一级毛片免费不卡在线视频,国产日批视频免费在线观看,菠萝菠萝蜜在线视频免费视频,欧美日韩亚洲无线码在线观看,久久精品这里精品,国产成人综合手机在线播放,色噜噜狠狠狠综合曰曰曰,琪琪视频

初中數(shù)學教案

時間:2022-08-12 10:08:55 數(shù)學教案 我要投稿

初中數(shù)學教案

  作為一位優(yōu)秀的人民教師,通常需要用到教案來輔助教學,教案是保證教學取得成功、提高教學質量的基本條件。那么應當如何寫教案呢?以下是小編收集整理的初中數(shù)學教案,歡迎大家借鑒與參考,希望對大家有所幫助。

初中數(shù)學教案

初中數(shù)學教案1

  一、指導思想

  教育教學工作是一個頭緒眾多的系統(tǒng)工程,在紛繁的頭緒中需要各項工作有序進展,尤為重要的是強化常規(guī),做好細節(jié),教學常規(guī)是對學校教學工作的基本要求,落實教學常規(guī)是學校教學工作得以正常有序開展的根本保證。只有搞好教學常規(guī)才有可能獲得成功的教育。教師教學水平的高低體現(xiàn)于教學各個步驟的細節(jié)中,空洞地談教學能力是蒼白的,只有用教師的備課情況、講課細節(jié)、作業(yè)批改情況。教學常規(guī)培養(yǎng)著教師的基本功,決定著教師的教學能力,可以說教師的教學水平就是在這些常規(guī)細節(jié)中培養(yǎng)起來。

  二、檢查反饋

  本次檢查大多數(shù)教師都比較重視,檢查內容完整、全面,F(xiàn)將檢查情況總結如下教案方面的特點與不足。

  特點:

  1、絕大多數(shù)教案設計完整,教學重點、難點突出,設置得當,緊緊圍繞新課標,例如:劉興華、孫菊、江文等能突出對學科素養(yǎng)的高度關注。教師撰寫的課后反思能體現(xiàn)教師對教材處理的新方法,能側重對自己教法和學生學法的'指導,并且還能對自己不得法的教學手段、方式、方法進行深刻地解剖,能很好地體現(xiàn)課堂教學的反思意識,反思深刻、務實、有針對性。

  2、教學環(huán)節(jié)齊全,注重引語與小結,使教學設計前后呼應,環(huán)節(jié)完整。

  3、注重選擇恰當?shù)慕虒W方法,注重在靈活多樣的教學方法中培養(yǎng)學生的合作意識和創(chuàng)新精神。

  4、教案能體現(xiàn)多媒體教學手段,注重培養(yǎng)學生的探究精神和創(chuàng)新能力。

  不足:

  1、教案后的教學反思不夠認真、不夠詳細,沒能對本堂課的得與失作出記錄與小結,從中也可以看出我們對課后反思還不夠重視。

  2、個別教師教案過于簡單。

  作業(yè)方面的特點與不足

  特點:

  1、能按進度布置作業(yè),作業(yè)設置量度適中,難易適中,上交率較高,且都能做到全批全改。

  2、作業(yè)批改公平、公正,有一定的等級評定。教師批改要求嚴格、細致,能夠反映學生作業(yè)中的錯誤做法及糾正措施。

  不足:

  1、對于學生書寫的工整性,還需加強教育。

  2、教師在批閱作業(yè)時,要稍細心些,發(fā)現(xiàn)問題就讓學生當時改正,學生也就會逐漸養(yǎng)成做事認真的習慣。

初中數(shù)學教案2

  知識技能

  會通過“移項”變形求解“ax+b=cx+d”類型的一元一次方程。

  數(shù)學思考

  1.經(jīng)歷探索具體問題中的數(shù)量關系過程,體會一元一次方程是刻畫實際問題的有效數(shù)學模型。進一步發(fā)展符號意識。

  2.通過一元一次方程的學習,體會方程模型思想和化歸思想。

  解決問題

  能在具體情境中從數(shù)學角度和方法解決問題,發(fā)展應用意識。

  經(jīng)歷從不同角度尋求分析問題和解決問題的方法的過程,體驗解決問題方法的多樣性。

  情感態(tài)度

  經(jīng)歷觀察、實驗計算、交流等活動,激發(fā)求知欲,體驗探究發(fā)現(xiàn)的快樂。

  教學重點

  建立方程解決實際問題,會通過移項解 “ax+b=cx+d”類型的一元一次方程。

  教學難點

  分析實際問題中的相等關系,列出方程。

  教學過程

  活動一 知識回顧

  解下列方程:

  1. 3x+1=4

  2. x-2=3

  3. 2x+0.5x=-10

  4. 3x-7x=2

  提問:解這些方程時,方程的解一般化成什么形式?這些題你采用了那些變形或運算?

  教師:前面我們學習了簡單的一元一次方程的解法,下面請大家解下列方程。

  出示問題(幻燈片)。

  學生:獨立完成,板演2、4題,板演同學講解所用到的變形或運算,共同講評。

  教師提問:(略)

  教師追問:變形的依據(jù)是什么?

  學生獨立思考、回答交流。

  本次活動中教師關注:

  (1)學生能否準確理解運用等式性質和合并同列項求解方程。

  (2)學生對解一元一次方程的變形方向(化成x=a的形式)的理解。

  通過這個環(huán)節(jié),引導學生回顧利用等式性質和合并同類項對方程進行變形,再現(xiàn)等式兩邊同時加上(或減去)同一個數(shù)、兩邊同時乘以(除以,不為0)同一個數(shù)、合并同類項等運算,為繼續(xù)學習做好鋪墊。

  活動二 問題探究

  問題2:把一些圖書分給某班學生閱讀,如果每人分3本,則剩余20本;如果每人分4本,則還缺25本.這個班有多少學生?

  教師:出示問題(投影片)

  提問:在這個問題中,你知道了什么?根據(jù)現(xiàn)有經(jīng)驗你打算怎么做?

 。▽W生嘗試提問)

  學生:讀題,審題,獨立思考,討論交流。

  1.找出問題中的已知數(shù)和已知條件。(獨立回答)

  2.設未知數(shù):設這個班有x名學生。

  3.列代數(shù)式:x參與運算,探索運算關系,表示相關量。(討論、回答、交流)

  4.找相等關系:

  這批書的總數(shù)是一個定值,表示它的兩個等式相等.(學生回答,教師追問)

  5.列方程:3x+20=4x-25(1)

  總結提問:通過列方程解決實際問題分析時,要經(jīng)歷那些步驟?書寫時呢?

  教師提問1:這個方程與我們前面解過的方程有什么不同?

  學生討論后發(fā)現(xiàn):方程的兩邊都有含x的項(3x與4x)和不含字母的常數(shù)項(20與-25).

  教師提問2:怎樣才能使它向x=a的形式轉化呢?

  學生思考、探索:為使方程的'右邊沒有含x的項,等號兩邊同減去4x,為使方程的左邊沒有常數(shù)項,等號兩邊同減去20.

  3x-4x=-25-20(2)

  教師提問3:以上變形依據(jù)是什么?

  學生回答:等式的性質1。

  歸納:像上面那樣把等式一邊的某項變號后移到另一邊,叫做移項。

  師生共同完成解答過程。

  設問4:以上解方程中“移項”起了什么作用?

  學生討論、回答,師生共同整理:

  通過移項,含未知數(shù)的項與常數(shù)項分別位于方程左右兩邊,使方程更接近于x=a的形式。

  教師提問5:解這個方程,我們經(jīng)歷了那些步驟?列方程時找了怎樣的相等關系?

  學生思考回答。

  教師關注:

 。1)學生對列方程解決實際問題的一般步驟:設未知數(shù),列代數(shù)式,列方程,是否清楚?

  在參與觀察、比較、嘗試、交流等數(shù)學活動中,體驗探究發(fā)現(xiàn)成功的快樂。

  活動三 解法運用

  例2解方程

  3x+7=32-2x

  教師:出示問題

  提問:解這個方程時,第一步我們先干什么?

  學生講解,獨立完成,板演。

  提問:“移項”是注意什么?

  學生:變號。

  教師關注:學生“移項”時是否能夠注意變號。

  通過這個例題,掌握“ax+b=cx+d”類型的一元一次方程的解法。體驗“移項”這種變形在解方程中的作用,規(guī)范解題步驟。

  活動四 鞏固提高

  1.第91頁練習(1)(2)

  2.某貨運公司要用若干輛汽車運送一批貨物。如果每輛拉6噸,則剩余15噸;如果每輛拉8噸,則差5噸才能將汽車全部裝滿。問運送這批貨物的汽車多少量?

  3.小明步行由A地去B地,若每小時走6千米,則比規(guī)定時間遲到1小時;若每小時走8千米,則比規(guī)定時間早到0.5小時。求A、B兩地之間的距離。

  教師按順序出示問題。

  學生獨立完成,用實物投影展示部分學而生練習。

  教師關注:

  1.學生在計算中可能出現(xiàn)的錯誤。

  2.x系數(shù)為分數(shù)時,可用乘的辦法,化系數(shù)為1。

  3.用實物投影展示學困生的完成情況,進行評價、鼓勵。

  鞏固“ax+b=cx+d”類型的一元一次方程的解法,反饋學生對解方程步驟的掌握情況和可能出現(xiàn)的計算錯誤。

  2、3題的重點是在新情境中引導學生利用已有經(jīng)驗解決實際問題,達到鞏固提高的目的。

  活動五

  提問1:今天我們學習了解方程的那種變形?它有什么作用、應注意什么?

  提問2:本節(jié)課重點利用了什么相等關系,來列的方程?

  教師組織學生就本節(jié)課所學知識進行小結。

  學生進行總結歸納、回答交流,相互完善補充。

  教師關注:學生能否提煉出本節(jié)課的重點內容,如果不能,教師則提出具體問題,引導學生思考、交流。

  引導學生對本節(jié)所學知識進行歸納、總結和梳理,以便于學生掌握和運用。

  布置作業(yè):

  第93頁第3題

初中數(shù)學教案3

  教學目標

  1.理解二元一次方程及二元一次方程的解的概念;

  2.學會求出某二元一次方程的幾個解和檢驗某對數(shù)值是否為二元一次方程的解;

  3.學會把二元一次方程中的一個未知數(shù)用另一個未知數(shù)的一次式來表示;

  4.在解決問題的過程中,滲透類比的思想方法,并滲透德育教育。

  教學重點、難點

  重點:二元一次方程的意義及二元一次方程的解的概念.

  難點:把一個二元一次方程變形成用關于一個未知數(shù)的代數(shù)式表示另一個未知數(shù)的形式,其實質是解一個含有字母系數(shù)的方程.

  教學過程

  1.情景導入:

  新聞鏈接:桐鄉(xiāng)70歲以上老人可領取生活補助,得到方程:80a+150b=902880.2.

  2.新課教學:

  引導學生觀察方程80a+150b=902880與一元一次方程有異同?

  得出二元一次方程的概念:含有兩個未知數(shù),并且所含未知數(shù)的項的'次數(shù)都是1次的方程叫做二元一次方程.

  3.合作學習:

  給定方程x+2y=8,男同學給出y(x取絕對值小于10的整數(shù))的值,女同學馬上給出對應的x的值;接下來男女同學互換.(比一比哪位同學反應快)請算的最快最準確的同學講他的計算方法.提問:給出x的值,計算y的值時,y的系數(shù)為多少時,計算y最為簡便?

  4.課堂練習:

  1)已知:5xm-2yn=4是二元一次方程,則m+n=;

  2)二元一次方程2x-y=3中,方程可變形為y=當x=2時,y=_

  5.課堂總結:

  (1)二元一次方程的意義及二元一次方程的解的概念(注意書寫格式);

  (2)二元一次方程解的不定性和相關性;

  (3)會把二元一次方程化為用一個未知數(shù)的代數(shù)式表示另一個未知數(shù)的形式.

  作業(yè)布置

  本章的課后的方程式鞏固提高練習。

初中數(shù)學教案4

  教學目標

 。1)認知目標

  理解并掌握分式的乘除法法則,能進行簡單的分式乘除法運算,能解決一些與分式乘除有關的實際問題。

 。2)技能目標

  經(jīng)歷從分數(shù)的乘除法運算到分式的乘除法運算的過程,培養(yǎng)學生類比的探究能力,加深對從特殊到一般數(shù)學的思想認識。

 。3)情感態(tài)度與價值觀

  教學中讓學生在主動探究,合作交流中滲透類比轉化的思想,使學生在學知識的同時感受探索的樂趣和成功的體驗。

  教學重難點

  重點:運用分式的乘除法法則進行運算。

  難點:分子、分母為多項式的分式乘除運算。

  教學過程

 。ㄒ唬┨岢鰡栴},引入課題

  俗話說:“好的開端是成功的`一半”同樣,好的引入能激發(fā)學生興趣和求知欲。因此我用實際出發(fā)提出現(xiàn)實生活中的問題:

  問題1:求容積的高是,(引出分式乘法的學習需要)。

  問題2:求大拖拉機的工作效率是小拖拉機的工作效率的倍,(引出分式除法的學習需要)。

  從實際出發(fā),引出分式的乘除的實在存在意義,讓學生感知學習分式的乘法和除法的實際需要,從而激發(fā)學生興趣和求知欲。

  (二)類比聯(lián)想,探究新知

  從學生熟悉的分數(shù)的乘除法出發(fā),引發(fā)學生的學習興趣。

  解后總結概括:

 。1)式是什么運算?依據(jù)是什么?

 。2)式又是什么運算?依據(jù)是什么?能說出具體內容嗎?(如果有困難教師應給于引導,學生應該能說出依據(jù)的是:分數(shù)的乘法和除法法則)教師加以肯定,并指出與分數(shù)的乘除法法則類似,引導學生類比分數(shù)的乘除法則,猜想出分式的乘除法則。

  (分式的乘除法法則)

  乘法法則:分式乘以分式,用分子的積作為積的分子,分母的積作為積的分母。

  除法法則:分式除以分式,把除式的分子、分母顛倒位置后,與被除式相乘。

 。ㄈ├}分析,應用新知

  師生活動:教師參與并指導,學生獨立思考,并嘗試完成例題。

  P11的例1,在例題分析過程中,為了突出重點,應多次回顧分式的乘除法法則,使學生耳熟能詳。P11例2是分子、分母為多單項式的分式乘除法則的運用,為了突破本節(jié)課的難點我采取板演的形式,和學生一起詳細分析,提醒學生關注易錯易漏的環(huán)節(jié),學會解題的方法。

  (四)練習鞏固,培養(yǎng)能力

  P13練習第2題的(1)、(3)、(4)與第3題的(2)。

  師生活動:教師出示問題,學生獨立思考解答,并讓學生板演或投影展示學生的解題過程。

  通過這一環(huán)節(jié),主要是為了通過課堂跟蹤反饋,達到鞏固提高的目的,進一步熟練解題的思路,也遵循了鞏固與發(fā)展相結合的原則。讓學生板演,一是為了暴露問題,二是為了規(guī)范解題格式和結果。

  (五)課堂小結,回扣目標

  引導學生自主進行課堂小結:

  1、本節(jié)課我們學習了哪些知識?

  2、在知識應用過程中需要注意什么?

  3、你有什么收獲呢?

  師生活動:學生反思,提出疑問,集體交流。

 。┎贾米鳂I(yè)

  教科書習題6.2第1、2(必做)練習冊P(選做),我設計了必做題和選做題,必做題是對本節(jié)課內容的一個反饋,選做題是對本節(jié)課知識的一個延伸。

  板書設計

  在本節(jié)課中我將采用提綱式的板書設計,因為提綱式—條理清楚、從屬關系分明,給人以清晰完整的印象,便于學生對教材內容和知識體系的理解和記憶。

初中數(shù)學教案5

  一、素質教育目標

 。ㄒ唬┲R教學點

  1.使學生理解多項式的概念.

  2.使學生能準確地確定一個多項式的次數(shù)和項數(shù).

  3.能正確區(qū)分單項式和多項式.

 。ǘ┠芰τ柧汓c

  通過區(qū)別單項式與多項式,培養(yǎng)學生發(fā)散思維.

 。ㄈ┑掠凉B透點

  在本節(jié)教學中向學生滲透數(shù)學知識來源于生活,又為生活而服務的辯證思想.

 。ㄋ模┟烙凉B透點

  單項式和多項式在前二章,特別是第一章已有新接觸,本節(jié)課來研究多項式的概念可謂水到渠成,體現(xiàn)了數(shù)學的結構美

  二、學法引導

  1.教學方法:采用對比法,以訓練為主,注重嘗試指導.

  2.學生學法:觀察分析→多項式有關概念→練習鞏固

  三、重點、難點、疑點及解決辦法

  1.重點:多項式的概念及單項式的聯(lián)系與區(qū)別.

  2.難點:多項式的次數(shù)的確定,以及多項式與單項式的聯(lián)系與區(qū)別.

  3.疑點:多項式中各項的符號問題.

  四、課時安排

  1課時

  五、教具學具準備

  投影儀或電腦、自制膠片.

  六、師生互動活動設計

  教師出示探索性練習,學生分析討論得出多項式有關概念,教師出示鞏固性練習,學生多種形式完成.

  七、教學步驟

 。ㄒ唬⿵土曇,創(chuàng)設情境

  師:上節(jié)課我們學習了單項式的有關概念,同學們看下面一些問題.

 。ǔ鍪就队1)

  1.下列代數(shù)式中,哪些是單項式?是單項式的請指出它的系數(shù)與次數(shù).

  , , ,2, , , ,

  2.圓的半徑為 ,則半圓的面積為_____________,半圓的總長為_____________.

  學生活動:回答上述兩個問題,可以進行搶答,看誰想的全面,回答的準確,教師對回答準確、速度快的給予表揚和鼓勵.

  【教法說明】讓學生通過1題回顧有關單項式的一些知識點,再通過2題中半圓周長為 很自然地引出本節(jié)內容.

  師:上述2題中,表示半圓面積的代數(shù)式是單項式嗎?為什么?表示半圓的周長的式子呢?

  學生活動:同座進行討論,然后選代表回答.

  師:誰能把1題中不是單項式的式子讀出來?(師做相應板書)

  學生活動:小組討論, 、 , , 對于這些代數(shù)式的結構特點,由小組選代表說明,若不完整,其他同學可做補充.

 。ǘ┨剿餍轮,講授新課

  師:像以上這樣的式子叫多項式,這節(jié)課我們就研究多項式,上面幾個式子都是多項式.

 。郯鍟3.1整式(多項式)

  學生活動:討論歸納什么叫多項式.可讓學生互相補充.

  教師概括并板書

  [板書]多項式:幾個單項式的和叫多項式.

  師:強調每個單項式的符號問題,使學生引起注意.

 。ǔ鍪就队2)

  練習:下裂代數(shù)式 , , , , , ,

  , , 中,是多項式的有:

  ___________________________________________________________.

  學生活動:學生搶答以上問題,然后每個學生在練習本上寫出兩個多項式,同桌互相交換打分,有疑問的提出再討論.

  【教法說明】通過觀察式子特點,討論歸納多項式的概念,體現(xiàn)了學生的主體作用和參與意識.多項式的概念是本節(jié)教學重點,為使學生對概念真正理解,讓學生每個人寫出兩個多項式,可及時反饋學生掌握知識中存在的問題,以便及時糾正.

  師:提出問題,多項式 、 , , 各是由幾個單項式相加而得到的?每個單項式各指的是誰?各是幾次單項式?引導學生回答,教師根據(jù)學生回答,給予肯定、否定與糾正.

  師:在 中,是兩個單項式相加得到,就叫做二項式,兩個單項式中, 次數(shù)是1, 次數(shù)是1,最高次數(shù)是一次,所以我們說這個多項式的次數(shù)是一次,整個式子叫做一次二項式.

 。郯鍟

  學生活動:同桌討論,, , ,應怎樣稱謂,然后找學生回答.

  師:給予歸納,并做適當板書:

 。郯鍟

  學生活動:通過上例,學生討論多項式的項、次數(shù),然后選代表回答.

  根據(jù)學生回答,師歸納:

  在多項式中,每個單項式叫多項式的項,是幾個單項式的和就叫做幾項式.每一項包含它的符號,如 中, 這一項不是 .多項式里次數(shù)最高的項的次數(shù),就叫做多項式次數(shù),即最高次項是幾次,就叫做幾次多項式,不含字母的項叫做常數(shù)項.

 。郯鍟

  【教法說明】通過學生對以上幾個多項式的感知,學生對多項式的特片已有了一定的了解,教師可逐步引導,讓學生自己總結歸納一些結論,以訓練學生的口頭表達能力和歸納能力.

 。ㄈ﹪L試反饋,鞏固練習

 。ǔ鍪就队3)

  1.填空:

  2.填空:

  (1) 是_________次__________項式; 是_________次_________項式; 的常數(shù)項是___________.

 。2) 是_________次________項式,最高次數(shù)是___________,最高次項的系數(shù)是__________,常數(shù)項是___________.

  學生活動:1題搶答,同桌同學給予肯定或否定,且肯定地說出依據(jù),否定的再說出正確答案;2題學生觀察后,在練習本或投影膠片上完成,部分膠片打出投影,師生一起分析、討論,對所做答案給予肯定或更正.

  【教法說明】在此組練習題中,1題目的是以填表的形式感知一個多項式就是單項式的和,多項式的項就是單項式;使學生能進一步了解多項式與單項式的關系,避免死記硬背概念,而不能準確應用于解題中的弊。2題是在理解概念和完成1題單一問題的基礎上進行綜合訓練,使學生逐步學會使用數(shù)學語言.

 。ㄋ模w納小結

  師:今天我們學習了《整式》一節(jié)中“多項式”的有關概念;在掌握多項式概念時,要注意它的項數(shù)和次數(shù).前面我們還學習了單項式,掌握單項式時要注意它的系數(shù)和次數(shù).

  歸納:單項式和多項式統(tǒng)稱為整式.

 。郯鍟

  說明:教師邊小結邊板書出多項式、單項式,然后再提出它們統(tǒng)稱為整式,并做了述板書,使所學知識納入知識系統(tǒng).

  鞏固練習:

  (出示投影4)

  下列各代數(shù)式:0, , , , , , 中,單項式有__________,多項式有____________,整式有_____________.

  學生活動:觀察后學生回答,互相補充、糾正,提醒學生不能遺漏.

  【教法說明】數(shù)學要領重在于應用,通過上題的訓練,可使學生很清楚地了解單項式、多項式的區(qū)別與聯(lián)系,它們與整式的`關系.

 。ㄎ澹┳兪接柧,培養(yǎng)能力

  (出示投影5)

  1.單項式 , , 的和_________,它是__________次__________項式.

  2. 是_______次________項式 是__________次_________項式,它的常數(shù)項_________.

  3. 是________次________項式,最高次項是_________,最高次項的系數(shù)是_________,常數(shù)項是__________.

  4. 的2倍與 的平方的 的和,用代數(shù)式表示__________,它是__________(填單項式或多項式).

  學生活動:每個學生先獨立在練習本上完成,然后小組互相交流補充,最后小組選出代表發(fā)言.

  師:做肯定或否定,強調3題中最高次項的系數(shù)是 , 是一個數(shù)字,不是字母,因為它只能代表圓周率這一個數(shù)值,而一個字母是可以取不同的值的.

  【教法說明】本組是在前面掌握了本節(jié)課基本知識后安排的一組訓練題,目的是使學生進一步理解多項式的次數(shù)與項數(shù),特別是對 這個數(shù)字要有一個明確的認識.

  自編題目練習:

  每個學生寫出6個整式,并要求既有單項式,又有多項式,然后交給同桌的同學,完成以下任務,①先找出單項式、多項式,②是單項式的寫出系數(shù)與次數(shù),是多項式的寫出是幾次幾項式,最高次數(shù)是什么?常數(shù)項是什么,然后再互相討論對方的解答是否正確.

  【教學說明】自編題目的訓練,一是可活躍課堂氣氛,增強了學生的參與意識;二是可以培養(yǎng)學生的發(fā)散思維和逆向思維能力.

  師:通過上面編題、解題練習,同學們對整式的概念有了清楚的理解,下面再按老師的要求編題,編一個四次三項式,看誰編的又快又準確,再編一個不高于三次的多項式.

  學生活動:學生邊回答師邊板書,然后學生討論是否符合要求.

  【教法說明】通過上面訓練,使學生進一步鞏固多項式項數(shù)、次數(shù)的概念,同時也可以培養(yǎng)學生逆向思維的能力.

  八、隨堂練習

  1.判斷題

 。1)-5不是多項式( )

 。2) 是二次二項式( )

  (3) 是二次三項式( )

 。4) 是一次三項式( )

  (5) 的最高次項系數(shù)是3( )

  2.填空題

 。1)把上列代數(shù)式分別填在相應的括號里

  , , ,0, , ,

 ; ;

  ; ;

  .

 。2)如果代數(shù)式 是關于 的三次二項式則 , .

  九、布置作業(yè)

 。ㄒ唬┍刈鲱}:課本第149頁習題3.1A組12.

 。ǘ┻x做題:課本第150頁習題3.1B組3.

  十、板書設計

  隨堂練習答案

  1.√ × × √ ×

  2.(1)單項式 ,多項式 ;

  整式 ;

  二項式 ;

  三次三項式 ;

  (2) , .

  作業(yè)答案

  教材P.149中A組12題:(1)三次二項式 (2)二次三項式

  (3)一次二項式 (4)四次三項式

初中數(shù)學教案6

  一元一次不等式組

  教學目標

  1、熟練掌握一元一次不等式組的解法,會用一元一次不等式組解決有關的實際問題;

  2、理解一元一次不等式組應用題的一般解題步驟,逐步形成分析問題和解決問題的.能力;

  3、體驗數(shù)學學習的樂趣,感受一元一次不等式組在解決實際問題中的價值。

  教學難點

  正確分析實際問題中的不等關系,列出不等式組。

  知識重點

  建立不等式組解實際問題的數(shù)學模型。

  探究實際問題

  出示教科書第145頁例2(略)

  問:(1)你是怎樣理解“不能完成任務”的數(shù)量含義的?

  (2)你是怎樣理解“提前完成任務”的數(shù)量含義的?

  (3)解決這個問題,你打算怎樣設未知數(shù)?列出怎樣的不等式?

  師生一起討論解決例2.

  歸納小結

  1、教科書146頁“歸納”(略).

  2、你覺得列一元一次不等式組解應用題與列二元一次方程組解應用題的步驟一樣嗎?

  在討論或議論的基礎上老師揭示:

  步法一致(設、列、解、答);本質有區(qū)別.(見下表)一元一次不等式組應用題與二元一次方程組應用題解題步驟異同表。

初中數(shù)學教案7

  三維目標

  一、知識與技能

  1.能靈活列反比例函數(shù)表達式解決一些實際問題.

  2.能綜合利用物理杠桿知識、反比例函數(shù)的知識解決一些實際問題.

  二、過程與方法

  1.經(jīng)歷分析實際問題中變量之間的關系,建立反比例函數(shù)模型,進而解決問題.

  2. 體會數(shù)學與現(xiàn)實生活的緊密聯(lián)系,增強應用意識,提高運用代數(shù)方法解決問題的能力.

  三、情感態(tài)度與價值觀

  1.積極參與交流,并積極發(fā)表意見.

  2.體驗反比例函數(shù)是有效地描述物理世界的重要手段,認識到數(shù)學是解決實際問題和進行交流的重要工具.

  教學重點

  掌握從物理問題中建構反比例函數(shù)模型.

  教學難點

  從實際問題中尋找變量之間的關系,關鍵是充分運用所學知識分析物理問題,建立函數(shù)模型,教學時注意分析過程,滲透數(shù)形結合的思想.

  教具準備

  多媒體課件.

  教學過程

  一、創(chuàng)設問題情境,引入新課

  活動1

  問 屬:在物理學中,有很多量之間的變化是反比例函數(shù)的關系,因此,我們可以借助于反比例函數(shù)的圖象和性質解決一些物理學中的問題,這也稱為跨學科應用.下面的例子就是其中之一.

  在某一電路中,保持電壓不變,電流I(安培)和電阻R(歐姆)成反比例,當電阻R=5歐姆時,電流I=2安培.

  (1)求I與R之間的函數(shù)關系式;

  (2)當電流I=0.5時,求電阻R的值.

  設計意圖:

  運用反比例函數(shù)解決物理學中的一些相關問題,提高各學科相互之間的綜合應用能力.

  師生行為:

  可由學生獨立思考,領會反比例函數(shù)在物理學中的綜合應用.

  教師應給“學困生”一點物理學知識的引導.

  師:從題目中提供的信息看變量I與R之間的反比例函數(shù)關系,可設出其表達式,再由已知條件(I與R的一對對應值)得到字母系數(shù)k的值.

  生:(1)解:設I=kR ∵R=5,I=2,于是

  2=k5 ,所以k=10,∴I=10R .

  (2) 當I=0.5時,R=10I=100.5 =20(歐姆).

  師:很好!“給我一個支點,我可以把地球撬動.”這是哪一位科學家的名言?這里蘊涵著什么 樣的原理呢?

  生:這是古希臘科學家阿基米德的名言.

  師:是的.公元前3世紀,古希臘科學家阿基米德發(fā)現(xiàn)了著名的“杠桿定律”: 若兩物體與支點的距離反比于其重量,則杠桿平衡,通俗一點可以描述為;

  阻力×阻力臂=動力×動力臂(如下圖)

  下面我們就來看一例子.

  二、講授新課

  活動2

  小偉欲用撬棍橇動一塊大石頭,已知阻力和阻力臂不變,分別為1200牛頓和0.5米.

  (1)動力F與動力臂l有怎樣的函數(shù)關系?當動力臂為1.5米時,撬動石頭至少需要多大的力?

  (2)若想使動力F不超過題(1)中所用力的一半,則動力臂至少要加長多少?

  設計意圖:

  物理學中的很多量之間的變化是反比例函數(shù)關系.因此,在這兒又一次借助反比例函數(shù)的圖象和性質解決一些物理學中的問題,即跨學科綜合應用.

  師生行為:

  先由學生根據(jù)“杠桿定律”解決上述問題.

  教師可引導學生揭示“杠桿乎衡”與“反比例函數(shù)”之間的關系.

  教師在此活動中應重點關注:

  ①學生能否主動用“杠桿定律”中杠桿平衡的條件去理解實際問題,從而建立與反比例函數(shù)的關系;

  ②學生能否面對困難,認真思考,尋找解題的途徑;

 、蹖W生能否積極主動地參與數(shù)學活動,對數(shù)學和物理有著濃厚的興趣.

  師:“撬動石頭”就意味著達到了“杠桿平衡”,因此可用“杠桿定律”來解決此問題.

  生:解:(1)根據(jù)“杠桿定律” 有

  Fl=1200×0.5.得F =600l

  當l=1.5時,F(xiàn)=6001.5 =400.

  因此,撬動石頭至少需要400牛頓的力.

  (2)若想使動力F不超過題(1)中所用力的一半,即不超過200牛,根據(jù)“杠桿定律”有

  Fl=600,

  l=600F .

  當F=400×12 =200時,

  l=600200 =3.

  3-1.5=1.5(米)

  因此,若想用力不超過400牛頓的一半,則動力臂至少要如長1.5米.

  生:也可用不等式來解,如下:

  Fl=600,F(xiàn)=600l .

  而F≤400×12 =200時.

  600l ≤200

  l≥3.

  所以l-1.5≥3-1.5=1.5.

  即若想用力不超過400牛頓的一半,則動力臂至少要加長1.5米.

  生:還可由函數(shù)圖象,利用反比例函數(shù)的性質求出.

  師:很棒!請同學們下去親自畫出圖象完成,現(xiàn)在請同學們思考下列問題:

  用反比例函數(shù)的知識解釋:在我們使用橇棍時,為什么動力臂越長越省力?

  生:因為阻力和阻力臂不變,設動力臂為l,動力為F,阻力×阻力臂=k(常數(shù)且k>0),所以根據(jù)“杠桿定理”得Fl=k,即F=kl (k為常數(shù)且k>0)

  根據(jù)反比例函數(shù)的性質,當k>O時,在第一象限F隨l的增大而減小,即動力臂越長越省力.

  師:其實反比例函數(shù)在實際運用中非常廣泛.例如在解決經(jīng)濟預算問題中的應用.

  活動3

  問題:某地上年度電價為0.8元,年用電量為1億度,本年度計劃將電價調至0.55~0.75元之間,經(jīng)測算,若電價調至x元,則本年度新增用電量y(億度)與(x-0.4)元成反比例.又當x=0.65元時,y=0.8.(1)求y與x之間的函數(shù)關系式;(2)若每度電的成本價0.3元,電價調至0.6元,請你預算一下本年度電力部門的純收人多少?

  設計意圖:

  在生活中各部門,經(jīng)常遇到經(jīng)濟預算等問題,有時關系到因素之間是反比例函數(shù)關系,對于此類問題我們往往由題目提供的信息得到變量之間的函數(shù)關系式,進而用函數(shù)關系式解決一個具體問題.

  師生行為:

  由學生先獨立思考,然后小組內討論完成.

  教師應給予“學困生”以一定的幫助.

  生:解:(1)∵y與x -0.4成反比例,

  ∴設y=kx-0.4 (k≠0).

  把x=0.65,y=0.8代入y=kx-0.4 ,得

  k0.65-0.4 =0.8.

  解得k=0.2,

  ∴y=0.2x-0.4=15x-2

  ∴y與x之間的函數(shù)關系為y=15x-2

  (2)根據(jù)題意,本年度電力部門的純收入為

  (0.6-0.3)(1+y)=0.3(1+15x-2 )=0.3(1+10.6×5-2 )=0.3×2=0.6(億元)

  答:本年度的純收人為0.6億元,

  師生共析:

  (1)由題目提供的信息知y與(x-0.4)之間是反比例函數(shù)關系,把x-0.4看成一個變量,于是可設出表達式,再由題目的條件x=0.65時,y=0.8得出字母系數(shù)的值;

  (2)純收入=總收入-總成本.

  三、鞏固提高

  活動4

  一定質量的二氧化碳氣體,其體積y(m3)是密度ρ(kg/m3)的反比例函數(shù),請根據(jù)下圖中的已知條件求出當密度ρ=1.1 kg/m3時二氧化碳氣體的體積V的值.

  設計意圖:

  進一步體現(xiàn)物理和反比例函數(shù)的關系.

  師生行為

  由學生獨立完成,教師講評.

  師:若要求出ρ=1.1 kg/m3時,V的值,首先V和ρ的函數(shù)關系.

  生:V和ρ的反比例函數(shù)關系為:V=990ρ .

  生:當ρ=1.1kg/m3根據(jù)V=990ρ ,得

  V=990ρ =9901.1 =900(m3).

  所以當密度ρ=1. 1 kg/m3時二氧化碳氣體的氣體為900m3.

  四、課時小結

  活動5

  你對本節(jié)內容有哪些認識?重點掌握利用函數(shù)關系解實際問題,首先列出函數(shù)關系式,利用待定系數(shù)法求出解 析式,再根據(jù)解析式解得.

  設計意圖:

  這種形式的`小結,激發(fā)了學生的主動參與意識,調動了學生的學習興趣,為每一位學生都創(chuàng)造了在數(shù)學學習活動中獲得成功的體驗機會,并為程度不同的學生提供了充分展示自己的機會,尊重學生的個體差異,滿足多樣化的學習需要,從而使小結不流于形式而具有實效性.

  師生行為:

  學生可分小組活動,在小組內交流收獲, 然后由小組代表在全班交流.

  教師組織學生小結.

  反比例函數(shù)與現(xiàn)實生活聯(lián)系非常緊密,特別是為討論物理中的一些量之間的關系打下了良好的基礎.用數(shù)學模型的解釋物理量之間的關系淺顯易懂,同時不僅要注意跨學科間的綜合,而本學科知識間的整合也尤為重要,例如方程、不等式、函數(shù)之間的不可分割的關系.

  板書設計

  17.2 實際問題與反比例函數(shù)(三)

  1.

  2.用反比例函數(shù)的知識解釋:在我們使 用撬棍時,為什么動 力臂越長越省力?

  設阻力為F1,阻力臂長為l1,所以F1×l1=k(k為常數(shù)且k>0).動力和動力臂分別為F,l.則根據(jù)杠桿定理,

  Fl=k 即F=kl (k>0且k為常數(shù)).

  由此可知F是l的反比例函數(shù),并且當k>0時,F(xiàn)隨l的增大而減。

  活動與探究

  學校準備在校園內修建一個矩形的綠化帶,矩形的面積為定值,它的一邊y與另一邊x之間的函數(shù)關系式如下圖所示.

  (1)綠化帶面積是多少?你能寫出這一函數(shù)表達式嗎?

  (2)完成下表,并回答問題:如果該綠化帶的長不得超過40m,那么它的寬應控制在什么范圍內?

  x(m) 10 20 30 40

  y(m)

  過程:點A(40,10)在反比例函數(shù)圖象上說明點A的橫縱坐標滿足反比例函數(shù)表達式,代入可求得反比例函數(shù)k的值.

  結果:(1)綠化帶面積為10×40=400(m2)

  設該反比例函數(shù)的表達式為y=kx ,

  ∵圖象經(jīng)過點A(40,10)把x=40,y=10代入,得10=k40 ,解得,k=400.

  ∴函數(shù)表達式為y=400x .

  (2)把x=10,20,30,40代入表達式中,求得y分別為40,20,403 ,10.從圖中可以看出。若長不超過40m,則它的寬應大于等于10m。

初中數(shù)學教案8

  教學目標:

  1、引導同學們領略數(shù)學隱藏在生活中的迷人之處;

  2、培養(yǎng)同學們對數(shù)學的興趣。

  教學內容:

  生活中的數(shù)學。

  教學方法:

  啟發(fā)探索、小游戲

  教具安排:

  多媒體、剪紙、小剪刀三把

  教學過程:

  師:同學們,從小學到現(xiàn)在我們都在跟數(shù)學打交道,能說說大家對數(shù)學的感受嗎?

  學生討論。

  師:同學們,不管以前你們喜不喜歡數(shù)學,但老師要告訴大家,其實數(shù)學很有趣,它不僅出現(xiàn)在我們的課本,更隱藏在生活的每個角落,只要我們仔細探究,就會發(fā)現(xiàn)它在我們的周圍閃著迷人的光,希望大家從今天開始,喜歡數(shù)學,與數(shù)學成為好朋友,好好領略好朋友帶給我們的美的享受。事不宜遲,現(xiàn)在我們馬上開始我們的數(shù)學探究之旅。首先,我們來玩?zhèn)小游戲:

  請大家拿出筆和紙,根據(jù)下面的步驟來操作,你會有驚人的發(fā)現(xiàn)。(PPT演示)

  [1]首先,隨意挑一個數(shù)字(0、1、2、3、4、5、6、7)

  [2]把這個數(shù)字乘上2

  [3]然后加上5

  [4]再乘以50

  [5]如果你今年的生日已經(jīng)過了,把得到的數(shù)目加上1759;如果還沒過,加1758

  [6]最后一個步驟,用這個數(shù)目減去你出生的那一年(公元的)

  師:發(fā)現(xiàn)了什么?第一個數(shù)字是不是你一開始選擇的數(shù)字呢?那接下來的兩個呢?如無意外,就是你的年齡了。是不是很有趣呢?至于為什么會這樣課后大家仔細想想自然就明白啦,這就是數(shù)學的魅力所在了。接下來我們來嘗試幫助格尼斯堡的居民解決下面的問題(PPT演示):格尼斯堡建造在普蕾爾河岸上。7座橋連接著兩個島和河岸,如圖所示:

  網(wǎng)路圖

  居民們的一項普遍愛好是嘗試在一次行走中跨過所有的.7座橋而不

  重復經(jīng)過任何一座橋。同學們,你們能幫助他們實現(xiàn)這個想法嗎?拿出紙和筆設計的路線。

  學生思考設計。

  師:同學們行嗎?事實上,著名數(shù)學家歐拉已經(jīng)證明不能解決這個問題了,可是這是為什么呢?別急,我們繼續(xù)看下去。

  1944年的空襲,毀壞了大多數(shù)的舊橋,格尼斯堡在河上重新建了5座橋,如圖:

  B

  現(xiàn)在請同學們再嘗試一下,在一次行走中跨過所有的5座橋而不重復經(jīng)過任何一座橋。

  學生思考。

  師:同學們,這次行得通了吧?那么為什么呢?有沒有同學可以說一下他的想法?

  其實,我們的歐拉大師經(jīng)過研究大量類似的網(wǎng)絡,證明了這樣的事實(PPT演示):要走完一條路線而其中每一段行程只許經(jīng)過一次,只有當奇數(shù)結點的數(shù)目是0或2時才是有可能的,在其他情況下,如果不走回頭路,就不能歷遍整個網(wǎng)絡。

  他還發(fā)現(xiàn):如果有兩個奇結點,那么經(jīng)過整個路線的形成必須從一個

  奇結點開始,到另一個奇結點結束。

  師:我們來看一下是不是這樣的?第一個圖奇結點的個數(shù)為3,第二個圖奇結點的個數(shù)減少到2個了,看來真的是這樣的。

  現(xiàn)在請同學們自己在練習本上解決這個問題:(PPT演示)

  下面是一幅農場的大門的圖。如果筆不離紙,又不重復經(jīng)過任一條線,有沒有可能畫成它?

  學生思考討論。

  師:我們看到它的奇結點個數(shù)為4,由歐拉的證明我們知道不能一筆畫成。

  那如果農場主將門的形狀做成這樣呢?(PPT演示)

  學生嘗試。

  師:是不是可以啦,為什么呢?

  生:奇結點個數(shù)為2.

  師:這種不用走回頭路而歷遍整條線路的情況,不僅僅具有趣味性,在現(xiàn)實生活中具有很重要的實用性,比如,我們的郵遞員和煤氣抄表員,不走回頭路意味著可以節(jié)省很多寶貴的時間?磥,數(shù)學并不像

  某些時候想的那樣沒什么用處了吧?

  下面我們繼續(xù)我們的奧秘之類吧。

  今天我們班有同學生日嗎?如果你生日,爸爸媽媽給你買了一個正方形的蛋糕,你要把它切成不同形狀的平均大小的7塊,怎么切?能行嗎?嘗試一下。

  其實很簡單,你只需要把正方形的周邊(即周長)分成7個等長,定出蛋糕的中心,從周邊劃分等長的標記切向中電,(如圖所示)即可。

  為什么呢?這里我們用到三角形等高等底面積相等的性質。

  吃完了蛋糕,我們來觀賞一下百合花。(PPT演示):

  一個鄉(xiāng)村的池塘里種了美麗的百合花,百合花生長得很快,使它們覆蓋的面積每天增加一倍。30天后,長滿了整個池塘,那么池塘只被百合花覆蓋一半時是多少天呢?同學們,你知道嗎?

  學生討論。

  師:答案是29天,多么神奇,是吧?潛意識里我們很難接受答案就是29天,只與30天差一天。但用數(shù)學我們很容易很清楚地知道是29天,奧秘就在“它們覆蓋的面積每天增加一倍”這句話里面。你看,數(shù)學是多么聰慧、多么神奇的家伙!

  其實,除了以上我們看到的一些有趣的數(shù)學影子外,我們的日常生

初中數(shù)學教案9

  一學期的工作結束了,可以說緊張忙碌卻收獲多多;仡欉@學期的工作,我教九(4)班的數(shù)學,我總是在不斷地摸索和學習中進行教學,工作中有收獲和快樂,也有不盡如人意的地方,為了更好地總結經(jīng)驗,吸取教訓,使以后的工作能夠有效、有序地進行,現(xiàn)將教學所得總結如下:

  一、在備課方面

  在上課前我總是查閱很多教參、教輔,力求深入理解教材,準確把握難重點,總是要經(jīng)過深思熟慮之后才寫教案,力爭做到熟知知識要點,心中有數(shù)。

  二、在教學過程方面

  在課堂教學中我一直注重學生的參與。讓學生參與到課堂教學中來,讓他們自主的去探究問題,發(fā)現(xiàn)知識。波利亞說:“學習任何知識的最佳途徑都是由自己去發(fā)現(xiàn),因為這種發(fā)現(xiàn)理解最深刻,也最容易掌握其中的內在規(guī)律、性質和聯(lián)系!敝挥谐浞职l(fā)揮學生的主體作用,讓學生人人參與,才能最大限度地促進學生的發(fā)展。但還是難免受傳統(tǒng)教學觀念的影響,加之經(jīng)驗不足,不太敢放手,怕完成不了當趟課的教學任務。后來在學!啊钡慕虒W模式下,才開始進一步嘗試,并在不斷的`嘗試中總結經(jīng)驗。

  三、工作中存在的問題

  1)、教材挖掘不深入。

  2)、教法不靈活,不能吸引學生學習,對學生的引導、啟發(fā)不足。

  3)、新課標下新的教學思想學習不深入。對學生的自主學習,合作學習,缺乏理論指導

  4)、差生末抓在手。由于對學生的了解不夠,對學生的學習態(tài)度、思維能力不太清楚。上課和復習時該講的都講了,學生掌握的情況怎樣,教師心中無數(shù)。導致了教學中的盲目性。

  四、今后努力的方向

  1)、加強學習,學習新教學模式下新的教學思想。

  2)、熟讀初一到初三的數(shù)學教材,深入挖掘教材,進一步把握知識點和考點。

  3)、多聽課,學習老教師對知識點的處理和對教材的把握,以及他們處理突發(fā)事件方法。

  4)、加強轉差培優(yōu)力度。

  5)、加強教學反思,加大教學投入。

  一學期的教學工作即將結束,這半年的教學工作很苦,很累,但在不斷的摸索中,自己學到了很多東西。今后我會更加努力提高自己的業(yè)務水平。

初中數(shù)學教案10

  一、目的要求

  1、使學生初步理解一次函數(shù)與正比例函數(shù)的概念。

  2、使學生能夠根據(jù)實際問題中的條件,確定一次函數(shù)與正比例函數(shù)的解析式。

  二、內容分析

  1、初中主要是通過幾種簡單的函數(shù)的初步介紹來學習函數(shù)的,前面三小節(jié),先學習函數(shù)的概念與表示法,這是為學習后面的幾種具體的函數(shù)作準備的,從本節(jié)開始,將依次學習一次函數(shù)(包括正比例函數(shù))、二次函數(shù)與反比例函數(shù)的有關知識,大體上,每種函數(shù)是按函數(shù)的解析式、圖象及性質這個順序講述的,通過這些具體函數(shù)的學習,學生可以加深對函數(shù)意義、函數(shù)表示法的認識,并且,結合這些內容,學生還會逐步熟悉函數(shù)的知識及有關的數(shù)學思想方法在解決實際問題中的應用。

  2、舊教材在講幾個具體的函數(shù)時,是按先講正反比例函數(shù),后講一次、二次函數(shù)順序編排的,這是適當照顧了學生在小學數(shù)學中學了正反比例關系的知識,注意了中小學的銜接,新教材則是安排先學習一次函數(shù),并且,把正比例函數(shù)作為一次函數(shù)的特例予以介紹,而最后才學習反比例函數(shù),為什么這樣安排呢?第一,這樣安排,比較符合學生由易到難的認識規(guī)津,從函數(shù)角度看,一次函數(shù)的解析式、圖象與性質都是比較簡單的,相對來說,反比例函數(shù)就要復雜一些了,特別是,反比例函數(shù)的圖象是由兩條曲線組成的,先學習反比例函數(shù)難度可能要大一些。第二,把正比例函數(shù)作為一次函數(shù)的特例介紹,既可以提高學習效益,又便于學生了解正比例函數(shù)與一次函數(shù)的關系,從而,可以更好地理解這兩種函數(shù)的概念、圖象與性質。

  3、“函數(shù)及其圖象”這一章的重點是一次函數(shù)的概念、圖象和性質,一方面,在學生初次接觸函數(shù)的有關內容時,一定要結合具體函數(shù)進行學習,因此,全章的主要內容,是側重在具體函數(shù)的講述上的'。另一方面,在大綱規(guī)定的幾種具體函數(shù)中,一次函數(shù)是最基本的,教科書對一次函數(shù)的討論也比較全面。通過一次函數(shù)的學習,學生可以對函數(shù)的研究方法有一個初步的認識與了解,從而能更好地把握學習二次函數(shù)、反比例函數(shù)的學習方法。

  三、教學過程

  復習提問:

  1、什么是函數(shù)?

  2、函數(shù)有哪幾種表示方法?

  3、舉出幾個函數(shù)的例子。

  新課講解:

  可以選用提問時學生舉出的例子,也可以直接采用教科書中的四個函數(shù)的例子。然后讓學生觀察這些例子(實際上均是一次函數(shù)的解析式),y=x,s=3t等。觀察時,可以按下列問題引導學生思考:

  (1)這些式子表示的是什么關系?(在學生明確這些式子表示函數(shù)關系后,可指出,這是函數(shù)。)

  (2)這些函數(shù)中的自變量是什么?函數(shù)是什么?(在學生分清后,可指出,式子中等號左邊的y與s是函數(shù),等號右邊是一個代數(shù)式,其中的字母x與t是自變量。)

  (3)在這些函數(shù)式中,表示函數(shù)的自變量的式子,分別是關于自變量的什么式呢?(這題牽扯到有關整式的基本概念,表示函數(shù)的自變量的式子也就是等號右邊的式子,都是關于自變量的一次式。)

  (4)x的一次式的一般形式是什么?(結合一元一次方程的有關知識,可以知道,x的一次式是kx+b(k≠0)的形式。)

  由以上的層層設問,最后給出一次函數(shù)的定義。

  一般地,如果y=kx+b(k,b是常數(shù),k≠0)那么,y叫做x的一次函數(shù)。

  對這個定義,要注意:

  (1)x是變量,k,b是常數(shù);

  (2)k≠0 (當k=0時,式子變形成y=b的形式。b是x的0次式,y=b叫做常數(shù)函數(shù),這點,不一定向學生講述。)

  由一次函數(shù)出發(fā),當常數(shù)b=0時,一次函數(shù)kx+b(k≠0)就成為:y=kx(k是常數(shù),k≠0)我們把這樣的函數(shù)叫正比例函數(shù)。

  在講述正比例函數(shù)時,首先,要注意適當復習小學學過的正比例關系,小學數(shù)學是這樣陳述的:

  兩種相關聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數(shù)的比值(也就是商)一定,這兩種量就叫做成正比例的量,它們的關系叫做正比例關系。

  寫成式子是(一定)

  需指出,小學因為沒有學過負數(shù),實際的例子都是k>0的例子,對于正比例函數(shù),k也為負數(shù)。

  其次,要注意引導學生找出一次函數(shù)與正比例函數(shù)之間的關系:正比例函數(shù)是特殊的一次函數(shù)。

  課堂練習:

  教科書13、4節(jié)練習第1題.

初中數(shù)學教案11

  一、教學任務分析

  1、教學目標定位

  根據(jù)《數(shù)學課程標準》和素質教育的要求,結合學生的認知規(guī)律及心理特征而確定,即:七年級的學生對身邊有趣事物充滿好奇心,對一些有規(guī)律的問題有探求的欲望,有很強的表現(xiàn)欲,同時又具備了一定的歸納、總結表達的能力。因此,確定如下教學目標:

  (1).知識技能目標

  讓學生掌握多邊形的內角和的公式并熟練應用。

 。2).過程和方法目標

  讓學生經(jīng)歷知識的形成過程,認識數(shù)學特征,獲得數(shù)學經(jīng)驗,進一步發(fā)展學生的說理意識和簡單推理,合情推理能力。

 。3).情感目標

  激勵學生的學習熱情,調動他們的學習積極性,使他們有自信心,激發(fā)學生樂于合作交流意識和獨立思考的習慣。。

  2、教學重、難點定位

  教學重點是多邊形的內角和的得出和應用。

  教學難點是探索和歸納多邊形內角和的過程。

  二、教學內容分析

  1、教材的地位與作用

  本課選自人教版數(shù)學七年級下冊第七章第三節(jié)《多邊形的內角和》的第一課時。本節(jié)課作為第七章第三節(jié),起著承上啟下的作用。在內容上,從三角形的內角和到多邊形的內角和,層層遞進,這樣編排易于激發(fā)學生的學習興趣,很適合學生的認知特點。

  2、聯(lián)系及應用

  本節(jié)課是以三角形的知識為基礎,仿照三角形建立多邊形的有關概念。因此

  多邊形的邊、內角、內角和等等都可以同三角形類比。通過這節(jié)課的學習,可以培養(yǎng)學生探索與歸納能力,體會把復雜化為簡單,化未知為已知,從特殊到一般和轉化等重要的思想方法。而多邊形在工程技術和實用圖案等方面有許多的實際應用,下一節(jié)平面鑲嵌就要用到,讓學生接觸一些多邊形的實例,可以加深對它的概念以及性質的理解。

  三、教學診斷分析

  學生對三角形的知識都已經(jīng)掌握。讓學生由三角形的內角和等于180°,是一個定值,猜想四邊形的內角和也是一個定值,這是學生很容易理解的地方。由幾個特殊的四邊形的內角和出發(fā),譬如長方形、正方形的內角和都等于360°,可知如果四邊形的內角和是一個定值,這個定值是360°。要得到四邊形的內角和等于360°這個結論最直接的方法就是用量角器來度量。讓學生動手探索實踐,在探索過程中發(fā)現(xiàn)問題"度量會有誤差"。發(fā)現(xiàn)問題后接著引導學生聯(lián)想對角線的作用,四邊形的一條對角線,把它分成了兩個三角形,應用三角形的內角和等于180°,就得到四邊形的內角和等于360°。讓學生從特殊四邊形的內角和聯(lián)想一般四邊形的內角和,并在思想上引導,學習將新問題化歸為已有結論的思想方法,這里學生都容易理解。課堂教學設計中,在探究五邊形,六邊形和七邊形的內角和時,讓學生動手實踐,設置探究活動二,為了讓學生拓寬思路,從不同的角度去思考這個問題,這個活動對學生的動手能力要求進一步提高了,學生對這個問題的理解稍微有些難度,但學生可根據(jù)自己本身的特點來加以補充和完善。在教學設計中,要求根據(jù)小組選擇的方法探索多邊形的內角和。首先,小組內各個成員對所選擇的方法要了解,能夠把掌握的知識運用到實踐中;再者,小組內各個成員需要分工協(xié)作,才能夠順利的.把任務完成;最后,學生還需要把自己的思維從感性認識提升到理性認識的高度,這樣就培養(yǎng)了學生合情推理的意識。

  四、教法特點及預期效果分析本節(jié)課借鑒了美國教育家杜威的"在做中學"的理論和葉圣陶先生所倡導的"解放學生的手,解放學生的大腦,解放學生的時間"的思想,我確定如下教法和學法:

  1、教學方法的設計

  我采用了探究式教學方法,整個探究學習的過程充滿了師生之間,學生之間的交流和互動,體現(xiàn)了教師是教學活動的組織者、引導者、合作者,學生才是學習的主體。

  2、活動的開展

  利用學生的好奇心設疑、解疑,組織活潑互動、有效的教學活動,鼓勵學生積極參與,大膽猜想,使學生在自主探索和合作交流中理解和掌握本節(jié)課的內容。

  3、現(xiàn)代教育技術的應用

  我利用課件輔助教學,適時呈現(xiàn)問題情景,以豐富學生的感性認識,增強直觀效果,提高課堂效率。探究活動在本次教學設計中占了非常大的比例,探究活動一設置目的讓學生動手實踐,并把新知識與學過的三角形的相關知識聯(lián)系起來;探究活動二設置目的讓學生拓寬思路,為放開書本的束縛打下基礎;培養(yǎng)學生動手操作的能力和合情推理的意識。通過師生共同活動,訓練學生的發(fā)散性思維,培養(yǎng)學生的創(chuàng)新精神;使學生懂得數(shù)學內容普遍存在相互聯(lián)系,相互轉化的特點。練習活動的設計,目的一檢查學生的掌握知識的情況,并促進學生積極思考;目的二凸現(xiàn)小組合作的特點,并促進學生情感交流。

  以上是我對《多邊形的內角和》的教學設計說明。

初中數(shù)學教案12

  一、課題引入

  為了讓學生更好地理解正數(shù)與負數(shù)的概念,作為教師有必要了解數(shù)系的發(fā)展.從數(shù)系的發(fā)展歷程來看,微積分的基礎是實數(shù)理論,實數(shù)的基礎是有理數(shù),而有理數(shù)的基礎則是自然數(shù).自然數(shù)為數(shù)學結構提供了堅實的基礎.

  對于“數(shù)的發(fā)展”(也即“數(shù)的擴充”),有著兩種不同的認知體系.一是數(shù)的自然擴充過程,如圖1所示,即數(shù)系發(fā)展的自然的、歷史的體系,它反映了人類對數(shù)的認識的歷史發(fā)展進程;另一是數(shù)的邏輯擴充過程,如圖2所示,即數(shù)系發(fā)展所經(jīng)歷的理論的、邏輯的體系,它是策墨羅、馮諾伊曼、皮亞諾、高斯等數(shù)學家構造的一種邏輯體系,其中綜合反映了現(xiàn)代數(shù)學中許多思想方法.

  二、課題研究

  在實際生活中,存在著諸如上升5m,下降5m;收入5000元,支出5000元等各種具體的數(shù)量.這些數(shù)量不僅與5、5000等數(shù)量有關,而且還含有上升與下降、收入與支出等實際的意義.顯然上升5m與下降5m,收入5000元與支出5000元的實際意義是不同的.

  為了準確表達諸如此類的一些具有相反意義的量,僅用小學學過的正整數(shù)、正分數(shù)、零,是不夠的.如果把收入5000元記作5000元,那么支出5000元顯然是不可以也同樣記作5000元的.收入與支出是“意義相反”的兩回事,是不能用同一個數(shù)來表達的.因此,為了準確表達支出5000元,就有必要引入了一種新數(shù)—負數(shù).

  我們把所學過的大于零的數(shù),都稱為正數(shù);而且還可以在正數(shù)的前面添加一個“+”號,比如在5的前面添加一個“+”號就成了“+5”,把“+5”稱為一個正數(shù),讀作“正5”.

  在正數(shù)的前面添加一個“-”號,比如在5的前面添加一個“-”號,就成了“-5”,所有按這種形式構成的數(shù)統(tǒng)稱為負數(shù).“-5”讀作“負5”,“-5000”讀作“負5000”.

  于是“收入5000元”可以記作“5000元”,也可以記作“+5000元”,同時“支出5000元”就可以記作“-5000元”了.這樣具有相反意義的兩個數(shù)量就有了不同的表達方式.

  利用正數(shù)與負數(shù)可以準確地表達或記錄諸如上升與下降、收入與支出、海平面以上與海平面以下、零上與零下等一些“具有相反意義的量”.再如,某個機器零件的實際尺寸比設計尺寸大0.5mm就可以表示成“0.5mm”,或“+0.5mm”;如果“另一個機器零件的實際尺寸比設計尺寸小0.5mm”,那么就可以表示成“-0.5mm”了.在一次足球比賽中,如果甲隊贏了乙隊2個球,那么可以把甲隊的凈勝球數(shù)記作“+2”,把乙隊的凈勝球數(shù)記作“-2”.

  借助實際例子能夠讓學生較好地理解為什么要引入負數(shù),認識到負數(shù)是為了有效表達與實際生活相關的一些數(shù)量而引入的一種新數(shù),而不是人為地“硬造”出來的一種“新數(shù)”.

  三、鞏固練習

  例1博然的父母6月共收入4800元,可以將這筆收入記作+4800元;由于天氣炎熱,博然家用其中的1600元錢買了一臺空調,又該怎樣記錄這筆支出呢?

  思路分析:“收入”與“支出”是一對“具有相反意義的量”,可以用正數(shù)或負數(shù)來表示.一般來說,把“收入4800元”記作+4800元,而把與之具有相反意義的量“支出1600元”記作-1600元.

  特別提醒:通常具有“增加、上升、零上、海平面以上、盈余、上漲、超出”等意義的數(shù)量,都用正數(shù)來表示;而與之相對的、具有“減少、下降、零下、海平面以下、虧損、下跌、不足”等意義的數(shù)量則用負數(shù)來表示.

  再如,若游泳池的水位比正常水位高5cm,則可以將這時游泳池的水位記作+5cm;若游泳池的水位比正常的`水位低3cm,則可以將這時游泳池的水位記作-3cm;若游泳池的水位正好處于正常水位的位置,則將其水位記作0cm.

  例2周一證券交易市場開盤時,某支股票的開盤價為18.18元,收盤時下跌了2.11元;周二到周五開盤時的價格與前一天收盤價相比的漲跌情況及當天的收盤價與開盤價的漲跌情況如下表:單位:元

  日期周二周三周四周五

  開盤+0.16+0.25+0.78+2.12

  收盤-0.23-1.32-0.67-0.65

  當日收盤價

  試在表中填寫周二到周五該股票的收盤價.

  思路分析:以周二為例,表中數(shù)據(jù)“+0.16”所表示的實際意義是“周二該股票的開盤價比周一的收盤價高出了0.16元”;而表中數(shù)據(jù)“-0.23”則表示“周二該股票收盤時的收盤價比當天的開盤價降低了0.23元”.

  因此,這五天該股票的開盤價與收盤價分別應該按如下的方式進行計算:

  周一該股票的收盤價是18.18-2.11=16.07元;周二該股票的收盤價為16.07+0.16-0.23=16.00元;周三該股票的收盤價為16.00+0.25-1.32=14.93元;周四的該股票的收盤價為14.93+0.78-0.67=15.04元;周五該股票的收盤價為15.04+2.12-0.65=16.51元.

  例3甲、乙、丙三支球隊以主客場的形式進行雙循環(huán)比賽,每兩隊之間都比賽兩場,下表是這三支球隊的比賽成績,其中左欄表示主隊,上行表示客隊,比分中前后兩數(shù)分別是主客隊的進球數(shù),例如3∶2表示主隊進3球客隊進2球.

初中數(shù)學教案13

  《正方形》教學設計

  教學內容分析:

 、艑W習特殊的平行四邊形—正方形,它的特殊的性質和判定。

 、魄懊鎸W習了平行四邊形、矩形菱形,類比他們的性質與判斷,有利于對正方形的研究。

 、菍Ρ竟(jié)的學習,繼續(xù)培養(yǎng)學生分類研究的思想,并且建立新舊知識的聯(lián)系,類比的基礎上進行歸納,梳理知識,進一步發(fā)展學生的推理能力。

  學生分析

 、艑W生在小學初步認識了正方形,并且本節(jié)課之前,學生又學習了幾種平行四邊形,已經(jīng)具備了觀察研究平行四邊形的經(jīng)驗與知識基礎。

 、茖W生在上幾節(jié)已有了推理的經(jīng)歷,但是對于證明,學生的思維能力還不成熟,有待于提高。

  教學目標:

 、胖R與技能:了解正方形是特殊的平行四邊形,掌握它的性質和判定,會利用性質與判定進行簡單的說理。

 、七^程與方法:通過類比前邊的四邊形的研究,探索并歸納正方形的性質與判定。通過運用提高學生的推理能力。

 、乔楦袘B(tài)度與價值觀:在學習中體會正方形的完美性,通過活動獲得成功的喜悅與自信。

  重點:掌握正方形的性質與判定,并進行簡單的推理。

  難點:探索正方形的判定,發(fā)展學生的推理能

  教學方法:類比與探究

  教具準備:可以活動的四邊形模型。

  一、教學分析

  (一)教學內容分析

  1.教材:義務教育課程標準實驗教科書《數(shù)學》九年級上冊(人民教育出版社)

  2.本課教學內容的地位、作用,知識的前后聯(lián)系

  《中心對稱圖形》是新人教版九年級數(shù)學上冊第二十三章第二單元第二節(jié)課的內容。本節(jié)教材屬于圖形變換的內容,是在學習了“軸對稱和軸對稱圖形”、“旋轉和中心對稱”后的一種對稱圖形,因此涉及歸納、類比等思想方法,對激發(fā)學生探索精神和創(chuàng)新意識等方面都有重要意義。

  3.本課教學內容的特點,重點分析體現(xiàn)新課程理念的特點

  本節(jié)課主要介紹中心對稱圖形的概念、中心對稱圖形的識別、中心對稱圖形與軸對稱圖形與中心對稱的比較、中心對稱圖形的性質。為使學生感受、理解知識的產(chǎn)生和發(fā)展過程,培養(yǎng)學生的抽象思維,我將通過:(1)例舉日常生活中的一些旋轉對稱圖形引出中心對稱圖形的概念;(2)引導學生觀察、猜想、實驗、歸納、類比等方法探究中心對稱圖形的性質,(3)通過多媒體演示使學生對中心對稱圖形的性質有直觀的表象。我認為這環(huán)環(huán)相扣、層層深入、循序漸進的活動過程,符合新課程標準理念和學生建構知識的規(guī)律,有利于激發(fā)學生的學習情趣。

  (二)教學對象分析

  1.學生所在地區(qū)、學校及班級的特色

  我授課的班級是西安市閻良區(qū)振興中學九年級一班,作為九年級的學生,在圖形的對稱方面已經(jīng)積累一些經(jīng)驗,已經(jīng)具有一定的觀察、猜想、實驗、歸納、類比等研究圖形對稱變換的能力;班級學生具有個性活潑,思維活躍,對各種事物充滿好奇,學習情緒易于調動,學習積極性高的特點,但學生的抽象思維能力個體差異較大,并且班級中已出現(xiàn)分化現(xiàn)象。

  2.學生的年齡特點和認知特點

  班級學生的年齡大多在15歲到17歲間。他們已具備了一定的獨立分析、解決問題的能力,表現(xiàn)欲望較為強烈,喜好發(fā)表個人見解并且具有一定的合作交流、共同探討的.意識與經(jīng)驗,因此在課程內容的安排中,適當?shù)貏?chuàng)設一些具有一定思維深度的問題,加強學生在學習過程中自主探索與合作交流的緊密結合,促使學生在探究的過程中,更多地獲得成功的體驗,感受學習思考的樂趣。

  教學過程

  一:復習鞏固,建立聯(lián)系。

  【教師活動

  問題設置:①平行四邊形、矩形,菱形各有哪些性質?

  ②()的四邊形是平行四邊形。()的平行四邊形是矩形。()的平行四邊形是菱形。()的四邊形是矩形。()的四邊形是菱形。

  【學生活動

  學生回憶,并舉手回答,對于填空題,讓更多的學生參與,說出更多的答案。

  【教師活動

  評析學生的結果,給予表揚。

  總結性質從邊角對角線考慮,在填空時也考慮這幾方面之外,還應該考慮三者之間的聯(lián)系與區(qū)別。

  演示平行四邊形變?yōu)榫匦瘟庑蔚倪^程。

  二:動手操作,探索發(fā)現(xiàn)。

  活動一:拿出一張矩形紙片,拉起一角,使其寬AB落在長AD邊上,如下圖所示,沿著B′E剪下,能得到什么圖形?

  【學生活動

  學生拿出自備矩形紙片,動手操作,不難發(fā)現(xiàn)它是正方形。

  設置問題:①什么是正方形?

  觀察發(fā)現(xiàn),從活動中體會。

  【教師活動】:演示矩形變?yōu)檎叫蔚倪^程,菱形變?yōu)檎叫蔚倪^程。

  【學生活動】認真觀察變化過程,思考之間的聯(lián)系,舉手回答設置問題。

  設置問題②正方形是矩形嗎,是菱形嗎?是平行四邊形嗎?為什么?

  【學生活動】

  小組討論,分組回答。

  【教師活動】

  總結板書:㈠(一組鄰邊相等)的矩形是正方形,(一個角是直角)的菱形是正方形。

  設置問題③正方形有那些性質?

  【學生活動】

  小組討論,舉手搶答。

  【教師活動

  表揚學生發(fā)言,板書學生發(fā)現(xiàn),㈡正方形每一條對角線平分一組對角

  活動二:拿出活動一得到的正方形折一折,正方形是軸對稱圖形嗎?有幾條對稱軸?

  學生活動

  折紙發(fā)現(xiàn),說出自己的發(fā)現(xiàn)。得到正方形的又一性質。正方形是軸對稱圖形。

  教師活動

  演示從平行四邊形變?yōu)檎叫蔚倪^程,擦去板書㈠中的括號內容,出示一下問題:你還可以怎樣填空?

  ()的菱形是正方形,()的矩形是正方形,()的平行四邊形是正方形,()的四邊形是正方形。

  學生活動

  小組充分交流,表達不同的意見。

  教師活動

  評析活動,總結發(fā)現(xiàn):

  一組鄰邊相等的矩形是正方形,對角線互相平分的矩形是正方形;

  有一個角是直角的菱形是正方形,對角線相等的菱形是正方形,;

  有一組鄰邊相等且有一個角是直角的平行四邊形是正方形,對角線相等且互相平分的平行四邊形是正方形;

  四邊相等且有一角是直角的四邊形是正方形,對角線相等且互相垂直平分的四邊形是正方形。

  以上是正方形的判定方法。

  正方形是一個多么完美的平行四邊形呀?大家互相說一說,它的完美體現(xiàn)在哪里?生活中有哪些利用正方形的例子?

  學生交流,感受正方形

  三,應用體驗,推理證明。

  出示例一:正方形ABCD的兩條對角線AC,BD交與O,AB長4cm,求AC,AO長,及的度數(shù)。

  方法一解:∵四邊形ABCD是正方形

  ∴∠ABC=90°(正方形的四個角是直角)

  BC=AB=4cm(正方形的四條邊相等)

  ∴=45°(等腰直角三角形的底角是45°)

  ∴利用勾股定理可知,AC===4cm

  ∵AO=AC(正方形的對角線互相平分)

  ∴AO=×4=2cm

  方法二:證明△AOB是等腰直角三角形,即可得證。

  學生活動

  獨立思考,寫出推理過程,再進行小組討論,并且各小組指派代表寫在黑板上,共同交流。

  教師活動

  總結解題方法,從正方形的性質全面考慮,準確利用條件,減少麻煩。評析解題步驟,表揚突出學生。

  出示例二:在正方形ABCD中,E、F、G、H分別在它的四條邊上,且AE=BF=CG=DH,四邊形EFGH是什么特殊的四邊形,你是如何判斷的?

  學生活動

  小組交流,分析題意,整理思路,指名口答。

  教師活動

  說明思路,從已知出發(fā)或者從已有的判定加以選擇。

  四,歸納新知,梳理知識。

  這一節(jié)課你有什么收獲?

  學生舉手談論自己的收獲。

  請把平行四邊形,矩形,菱形,正方形分別填寫在下圖的ABCDC處,說明它們的關系。

  發(fā)表評論

  教學目標:

  情意目標:培養(yǎng)學生團結協(xié)作的精神,體驗探究成功的樂趣。

  能力目標:能利用等腰梯形的性質解簡單的幾何計算、證明題;培養(yǎng)學生探究問題、自主學習的能力。

  認知目標:了解梯形的概念及其分類;掌握等腰梯形的性質。

  教學重點、難點

  重點:等腰梯形性質的探索;

  難點:梯形中輔助線的添加。

  教學課件:PowerPoint演示文稿

  教學方法:啟發(fā)法、

  學習方法:討論法、合作法、練習法

  教學過程:

 。ㄒ唬⿲

  1、出示圖片,說出每輛汽車車窗形狀(投影)

  2、板書課題:5梯形

  3、練習:下列圖形中哪些圖形是梯形?(投影)

  結梯形概念:只有4、總結梯形概念:一組對邊平行另以組對邊不平行的四邊形是梯形。

  5、指出圖形中各部位的名稱:上底、下底、腰、高、對角線。(投影)

  6、特殊梯形的分類:(投影)

 。ǘ┑妊菪涡再|的探究

  【探究性質一】

  思考:在等腰梯形中,如果將一腰AB沿AD的方向平移到DE的位置,那么所得的△DEC是怎樣的三角形?(投影)

  猜想:由此你能得到等腰梯形的內角有什么樣的性質?(學生操作、討論、作答)

  如圖,等腰梯形ABCD中,AD∥BC,AB=CD。求證:∠B=∠C

  想一想:等腰梯形ABCD中,∠A與∠D是否相等?為什么?

  等腰梯形性質:等腰梯形的同一條底邊上的兩個內角相等。

  【操練】

 。1)如圖,等腰梯形ABCD中,AD∥BC,AB=CD,∠B=60o,BC=10cm,AD=4cm,則腰AB=cm。(投影)

 。2)如圖,在等腰梯形ABCD中,AD∥BC,AB=CD,DE∥AC,交BC的延長線于點E,CA平分∠BCD,求證:∠B=2∠E.(投影)

  【探究性質二】

  如果連接等腰梯形的兩條對角線,圖中有哪幾對全等三角形?哪些線段相等?(學生操作、討論、作答)

  如上圖,等腰梯形ABCD中,AD∥BC,AB=CD,AC、BD相交于O,求證:AC=BD。(投影)

  等腰梯形性質:等腰梯形的兩條對角線相等。

  【探究性質三】

  問題一:延長等腰梯形的兩腰,哪些三角形是軸對稱圖形?為什么?對稱軸呢?(學生操作、作答)

  問題二:等腰梯是否軸對稱圖形?為什么?對稱軸是什么?(重點討論)

  等腰梯形性質:同以底上的兩個內角相等,對角線相等

 。ㄈ┵|疑反思、小結

  讓學生回顧本課教學內容,并提出尚存問題;

  學生小結,教師視具體情況給予提示:性質(從邊、角、對角線、對稱性等角度總結)、解題方法(化梯形問題為三角形及平行四邊形問題)、梯形中輔助線的添加方法。

初中數(shù)學教案14

  學習目標

  1.理解平行線的意義兩條直線的兩種位置關系;

  2.理解并掌握平行公理及其推論的內容;

  3.會根據(jù)幾何語句畫圖,會用直尺和三角板畫平行線;

  學習重點

  探索和掌握平行公理及其推論.

  學習難點

  對平行線本質屬性的理解,用幾何語言描述圖形的性質

  一、學習過程:預習提問

  兩條直線相交有幾個交點?

  平面內兩條直線的位置關系除相交外,還有哪些呢?

 。ㄒ唬┊嬈叫芯

  1、 工具:直尺、三角板

  2、 方法:一"落";二"靠";三"移";四"畫"。

  3、請你根據(jù)此方法練習畫平行線:

  已知:直線a,點B,點C.

  (1)過點B畫直線a的`平行線,能畫幾條?

  (2)過點C畫直線a的平行線,它與過點B的平行線平行嗎?

 。ǘ┢叫泄砑巴普

  1、思考:上圖中,①過點B畫直線a的平行線,能畫 條;

  ②過點C畫直線a的平行線,能畫 條;

 、勰惝嫷闹本有什么位置關系? 。

 、谔剿鳎喝鐖D,P是直線AB外一點,CD與EF相交于P.若CD與AB平行,則EF與AB平行嗎?為什么?

  二、自我檢測:

  (一)選擇題:

  1、下列推理正確的是 ( )

  A、因為a//d, b//c,所以c//d B、因為a//c, b//d,所以c//d

  C、因為a//b, a//c,所以b//c D、因為a//b, d//c,所以a//c

  2.在同一平面內有三條直線,若其中有兩條且只有兩條直線平行,則它們交點的個數(shù)為( )

  A.0個 B.1個 C.2個 D.3個

 。ǘ┨羁疹}:

  1、在同一平面內,與已知直線L平行的直線有 條,而經(jīng)過L外一點,與已知直線L平行的直線有且只有 條。

  2、在同一平面內,直線L1與L2滿足下列條件,寫出其對應的位置關系:

 。1)L1與L2 沒有公共點,則 L1與L2 ;

 。2)L1與L2有且只有一個公共點,則L1與L2 ;

 。3)L1與L2有兩個公共點,則L1與L2 。

  3、在同一平面內,一個角的兩邊與另一個角的兩邊分別平行,那么這兩個角的大小關系是 。

  4、平面內有a 、b、c三條直線,則它們的交點個數(shù)可能是 個。

  三、CD⊥AB于D,E是BC上一點,EF⊥AB于F,∠1=∠2.試說明∠BDG+∠B=180°.

初中數(shù)學教案15

  一、素質教育目標

  (一)知識教學點

  1.掌握的三要素,能正確畫出.

  2.能將已知數(shù)在上表示出來,能說出上已知點所表示的數(shù).

  (二)能力訓練點

  1.使學生受到把實際問題抽象成數(shù)學問題的訓練,逐步形成應用數(shù)學的意識.

  2.對學生滲透數(shù)形結合的思想方法.

  (三)德育滲透點

  使學生初步了解數(shù)學來源于實踐,反過來又服務于實踐的辯證唯物主義觀點.

  (四)美育滲透點

  通過畫,給學生以圖形美的教育,同時由于數(shù)形的結合,學生會得到和諧美的享受.

  二、學法引導

  1.教學方法:根據(jù)教師為主導,學生為主體的原則,始終貫穿“激發(fā)情趣—手腦并用—啟發(fā)誘導—反饋矯正”的教學方法.

  2.學生學法:動手畫,動腦概括的三要素,動手、動腦做練習.

  三、重點、難點、疑點及解決辦法

  1.重點:正確掌握畫法和用上的點表示有理數(shù).

  2.難點:有理數(shù)和上的點的對應關系。

  四、課時安排

  1課時

  五、教具學具準備

  電腦、投影儀、自制膠片.

  六、師生互動活動設計

  師生同步畫,學生概括三要素,師出示投影,生動手動腦練習

  七、教學步驟

  (一)創(chuàng)設情境,引入新課

  師:大家知識溫度計的用途是什么?

  生:溫度計可以測量溫度

  (出示投影1)

  三個溫度計.其中一個溫度計的`液面在0上20個刻度,一個溫度計的液面在0下5個刻度,一個溫度計的液面在0刻度.

  師:三個溫度計所表示的溫度是多少?

  生:2℃,-5℃,0℃.

  我們能否用類似溫度計的圖形表示有理數(shù)呢?

  這種表示數(shù)的圖形就是今天我們要學的內容—(板書課題).

  【教法說明】從溫度計用標有讀數(shù)的刻度來表示溫度的高低這個事實出發(fā),引出本節(jié)課所要學的內容—.再從溫度計這個實物形象抽象出來研究.既激發(fā)了學生的學習興趣,又使學生受到把實際問題抽象成數(shù)學問題的訓練,培養(yǎng)了用數(shù)學的意識.

  (二)探索新知,講授新課

  1.的畫法

  與溫度計類似,可以在一條直線上畫出刻度,標上讀數(shù),用直線上的點表示正數(shù)、負數(shù)和零,具體做法如下:

  第一步:畫直線定原點原點表示0(相當于溫度計上的0℃).

  第二步:規(guī)定從原點向右的為正方向那么相反的方向(從原點向左)則為負方向.(相當于溫度計上℃以上為正,0℃以下為負).

  第三步:選擇適當?shù)拈L度為單位長度(相當于溫度計上每1℃占1小格的長度).

  【教法說明】教師邊講解邊示范,學生跟著一起畫圖.培養(yǎng)學生動手、動腦和實際操作能力,同時,把類比作為一種重要方法貫穿于概念形成過程的始終,讓學生在認知過程中領悟這種思想方法.

  讓學生觀察畫好的直線,思考以下問題:

  (出示投影1)

  (1)原點表示什么數(shù)?

  (2)原點右方表示什么數(shù)?原點左方表示什么數(shù)?

  (3)表示+2的點在什么位置?表示-1的點在什么位置?

  (4)原點向右0.5個單位長度的A點表示什么數(shù)?原點向左個單位長度的B點表示什么數(shù)?

  根據(jù)老師畫圖的步驟,學生思考在一條水平的直線上都畫出什么?然后歸納出的定義。

  學生活動:同學們思考,并要求同桌相互敘述,互相糾正補充,語句通順后舉手回答.大家思考準備更正或補充。

【初中數(shù)學教案】相關文章:

整式的加減初中數(shù)學教案05-25

初中數(shù)學教案(精選29篇)04-21

初中數(shù)學教案(精選20篇)06-15

初中數(shù)學教案(通用21篇)04-29

初中數(shù)學教案(通用16篇)04-30

初中數(shù)學教案(通用19篇)07-01

線段射線直線初中數(shù)學教案(精選6篇)06-16

初中七年級數(shù)學教案(通用13篇)06-17

幼小銜接數(shù)學教案04-26

數(shù)學教案《分類》(精選20篇)03-14