個等差數(shù)列{an}的首項是a1,公差是d,如何求出它的任意項an呢?

  教師出示問題,放手讓學(xué)生探究,然后選擇列式具有代表性的上去板演或投影展示.根據(jù)學(xué)生在課堂上的具體情況進行具體評價、引導(dǎo),總結(jié)推導(dǎo)方法,體會歸納思想以及累加求通項的方法;讓學(xué)生初步嘗試處理數(shù)列問題的常用方法.

  (設(shè)計意圖:引導(dǎo)學(xué)生觀察、歸納、猜想,培養(yǎng)學(xué)生合理的推理能力.學(xué)生在分組合作探究過程中,可能會找到多種不同的解決辦法,教師要逐一點評,并及時肯定、贊揚學(xué)生善于動腦、勇于創(chuàng)新的品質(zhì),激發(fā)學(xué)生的創(chuàng)造意識.鼓勵學(xué)生自主解答,培養(yǎng)學(xué)生運算能力)

  五:應(yīng)用通項,解決問題

  1判斷100是不是等差數(shù)列2,9,16,…的項?如果是,是第幾項?

  2在等差數(shù)列{an}中,已知a5=10,a12=31,求a1,d和an.

  3求等差數(shù)列3,7,11,…的第4項和第10項

  教師:給出問題,讓學(xué)生自己操練,教師巡視學(xué)生答題情況.

  學(xué)生:教師叫學(xué)生代表總結(jié)此類題型的解題思路,教師補充:已知等差數(shù)列的首項和公差就可以求出其通項公式

  (設(shè)計意圖:主要是熟悉公式,使學(xué)生從中體會公式與方程之間的聯(lián)系.初步認(rèn)識“基本量法”求解等差數(shù)列問題.)

  六:反饋練習(xí):教材13頁練習(xí)1

  七:歸納總結(jié):

  1.一個定義:等差數(shù)列的定義及定義表達式

  2.一個公式:等差數(shù)列的通項公式

  3.二個應(yīng)用:定義和通項公式的應(yīng)用

  教師:讓學(xué)生思考整理,找?guī)讉代表發(fā)言,最后教師給出補充

  (設(shè)計意圖:引導(dǎo)學(xué)生去聯(lián)想本節(jié)課所涉及到的各個方面,溝通它們之間的聯(lián)系,使學(xué)生能在新的高度上去重新認(rèn)識和掌握基本概念,并靈活運用基本概念.)

數(shù)學(xué)等差數(shù)列教案3

  一、等差數(shù)列

  1、定義

  注:“從第二項起”及

  “同一常數(shù)”用紅色粉筆標(biāo)注

  二、等差數(shù)列的通項公式

  (一)例題與練習(xí)

  通過練習(xí)2和3 引出兩個具體的等差數(shù)列,初步認(rèn)識等差數(shù)列的特征,為后面的概念學(xué)習(xí)建立基礎(chǔ),為學(xué)習(xí)新知識創(chuàng)設(shè)問題情境,激發(fā)學(xué)生的求知欲。由學(xué)生觀察兩個數(shù)列特點,引出等差數(shù)列的概念,對問題的總結(jié)又培養(yǎng)學(xué)生由具體到抽象、由特殊到一般的認(rèn)知能力。

  (二)新課探究

  1、由引入自然的給出等差數(shù)列的概念:

  如果一個數(shù)列,從第二項開始它的每一項與前一項之差都等于同一常數(shù),這個數(shù)列就叫等差數(shù)列, 這個常數(shù)叫做等差數(shù)列的公差,通常用字母d來表示。強調(diào):

 、 “從第二項起”滿足條件; f

 、诠頳一定是由后項減前項所得;

 、勖恳豁椗c它的前一項的差必須是同一個常數(shù)(強調(diào)“同一個常數(shù)” );

  在理解概念的基礎(chǔ)上,由學(xué)生將等差數(shù)列的文字語言轉(zhuǎn)化為數(shù)學(xué)語言,歸納出數(shù)學(xué)表達式:

  an+1—an=d (n≥1) ;h4z+0"6vG

  同時為了配合概念的理解,我找了5組數(shù)列,由學(xué)生判斷是否為等差數(shù)列,是等差數(shù)列的找出公差。

  1。 9 ,8,7,6,5,4,……;√ d=—1

  2。 0。70,0。71,0。72,0。73,0。74……;√ d=0。01

  3。 0,0,0,0,0,0,……。; √ d=0

  4。 1,2,3,2,3,4,……;×

  5。 1,0,1,0,1,……×

  其中第一個數(shù)列公差<0,>0,第三個數(shù)列公差=0

  由此強調(diào):公差可以是正數(shù)、負(fù)數(shù),也可以是0

  2、第二個重點部分為等差數(shù)列的通項公式

  在歸納等差數(shù)列通項公式中,我采用討論式的教學(xué)方法。給出等差數(shù)列的首項 ,公差d,由學(xué)生研究分組討論a4 的通項公式。通過總結(jié)a4的通項公式由學(xué)生猜想a40的通項公式,進而歸納an的通項公式。整個過程由學(xué)生完成,通過互相討論的方式既培養(yǎng)了學(xué)生的協(xié)作意識又化解了教學(xué)難點。

  若一等差數(shù)列{an }的首項是a1,公差是d,

  則據(jù)其定義可得:

  a2 — a1 =d 即: a2 =a1 +d

  a3 – a2 =d 即: a3 =a2 +d = a1 +2d

  a4 – a3 =d 即: a4 =a3 +d = a1 +3d

  ……

  猜想: a40 = a1 +39d

  進而歸納出等差數(shù)列的通項公式:

  an=a1+(n—1)d

  此時指出: 這種求通項公式的辦法叫不完全歸納法,這種導(dǎo)出公式的方法不夠嚴(yán)密,為了培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度,在這里向?qū)W生介紹另外一種求數(shù)列通項公式的辦法——————迭加法:

  a2 – a1 =d

  a3 – a2 =d

  a4 – a3 =d

  ……

  an+1 – an=d

  將這(n—1)個等式左右兩邊分別相加,就可以得到 an– a1= (n—1) d即 an= a1+(n—1) d (1)

  當(dāng)n=1時,(1)也成立,

  所以對一切n∈N﹡,上面的公式都成立

  因此它就是等差數(shù)列{an}的通項公式。

  在迭加法的證明過程中,我采用啟發(fā)式教學(xué)方法。

  利用等差數(shù)列概念啟發(fā)學(xué)生寫出n—1個等式。

  對照已歸納出的通項公式啟發(fā)學(xué)生想出將n—1個等式相加。證出通項公式。

  在這里通過該知識點引入迭加法這一數(shù)學(xué)思想,逐步達到“注重方法,凸現(xiàn)思想” 的教學(xué)要求

  接著舉例說明:若一個等差數(shù)列{an}的首項是1,公差是2,得出這個數(shù)列的通項公式是:an=1+(n—1)×2 , 即an=2n—1 以此來鞏固等差數(shù)列通項公式運用

  同時要求畫出該數(shù)列圖象,由此說明等差數(shù)列是關(guān)于正整數(shù)n一次函數(shù),其圖像是均勻排開的無窮多個孤立點。用函數(shù)的思想來研究數(shù)列,使數(shù)列的性質(zhì)顯現(xiàn)得更加清楚。

  (三)應(yīng)用舉例

  這一環(huán)節(jié)是使學(xué)生通過例題和練習(xí),增強對通項公式含義的理解以及對通項公式的運用,提高解決實際問題的能力。通過例1和例2向?qū)W生表明:要用運動變化的觀點看等差數(shù)列通項公式中的a1、d、n、an這4個量之間的關(guān)系。當(dāng)其中的部分量已知時,可根據(jù)該公式求出另一部分量。

  例1 (1)求等差數(shù)列8,5,2,…的第20項;第30項;第40項

  (2)—401是不是等差數(shù)列—5,—9,—13,…的項?如果是,是第幾項?

  在第一問中我添加了計算第30項和第40項以加強鞏固等差數(shù)列通項公式;第二問實際上是求正整數(shù)解的問題,而關(guān)鍵是求出數(shù)列的通項公式an

  例2 在等差數(shù)列{an}中,已知a5=10,a12 =31,求首項a1與公差d。

  在前面例1的基礎(chǔ)上將例2當(dāng)作練習(xí)作為對通項公式的鞏固

  例3 是一個實際建模問題

  建造房屋時要設(shè)計樓梯,已知某大樓第2層的樓底離地面的高度為3米,第三層離地面5。8米,若樓梯設(shè)計為等高的16級臺階,問每級臺階高為多少米?

  這道題我采用啟發(fā)式和討論式相結(jié)合的教學(xué)方法。啟發(fā)學(xué)生注意每級臺階“等高”使學(xué)生想到每級臺階離地面的高度構(gòu)成等差數(shù)列,引導(dǎo)學(xué)生將該實際問題轉(zhuǎn)化為數(shù)學(xué)模型——————等差數(shù)列:(學(xué)生討論分析,分別演板,教師評析問題。問題可能出現(xiàn)在:項數(shù)學(xué)生認(rèn)為是16項,應(yīng)明確a1為第2層的樓底離地面的高度,a2表示第一級臺階離地面的高度而第16級臺階離地面高度為a17,可用展示實際樓梯圖以化解難點)

  設(shè)置此題的目的:

  1。加強同學(xué)們對應(yīng)用題的綜合分析能力,

  2。通過數(shù)學(xué)實際問題引出等差數(shù)列問題,激發(fā)了學(xué)生的興趣;

  3。再者通過數(shù)學(xué)實例展示了“從實際問題出發(fā)經(jīng)抽象概括建立數(shù)學(xué)模型,最后還原說明實際問題的“數(shù)學(xué)建!钡臄(shù)學(xué)思想方法

  (四)反饋練習(xí)

  1、小節(jié)后的練習(xí)中的第1題和第2題(要求學(xué)生在規(guī)定時間內(nèi)完成)。目的:使學(xué)生熟悉通項公式,對學(xué)生進行基本技能訓(xùn)練。

  2、書上例3)梯子的最高一級寬33c,最低一級寬110c,中間還有10級,各級的寬度成等差數(shù)列。計算中間各級的寬度。

  目的:對學(xué)生加強建模思想訓(xùn)練。

  3、若數(shù)例{an} 是等差數(shù)列,若 bn = an ,(為常數(shù))試證明:數(shù)列{bn}是等差數(shù)列

  此題是對學(xué)生進行數(shù)列問題提高訓(xùn)練,學(xué)習(xí)如何用定義證明數(shù)列問題同時強化了等差數(shù)列的概念。

  (五)歸納小結(jié) (由學(xué)生總結(jié)這節(jié)課的收獲)

  1。等差數(shù)列的概念及數(shù)學(xué)表達式.

  強調(diào)關(guān)鍵字:從第二項開始它的每一項與前一項之差都等于同一常數(shù)

  2。等差數(shù)列的通項公式 an= a1+(n—1) d會知三求一

  3.用“數(shù)學(xué)建!彼枷敕椒ń鉀Q實際問題

  (六)布置作業(yè)

  必做題:課本P114 習(xí)題3。2第2,6 題

  選做題:已知等差數(shù)列{an}的首項a1= —24,從第10項開始為正數(shù),求公差d的取值范圍。(目的:通過分層作業(yè),提高同學(xué)們的求知欲和滿足不同層次的學(xué)生需求)

  五、板書設(shè)計

  在板書中突出本節(jié)重點,將強調(diào)的地方如定義中,“從第二項起”及“同一常數(shù)”等幾個字用紅色粉筆標(biāo)注,同時給學(xué)生留有作題的地方,整個板書充分體現(xiàn)了精講多練的教學(xué)方法。

數(shù)學(xué)等差數(shù)列教案4

  教學(xué)準(zhǔn)備

  教學(xué)目標(biāo)

  1、數(shù)學(xué)知識:掌握等比數(shù)列的概念,通項公式,及其有關(guān)性質(zhì);

  2、數(shù)學(xué)能力:通過等差數(shù)列和等比數(shù)列的類比學(xué)習(xí),培養(yǎng)學(xué)生類比歸納的能力;

  歸納——猜想——證明的數(shù)學(xué)研究方法;

  3、數(shù)學(xué)思想:培養(yǎng)學(xué)生分類討論,函數(shù)的數(shù)學(xué)思想。

  教學(xué)重難點

  重點:等比數(shù)列的概念及其通項公式,如何通過類比利用等差數(shù)列學(xué)習(xí)等比數(shù)列;

  難點:等比數(shù)列的性質(zhì)的探索過程。

  教學(xué)過程:

  1、問題引入:

  前面我們已經(jīng)研究了一類特殊的數(shù)列——等差數(shù)列。

  問題1:滿足什么條件的數(shù)列是等差數(shù)列?如何確定一個等差數(shù)列?

  (學(xué)生口述,并投影):如果一個數(shù)列從第2項起,每一項與它的前一項的差等于同一個常數(shù),那么這個數(shù)列就叫做等差數(shù)列。

  要想確定一個等差數(shù)列,只要知道它的首項a1和公差d。

  已知等差數(shù)列的首項a1和d,那么等差數(shù)列的通項公式為:(板書)an=a1+(n-1)d。

  師:事實上,等差數(shù)列的關(guān)鍵是一個“差”字,即如果一個數(shù)列,從第2項起,每一項與它前一項的差等于同一個常數(shù),那么這個數(shù)列就叫做等差數(shù)列。

  (第一次類比)類似的,我們提出這樣一個問題。

  問題2:如果一個數(shù)列,從第2項起,每一項與它的前一項的……等于同一個常數(shù),那么這個數(shù)列叫做……數(shù)列。

  (這里以填空的形式引導(dǎo)學(xué)生發(fā)揮自己的想法,對于“和”與“積”的情況,可以利用具體的例子予以說明:如果一個數(shù)列,從第2項起,每一項與它的前一項的“和”(或“積”)等于同一個常數(shù)的話,這個數(shù)列是一個各項重復(fù)出現(xiàn)的“周期數(shù)列”,而與等差數(shù)列最相似的是“比”為同一個常數(shù)的情況。而這個數(shù)列就是我們今天要研究的等比數(shù)列了。)

  2、新課:

  1)等比數(shù)列的定義:如果一個數(shù)列從第2項起,每一項與它的前一項的比等于同一個常數(shù),那么這個數(shù)列就叫做等比數(shù)列。這個常數(shù)叫做公比。

  師:這就牽涉到等比數(shù)列的通項公式問題,回憶一下等差數(shù)列的通項公式是怎樣得到的?類似于等差數(shù)列,要想確定一個等比數(shù)列的通項公式,要知道什么?

  師生共同簡要回顧等差數(shù)列的通項公式推導(dǎo)的方法:累加法和迭代法。

  公式的推導(dǎo):(師生共同完成)

  若設(shè)等比數(shù)列的公比為q和首項為a1,則有:

  方法一:(累乘法)

  3)等比數(shù)列的性質(zhì):

  下面我們一起來研究一下等比數(shù)列的性質(zhì)

  通過上面的研究,我們發(fā)現(xiàn)等比數(shù)列和等差數(shù)列之間似乎有著相似的地方,這為我們研究等比數(shù)列的性質(zhì)提供了一條思路:我們可以利用等差數(shù)列的性質(zhì),通過類比得到等比數(shù)列的性質(zhì)。

  問題4:如果{an}是一個等差數(shù)列,它有哪些性質(zhì)?

  (根據(jù)學(xué)生實際情況,可引導(dǎo)學(xué)生通過具體例子,尋找規(guī)律,如:

  3、例題鞏固:

  例1、一個等比數(shù)列的第二項是2,第三項與第四項的和是12,求它的第八項的值!

  答案:1458或128。

  例2、正項等比數(shù)列{an}中,a6·a15+a9·a12=30,則log15a1a2a3…a20=_10____.

  例3、已知一個等差數(shù)列:2,4,6,8,10,12,14,16,……,2n,……,能否在這個數(shù)列中取出一些項組成一個新的數(shù)列{cn},使得{cn}是一個公比為2的等比數(shù)列,若能請指出{cn}中的第k項是等差數(shù)列中的第幾項?

  (本題為開放題,沒有的答案,如對于{cn}:2,4,8,16,……,2n,……,則ck=2k=2×2k-1,所以{cn}中的第k項是等差數(shù)列中的第2k-1項。關(guān)鍵是對通項公式的理解)

  1、小結(jié):

  今天我們主要學(xué)習(xí)了有關(guān)等比數(shù)列的概念、通項公式、以及它的性質(zhì),通過今天的學(xué)習(xí)

  我們不僅學(xué)到了關(guān)于等比數(shù)列的有關(guān)知識,更重要的是我們學(xué)會了由類比——猜想——證明的科學(xué)思維的過程。

  2、作業(yè):

  P129:1,2,3

  思考題:在等差數(shù)列:2,4,6,8,10,12,14,16,……,2n,……,中取出一些項:6,12,24,48,……,組成一個新的數(shù)列{cn},{cn}是一個公比為2的等比數(shù)列,請指出{cn}中的第k項是等差數(shù)列中的第幾項?

  教學(xué)設(shè)計說明:

  1、教學(xué)目標(biāo)和重難點:首先作為等比數(shù)列的第一節(jié)課,對于等比數(shù)列的概念、通項公式及其性質(zhì)是學(xué)生接下來學(xué)習(xí)等比數(shù)列的基礎(chǔ),是必須要落實的;其次,數(shù)學(xué)教學(xué)除了要傳授知識,更重要的是傳授科學(xué)的研究方法,等比數(shù)列是在等差數(shù)列之后學(xué)習(xí)的因此對等比數(shù)列的學(xué)習(xí)必然要和等差數(shù)列結(jié)合起來,通過等比數(shù)列和等差數(shù)列的類比學(xué)習(xí),對培養(yǎng)學(xué)生類比——猜想——證明的科學(xué)研究方法是有利的。這也就成了本節(jié)課的重點。

  2、教學(xué)設(shè)計過程:本節(jié)課主要從以下幾個方面展開:

  1)通過復(fù)習(xí)等差數(shù)列的定義,類比得出等比數(shù)列的定義;

  2)等比數(shù)列的通項公式的推導(dǎo);

  3)等比數(shù)列的性質(zhì);

  有意識的引導(dǎo)學(xué)生復(fù)習(xí)等差數(shù)列的定義及其通項公式的探求思路,一方面使學(xué)生回顧舊

  知識,另一方面使學(xué)生通過聯(lián)想,為類比地探索等比數(shù)列的定義、通項公式奠定基礎(chǔ)。

  在類比得到等比數(shù)列的定義之后,再對幾個具體的數(shù)列進行鑒別,旨在遵循“特殊——一般——特殊”的認(rèn)識規(guī)律,使學(xué)生體會觀察、類比、歸納等合情推理方法的應(yīng)用。培養(yǎng)學(xué)生應(yīng)用知識的能力。

  在得到等比數(shù)列的定義之后,探索等比數(shù)列的通項公式又是一個重點。這里通過問題3的設(shè)計,使學(xué)生產(chǎn)生不得不考慮通項公式的心理傾向,造成學(xué)生認(rèn)知上的沖突,從而使學(xué)生主動完成對知識的.接受。

  通過等差數(shù)列和等比數(shù)列的通項公式的比較使學(xué)生初步體會到等差和等比的相似性,為下面類比學(xué)習(xí)等比數(shù)列的性質(zhì),做好鋪墊。

  等比性質(zhì)的研究是本節(jié)課的——,通過類比

  關(guān)于例題設(shè)計:重知識的應(yīng)用,具有開放性,為使學(xué)生更好的掌握本節(jié)課的內(nèi)容。

數(shù)學(xué)等差數(shù)列教案5

  教學(xué)目標(biāo):

  1.知識與技能目標(biāo):理解等差數(shù)列的概念,了解等差數(shù)列的通項公式的推導(dǎo)過程及思想,掌握并會用等差數(shù)列的通項公式,初步引入“數(shù)學(xué)建!钡乃枷敕椒ú⒛苓\用。

  2.過程與方法目標(biāo):培養(yǎng)學(xué)生觀察分析、猜想歸納、應(yīng)用公式的能力;在領(lǐng)會函數(shù)與數(shù)列關(guān)系的前提下,滲透函數(shù)、方程的思想。

  3.情感態(tài)度與價值觀目標(biāo):通過對等差數(shù)列的研究培養(yǎng)學(xué)生主動探索、勇于發(fā)現(xiàn)的求知的精神;養(yǎng)成細(xì)心觀察、認(rèn)真分析、善于總結(jié)的良好思維習(xí)慣。

  教學(xué)重點:

  等差數(shù)列的概念及通項公式。

  教學(xué)難點:

  (1)理解等差數(shù)列“等差”的特點及通項公式的含義。

  (2)等差數(shù)列的通項公式的推導(dǎo)過程及應(yīng)用。

  教具:多媒體、實物投影儀

  教學(xué)過程:

  一、復(fù)習(xí)引入:

  1.回憶上一節(jié)課學(xué)習(xí)數(shù)列的定義,請舉出一個具體的例子。表示數(shù)列有哪幾種方法——列舉法、通項公式、遞推公式。我們這節(jié)課接著學(xué)習(xí)一類特殊的數(shù)列——等差數(shù)列。

  2.由生活中具體的數(shù)列實例引入

  (1).國際奧運會早期,撐桿跳高的記錄近似的由下表給出:

  你能看出這4次撐桿條跳世界記錄組成的數(shù)列,它的各項之間有什么關(guān)系嗎?

  (2)某劇場前10排的座位數(shù)分別是:

  48、46、44、42、40、38、36、34、32、30

  引導(dǎo)學(xué)生觀察:數(shù)列①、②有何規(guī)律?

  引導(dǎo)學(xué)生發(fā)現(xiàn)這些數(shù)字相鄰兩個數(shù)字的差總是一個常數(shù),數(shù)列①先左到右相差0.2,數(shù)列②從左到右相差-2。

  二.新課探究,推導(dǎo)公式

  1.等差數(shù)列的概念

  如果一個數(shù)列,從第二項開始它的每一項與前一項之差都等于同一常數(shù),這個數(shù)列就叫等差數(shù)列,這個常數(shù)叫做等差數(shù)列的公差,通常用字母d來表示。

  強調(diào)以下幾點:

 、 “從第二項起”滿足條件;

  ②公差d一定是由后項減前項所得;

 、勖恳豁椗c它的前一項的差必須是同一個常數(shù)(強調(diào)“同一個常數(shù)” );

  所以上面的2、3都是等差數(shù)列,他們的公差分別為0.20,-2。

  在學(xué)生對等差數(shù)列有了直觀認(rèn)識的基礎(chǔ)上,我將給出練習(xí)題,以鞏固知識的學(xué)習(xí)。

  [練習(xí)一]判斷下列各組數(shù)列中哪些是等差數(shù)列,哪些不是?如果是,寫出首項a1和公差d,如果不是,說明理由。

  1.3,5,7,…… √ d=2

  2.9,6,3,0,-3,…… √ d=-3

  3. 0,0,0,0,0,0,…….; √ d=0

  4. 1,2,3,2,3,4,……;×

  5. 1,0,1,0,1,……×

  在這個過程中我將采用邊引導(dǎo)邊提問的方法,以充分調(diào)動學(xué)生學(xué)習(xí)的積極性。

  2.等差數(shù)列通項公式

  如果等差數(shù)列{an}首項是a1,公差是d,那么根據(jù)等差數(shù)列的定義可得:

  a2 - a1 =d即:a2 =a1 +d

  a3 – a2 =d即:a3 =a2 +d = a1 +2d

  a4 – a3 =d即:a4 =a3 +d = a1 +3d

  ……

  猜想: a40 = a1 +39d

  進而歸納出等差數(shù)列的通項公式:an=a1+(n-1)d

  此時指出:這種求通項公式的辦法叫不完全歸納法,這種導(dǎo)出公式的方法不夠嚴(yán)密,為了培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度,在這里向?qū)W生介紹另外一種求數(shù)列通項公式的辦法------迭加法:

  n=a1+(n-1)d

  a2-a1=d

  a3-a2=d

  a4-a3 =d

  ……

  an –a(n-1) =d

  將這(n-1)個等式左右兩邊分別相加,就可以得到

  an-a1=(n-1)d

  即an=a1+(n-1)d (Ⅰ)

  當(dāng)n=1時,(Ⅰ)也成立,所以對一切n∈N﹡,上面的公式(Ⅰ)都成立,因此它就是等差數(shù)列{an}的通項公式。

  三.應(yīng)用舉例

  例1求等差數(shù)列,12,8,4,0,…的第10項;20項;第30項;

  例2 -401是不是等差數(shù)列-5,-9,-13,…的項?如果是,是第幾項?

  四.反饋練習(xí)

  1.P293練習(xí)A組第1題和第2題(要求學(xué)生在規(guī)定時間內(nèi)做完上述題目,教師提問)。目的:使學(xué)生熟悉通項公式對學(xué)生進行基本技能訓(xùn)練。

  五.歸納小結(jié)提煉精華

  (由學(xué)生總結(jié)這節(jié)課的收獲)

  1.等差數(shù)列的概念及數(shù)學(xué)表達式.

  強調(diào)關(guān)鍵字:從第二項開始它的每一項與前一項之差都等于同一常數(shù)

  2.等差數(shù)列的通項公式an= a1+(n-1) d會知三求一

  六.課后作業(yè)運用鞏固

  必做題:課本P284習(xí)題A組第3,4,5題

數(shù)學(xué)等差數(shù)列教案6

  一、教材分析

  1、教學(xué)目標(biāo):

  A.理解并掌握等差數(shù)列的概念;了解等差數(shù)列的通項公式的推導(dǎo)過程及思想;

  B.培養(yǎng)學(xué)生觀察、分析、歸納、推理的能力;在領(lǐng)會函數(shù)與數(shù)列關(guān)系的前提下,把研究函數(shù)的方法遷移來研究數(shù)列,培養(yǎng)學(xué)生的知識、方法遷移能力;通過階梯性練習(xí),提高學(xué)生分析問題和解決問題的能力。

  C 通過對等差數(shù)列的研究,培養(yǎng)學(xué)生主動探索、勇于發(fā)現(xiàn)的求知精神;養(yǎng)成細(xì)心觀察、認(rèn)真分析、善于總結(jié)的良好思維習(xí)慣。

  2、教學(xué)重點和難點

  ①等差數(shù)列的概念。

  ②等差數(shù)列的通項公式的推導(dǎo)過程及應(yīng)用。用不完全歸納法推導(dǎo)等差數(shù)列的通項公式。

  二、教法分析

  采用啟發(fā)式、討論式以及講練結(jié)合的教學(xué)方法,通過問題激發(fā)學(xué)生求知欲,使學(xué)生主動參與數(shù)學(xué)實踐活動,以獨立思考和相互交流的形式,在教師的指導(dǎo)下發(fā)現(xiàn)、分析和解決問題。

  三、教學(xué)程序

  本節(jié)課的教學(xué)過程由(一)復(fù)習(xí)引入(二)新課探究(三)應(yīng)用例解(四)反饋練習(xí)(五)歸納小結(jié)(六)布置作業(yè),六個教學(xué)環(huán)節(jié)構(gòu)成。

  (一)復(fù)習(xí)引入:

  1.全國統(tǒng)一鞋號中成年女鞋的各種尺碼(表示鞋底長,單位是c)分別是

  21,22,23,24,25,

  2.某劇場前10排的座位數(shù)分別是:

  38,40,42,44,46,48,50,52,54,56。

  3.某長跑運動員7天里每天的訓(xùn)練量(單位:)是:

  7500,8000,8500,9000,9500,10000,10500。

  共同特點:

  從第2項起,每一項與前一項的差都等于同一個常數(shù)。

  (二) 新課探究

  1、給出等差數(shù)列的概念:

  如果一個數(shù)列,從第二項開始它的每一項與前一項之差都等于同一常數(shù),這個數(shù)列就叫等差數(shù)列, 這個常數(shù)叫做等差數(shù)列的公差,通常用字母d來表示。強調(diào):

 、 “從第二項起”滿足條件;

  ②公差d一定是由后項減前項所得;

 、酃羁梢允钦龜(shù)、負(fù)數(shù),也可以是0。

  2、推導(dǎo)等差數(shù)列的通項公式

  若等差數(shù)列{an }的首項是 ,公差是d, 則據(jù)其定義可得:

  - =d 即: = +d

  – =d 即: = +d = +2d

  – =d 即: = +d = +3d

  進而歸納出等差數(shù)列的通項公式:

  = +(n-1)d

  此時指出:

  這種求通項公式的辦法叫不完全歸納法,這種導(dǎo)出公式的方法不夠嚴(yán)密,為了培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度,在這里向?qū)W生介紹另外一種求數(shù)列通項公式的辦法------迭加法:

  – =d

  – =d

  – =d

  – =d

  將這(n-1)個等式左右兩邊分別相加,就可以得到 – = (n-1) d即 = +(n-1) d

  當(dāng)n=1時,上面等式兩邊均為 ,即等式也是成立的,這表明當(dāng)n∈ 時上面公式都成立,因此它就是等差數(shù)列{an }的通項公式。

  接著舉例說明:若一個等差數(shù)列{ }的首項是1,公差是2,得出這個數(shù)列的通項公式是: =1+(n-1)×2 , 即 =2n-1 以此來鞏固等差數(shù)列通項公式運用

 。ㄈ⿷(yīng)用舉例

  這一環(huán)節(jié)是使學(xué)生通過例題和練習(xí),增強對通項公式含義的理解以及對通項公式的運用,提高解決實際問題的能力。通過例1和例2向?qū)W生表明:要用運動變化的觀點看等差數(shù)列通項公式中的 、d、n、 這4個量之間的關(guān)系。當(dāng)其中的部分量已知時,可根據(jù)該公式求出另一部分量。

  例1 (1)求等差數(shù)列8,5,2,…的第20項;

 。2)-401是不是等差數(shù)列-5,-9,-13,…的項?如果是,是第幾項?

  第二問實際上是求正整數(shù)解的問題,而關(guān)鍵是求出數(shù)列的通項公式

  例2 在等差數(shù)列{an}中,已知 =10, =31,求首項 與公差d。

  在前面例1的基礎(chǔ)上將例2當(dāng)作練習(xí)作為對通項公式的鞏固

  例3 梯子的最高一級寬33c,最低一級寬110c,中間還有10級,各級的寬度成等差數(shù)列。計算中間各級的寬度。

  (四)反饋練習(xí)

  1、小節(jié)后的練習(xí)中的第1題和第2題(要求學(xué)生在規(guī)定時間內(nèi)完成)。目的:使學(xué)生熟悉通項公式,對學(xué)生進行基本技能訓(xùn)練。

  2、若數(shù)列{ } 是等差數(shù)列,若 = ,(為常數(shù))試證明:數(shù)列{ }是等差數(shù)列

  此題是對學(xué)生進行數(shù)列問題提高訓(xùn)練,學(xué)習(xí)如何用定義證明數(shù)列問題同時強化了等差數(shù)列的概念。

 。ㄎ澹w納小結(jié) (由學(xué)生總結(jié)這節(jié)課的收獲)

  1.等差數(shù)列的概念及數(shù)學(xué)表達式.

  強調(diào)關(guān)鍵字:從第二項開始它的每一項與前一項之差都等于同一常數(shù)

  2.等差數(shù)列的通項公式 = +(n-1) d會知三求一

  (六) 布置作業(yè)

  必做題:課本P114 習(xí)題3.2第2,6 題

  選做題:已知等差數(shù)列{ }的首項 = -24,從第10項開始為正數(shù),求公差d的取值范圍。(目的:通過分層作業(yè),提高同學(xué)們的求知欲和滿足不同層次的學(xué)生需求)

  四、板書設(shè)計

  在板書中突出本節(jié)重點,將強調(diào)的地方如定義中,“從第二項起”及“同一常數(shù)”等幾個字用紅色粉筆標(biāo)注,同時給學(xué)生留有作題的地方,整個板書充分體現(xiàn)了精講多練的教學(xué)方法。

數(shù)學(xué)等差數(shù)列教案7

  2。2。1等差數(shù)列學(xué)案

  一、預(yù)習(xí)問題:

  1、等差數(shù)列的定義:一般地,如果一個數(shù)列從 起,每一項與它的前一項的差等于同一個 ,那么這個數(shù)列就叫等差數(shù)列,這個常數(shù)叫做等差數(shù)列的 , 通常用字母 表示。

  2、等差中項:若三個數(shù) 組成等差數(shù)列,那么A叫做 與 的 ,

  即 或 。

  3、等差數(shù)列的單調(diào)性:等差數(shù)列的公差 時,數(shù)列為遞增數(shù)列; 時,數(shù)列為遞減數(shù)列; 時,數(shù)列為常數(shù)列;等差數(shù)列不可能是 。

  4、等差數(shù)列的通項公式: 。

  5、判斷正誤:

 、1,2,3,4,5是等差數(shù)列; ( )

 、1,1,2,3,4,5是等差數(shù)列; ( )

 、蹟(shù)列6,4,2,0是公差為2的等差數(shù)列; ( )

 、軘(shù)列 是公差為 的等差數(shù)列; ( )

 、輸(shù)列 是等差數(shù)列; ( )

  ⑥若 ,則 成等差數(shù)列; ( )

 、呷 ,則數(shù)列 成等差數(shù)列; ( )

  ⑧等差數(shù)列是相鄰兩項中后項與前項之差等于非零常數(shù)的數(shù)列; ( )

 、岬炔顢(shù)列的公差是該數(shù)列中任何相鄰兩項的差。 ( )

  6、思考:如何證明一個數(shù)列是等差數(shù)列。

  二、實戰(zhàn)操作:

  例1、(1)求等差數(shù)列8,5,2,的第20項。

  (2) 是不是等差數(shù)列 中的項?如果是,是第幾項?

 。3)已知數(shù)列 的公差 則

  例2、已知數(shù)列 的通項公式為 ,其中 為常數(shù),那么這個數(shù)列一定是等差數(shù)列嗎?

  例3、已知5個數(shù)成等差數(shù)列,它們的和為5,平方和為 求這5個數(shù)。

【數(shù)學(xué)等差數(shù)列教案】相關(guān)文章:

數(shù)學(xué)教案-數(shù)學(xué)01-21

教案數(shù)學(xué)反思01-17

數(shù)學(xué)大班教案10-24

數(shù)學(xué)左右教案10-02

數(shù)學(xué)總復(fù)習(xí)教案03-02

幼兒數(shù)學(xué)序數(shù)教案11-20

《快樂數(shù)學(xué)》大班教案10-30

快樂數(shù)學(xué)大班教案11-05

初中數(shù)學(xué)教案08-28

初中數(shù)學(xué)的教案04-26