- 相關(guān)推薦
小學(xué)五年級數(shù)學(xué)《體積單位之間的進率》教案(通用11篇)
作為一名專為他人授業(yè)解惑的人民教師,通常需要準備好一份教案,教案是教材及大綱與課堂教學(xué)的紐帶和橋梁。那么教案應(yīng)該怎么寫才合適呢?下面是小編整理的小學(xué)五年級數(shù)學(xué)《體積單位之間的進率》教案(通用11篇),歡迎大家分享。
小學(xué)五年級數(shù)學(xué)《體積單位之間的進率》教案 1
教學(xué)要求
使學(xué)生在理解的基礎(chǔ)上掌握常用的體積單位之間的進率和名數(shù)的改寫。
教學(xué)重點
體積單位之間的進率。
教學(xué)用具
投影儀和棱長是1分米的正方體模型,如教材第37頁的圖。
教學(xué)過程
一、創(chuàng)設(shè)情境
填空:
、匍L方體體積=______;
、诔S玫捏w積單位有______;
、壅襟w體積=______ 。
師:你知道每相鄰的兩個體積單位之間的'進率是多少嗎?今天我們就學(xué)習體積單位間的進率。(板書課題)
二、探索研究
1.小組學(xué)習體積單位間的進率。
(1)出示:1個棱長是1分米的正方體模型教具。
提問:①當正方體的棱長是1分米時,它的體積是多少?②當正方體的棱長是10厘米時,它的體積是多少?③而1分米是多少厘米?1立方分米等于多少立方厘米?
小組合作填表:
正方體 棱長 1分米 = 10厘米
體積 1立方分米 = 1000立方厘米
小組匯報結(jié)論:1立方分米=1000立方厘米
同理得出:1立方米=1000立方分米
用填空的形式小結(jié):
從上面可以看出,相鄰兩個體積單位之間的進率都是______。
。2).將長度單位、面積單位、體積單位加以比較(投影顯示第38頁的表)
先讓學(xué)生填后并比較這三類單位相鄰兩個單位間的進率有什么不同?為什么?
。3)學(xué)習體積單位名數(shù)的改寫。
先思考:
。1)怎樣把高一級的體積單位的名數(shù)改寫成低一級的體積單位的名數(shù)?
。2)怎樣把低一級的體積單位的名數(shù)改寫成高一級的體積單位的名數(shù)?
出示例3,并寫成如下形式:
8立方米=( )立方分米 0.54立方米=( )立方分米
出示例4,并寫成如下形式:
3400立方厘米=( )立方分米 96立方厘米=( )立方分米
學(xué)生獨立思考,再小組討論自己是怎樣想和做的。
出示例5。(投影顯示)
放手讓學(xué)生獨立審題并解答,再針對出現(xiàn)的問題重點講解。
解法一:
2.2×1.5×0.01=0.033(立方米)
0.033立方米=33立方分米
解法二:
2.2米=22分米 1.5米=15分米 0.01米=0.1分米
22×15×0.1=33(立方分米)
三、課堂實踐
將練習八的第1、2題填在書上,老師進行個別輔導(dǎo)后訂正。
四、課堂小結(jié)。
學(xué)生小結(jié)今天學(xué)習的內(nèi)容。
五、課后作業(yè)
練習八的3、4、5題。
小學(xué)五年級數(shù)學(xué)《體積單位之間的進率》教案 2
[教學(xué)目標]
1、了解并掌握體積單位間的進率。
2、理解并掌握體積高級單位與低級單位間的化和聚。
3、培養(yǎng)學(xué)生認真審題的習慣,使學(xué)生在解決實際問題時,能準確地運用單位間的化聚法進行計算。
[教學(xué)重點、難點]:
體積單位間的進率和單位之間的互化
[教學(xué)過程]
一、導(dǎo)入
1、同學(xué)們,我們學(xué)過哪些計量單位?它們相鄰之間的進率是多少?,現(xiàn)在我們交流一下。
2、學(xué)生交流:有長度單位間的進率、面積單位間的進率、質(zhì)量單位間的進率、。
3、思考回答:你覺得他的如何?有什么需要補充的?如何進行單位間的互化?
4、猜想今天我們學(xué)習的相鄰體積單位間的進率可能是多少?
二、自主探究、學(xué)習新知
。ㄒ唬┨骄苛⒎椒置着c立方厘米間的進率
1、指導(dǎo)學(xué)生分組進行探究
①棱長1分米的正方體的體積是多少?
、诶忾L10厘米的正方體的體積是多少?
、1立方分米與1000立方厘米,哪個大?為什么?
2、課件:
、俳處1立方分米的正方體,一個標上棱長1分米,一個標上棱長10厘米,供學(xué)生觀察。
、谧寣W(xué)生可以觀察分析,從而為得出結(jié)論感官上的支持。
3、交流學(xué)習結(jié)果,分組匯報:
因為1分米=10厘米,所以棱長是1分米的正方體也可以看作是棱長10厘米的.正方體。1分米×1分米×1分米=1立方分米
10厘米×10厘米×10厘米=1000立方厘米
所以:1立方分米=1000立方厘米
4、讓學(xué)生在回顧一下思維的過程,再說說自己的理解。
a、一個棱長1分米的正方體,體積1×1×1=1立方分米,這個正方體的棱長也可以想成10厘米,體積10×10×10=1000立方厘米,所以1立方分米=1000立方厘米。
b、1立方分米的正方體,每層有10×10=100(個)1立方厘米的小正方體,10層有100×10=1000(個),所以是1000立方厘米。
學(xué)生討論:一個棱長1分米的正方體,體積1×1×1=1立方分米,這個正方體的棱長也可以想成10厘米,體積10×10×10=1000立方厘米,所以1立方分米=1000立方厘米。
教師課件演示:1立方分米的教具,每層有10×10=100(個)1立方厘米的小正方體,10層有100×10=1000(個),所以是1000立方厘米。
。ǘ┆毩⑻骄苛⒎矫着c立方分米之間的進率
1、教師提問:立方米與立方分米之間的進率也是1000,用什么方法可以驗證自己的想法是正確的呢?
教學(xué)1立方米=1000立方分米教學(xué)方法同上觀察1立方米=1000立方分米,1立方分米=1000立方厘米,你有什么發(fā)現(xiàn)?(板書:每相鄰兩個體積單位間的進率是1000)
2、學(xué)生自己嘗試解決問題
3、交流各自的思維過程:
棱長1米的正方體的體積是1立方米,而1米=10分米,所以10分米×10分米×10分米=1000立方分米。
所以1立方米=1000立方分米(板書)
4、:相鄰的兩個體積單位之間的進率是1000。
5、比較長度單位、面積單位、體積單位之間的進率,它們有什么不同之處?
三、解決實際問題,鞏固所學(xué)方法
1、教學(xué)例1:3.8立方米是多少立方厘米?
2400立方厘米是多少立方分米?
。1)學(xué)生嘗試練習,在書上完成。
(2)交流方法:高級單位的數(shù)改寫成低級單位的數(shù),要乘進率,小數(shù)點向右移動對應(yīng)的位數(shù);低級單位的數(shù) 改寫成高級單位的數(shù),要除以進率,小數(shù)點要向左移動對應(yīng)的位數(shù)。
2、完成47頁做一做
學(xué)生獨立作業(yè)時.提醒學(xué)生要認真審題.請學(xué)生說一說相鄰兩個面積單位的進率是多少。
四、全課
今天的學(xué)習中你有什么收獲?學(xué)到了什么?
五、布置課堂作業(yè)
完成練習八2題.5題
小學(xué)五年級數(shù)學(xué)《體積單位之間的進率》教案 3
教材分析:
這部分內(nèi)容是在學(xué)生已經(jīng)掌握了長方體和正方體體積的計算方法和認識了體積單位的基礎(chǔ)上舉行教學(xué)的。教材通過復(fù)習長度單位米、分米和厘米相鄰單位間的進率關(guān)系,面積單位平方米、平方分米和平方厘米相鄰單位間的進率關(guān)系,建立相鄰體積單位的進率之間的關(guān)系,并通過圖示,引導(dǎo)學(xué)生推出體積單位之間的進率。
教學(xué)方法:
針對以上內(nèi)容,我準備通過學(xué)生的計算、比較、分析、歸納來得出相鄰體積單位之間的進率,突出學(xué)生的自主探索學(xué)習。
教學(xué)目標:
。1)知識與技能目標:通過計算、比較、分析、歸納,使學(xué)生理解和掌握相鄰體積單位間的進率是1000,并能進行正確的運用。
(2)過程與方法目標:在學(xué)習過程中,培養(yǎng)學(xué)生比較、分析、概括的能力,提高學(xué)生對舊知識的遷移和運用能力。
(3)情感與態(tài)度目標:使學(xué)生體驗數(shù)學(xué)知識之間的緊密聯(lián)系性,能夠運用知識解決實際問題。
教學(xué)重點:
使學(xué)生理解和掌握相鄰體積單位間的進率是1000,并能進行正確的運用。
教學(xué)難點:
通過計算、比較、分析、歸納,使學(xué)生能探究出相鄰體積單位間的進率是1000。
教學(xué)過程:
一、復(fù)習導(dǎo)入:
1、復(fù)習一般長度、面積單位間的進率:
1米=()分米1分米=()厘米
1平方米=()平方分米1平方分米=()平方厘米
2、相鄰長度單位、面積單位間的進率是多少?我們在學(xué)習面積單位間進率的時候是通過怎樣的方法來學(xué)習的?
學(xué)生相互說說。
3、我們已經(jīng)認識了哪些體積單位?它們分別是怎樣定義的?
學(xué)生回答問題。
二、探究新知:
1、出示一個體積1立方分米和一個體積1立方厘米的模型,提問:1立方分米里有多少個1立方厘米呢?
2、師生研究:1立方分米是一個棱長1分米的正方體的大小。同樣一個正方體,把1分米改寫成10厘米,那么它的體積是多少立方厘米呢?
學(xué)生計算:101010=1000(立方厘米)
比較:同樣一個正方體,它的體積可以用1立方分米或者1000立方厘米來表示,說明這兩者之間有怎樣的關(guān)系呢?
。▽W(xué)生比較總結(jié)出:1立方分米=1000立方厘米)
3、用同樣的方法總結(jié)出:1立方米=1000立方分米
4、你能用一句簡潔的話來概括嗎?
(師生交流總結(jié):每相鄰兩個體積單位之間的進率是1000。)
5、比較相鄰長度單位、面積單位、體積單位之間的進率關(guān)系:
名稱 圖形 類型 進率
長度單位 平面圖形 10
面積單位 平面圖形 1010=100
體積單位 立體圖形 101010=1000
通過比較,使學(xué)生進一步明確體積單位間的進率的探索方法,加強學(xué)生的理解。
三、解決問題:
1、我們已經(jīng)學(xué)習了小數(shù)和復(fù)名數(shù),從高級單位、低級單位之間的轉(zhuǎn)化是怎樣進行的?
。▽W(xué)生相互說說)
2、已知:1立方分米=1000立方厘米,1立方米=1000立方分米,那么:1立方分米=()立方米,1立方厘米=()立方分米。
3、教學(xué)例1、2。
組織學(xué)生進行自主學(xué)習研究,集體交流解決的方法。
。▽W(xué)生有了名數(shù)之間轉(zhuǎn)換的方法,因此可以適當?shù)耐怀鰧W(xué)生學(xué)習的主體作用,讓學(xué)生來交流解決問題,提高學(xué)生運用舊知識解決新問題的能力。)
4、教學(xué)例3:
組織學(xué)生先自主讀題,并進行仔細審題,交流題目的意思。說出有哪些要注意的地方?
適當培養(yǎng)學(xué)生的分析能力,養(yǎng)成仔細審題的良好習慣。
學(xué)生獨立解決可能有兩種方法:
。1)先算出用立方米作單位的體積,再改寫成立方分米作單位。
。2)先把米作單位的數(shù)改寫成分米作單位的'數(shù),再計算出體積,就是立方分米作單位了。
。▽τ谶@兩種方法,組織學(xué)生進行比較,可以進一步驗證相鄰體積單位間的進率是1000,并發(fā)展和提高學(xué)生解決問題的能力。)
四、鞏固練習:
1、合理搭配:
5平方米 500立方分米 6780立方厘米 8.5立方米
5立方分米 500平方分米 8500立方分米 2030立方分米
0.5立方米 0.005立方米 2.03立方米 6.78立方分米
2、判斷題:
。1)兩個體積單位之間的進率是1000。()
。2)棱長6厘米的正方體的表面積和體積相等。()
。3)一個正方體的棱長擴大3倍,表面積和體積都擴大9倍。()
。4)0.5平方分米與50立方厘米一樣大。()
3、在括號里填上適當?shù)膯挝幻Q:
一個粉筆盒的體積約是0.8()。
一臺洗衣機的體積大約是340()。
摩托車每小時行約30()。
一張紙的面積約是6()。
4、選擇:
。1)、與7.5立方分米相等的是()。
A:7500立方厘米 B:0.75立方米 C:0.075立方米
。2)、正方體的棱長是a,表面積是(),體積是()。
A:a2 B:6a2 C:a3
。3)一塊長方體鋼材,長0.4米,寬3分米,高2分米,體積是()立方分米。
A:2400立方厘米 B:0.24立方米 C:24立方分米
(4)一個長方體的盒子,長0.5分米,底面積是16平方厘米,體積是()立方厘米。
A:8立方厘米 B:80立方厘米 C:0.8立方分米
小學(xué)五年級數(shù)學(xué)《體積單位之間的進率》教案 4
一、說教材
體積單位間的進率是人教版第十冊數(shù)學(xué)課本的內(nèi)容,這部分內(nèi)容是在學(xué)生已經(jīng)學(xué)習了長度單位、面積單位和體積單位間的進率以及掌握了長方體和正方體體積的計算方法的基礎(chǔ)上進行教學(xué)的。通過復(fù)習長度單位米、分米和厘米相鄰單位間的進率關(guān)系,面積單位平方米、平方分米和平方厘米相鄰單位間的進率關(guān)系,建立相鄰體積單位的進率之間的關(guān)系。首先出示了一個的正方體,一個棱長為1分米,再出示一個棱長為10厘米。讓學(xué)生分別算一算它們的體積。由此發(fā)現(xiàn):1立方分米=1000立方厘米。對于另一組相鄰體積單位立方米和立方分米的進率,教材則放手讓學(xué)生根據(jù)前面探索中得到的經(jīng)驗自主進行探索得出1立方米=1000立方分米。最后通過例3和例4的教學(xué),讓學(xué)生初步嘗試應(yīng)用相鄰體積單位間的進率進行不同體積單位的換算。自主探索、合作交流是學(xué)生學(xué)習數(shù)學(xué)的重要方式。這堂課我設(shè)計了讓學(xué)生主動參與的學(xué)習過程,讓學(xué)生通過計算、自主探索、合作交流等活動,掌握了數(shù)學(xué)知識,提高了數(shù)學(xué)能力。
二、說教學(xué)目標
通過本節(jié)課的教學(xué),主要達到以下目標:
、偻ㄟ^計算、比較、分析、歸納,使學(xué)生經(jīng)歷1立方分米=1000立方厘米、1立方米=1000立方分米的推導(dǎo)過程,理解和掌握相鄰的兩個體積單位之間的進率是1000的道理。
、跁(yīng)用對比的方法,記憶并區(qū)分長度單位、面積單位和體積單位,掌握它們相鄰兩個單位間的進率,并能正確應(yīng)用體積單位間的進率進行名數(shù)的轉(zhuǎn)化。
③在學(xué)習過程中,培養(yǎng)學(xué)生比較、分析、概括的能力,提高學(xué)生對舊知識的遷移和運用能力。
、苁箤W(xué)生體驗數(shù)學(xué)知識之間的緊密聯(lián)系性,能夠運用知識解決實際問題。
三、說教學(xué)重點與難點
教學(xué)重點:使學(xué)生理解和掌握相鄰體積單位間的進率是1000,并能正確地進行體積單位間的互化。
教學(xué)難點:通過計算、比較、分析、歸納,使學(xué)生能探究出相鄰體積單位間的進率是1000。
四、說教法和學(xué)法
現(xiàn)在教學(xué)的.目標不是使學(xué)生“學(xué)會”,而是讓學(xué)生“會學(xué)”,也就是通過課堂教學(xué)教給學(xué)生正確科學(xué)的學(xué)習方法,培養(yǎng)其良好的學(xué)習習慣。
根據(jù)教材的特點和學(xué)生的實際,本節(jié)課的教學(xué)我準備運用談話法、觀察法、比較法、分析法、討論法等多種教學(xué)方法,結(jié)合教材引導(dǎo)學(xué)生觀察、比較、分析、計算、概括出鄰體積單位之間的進率是1000,教給學(xué)生發(fā)現(xiàn)、探索新知的方法,使學(xué)生深刻地理解體積單位間進率的來龍去脈,以達到預(yù)期的教學(xué)目標。
五、說教學(xué)程序
這節(jié)課我分四個層次進行教學(xué)。
一、復(fù)習鋪墊,引入新課
1、常用的長度單位有哪些?相鄰的兩個單位間的進率是多少?
板書:1米=10分米 1分米=10厘米
2、常用的面積單位有哪些?相鄰的兩個單位間的進率是多少?
板書:1平方米=100平方分米 1平方分米=100平方厘米
3、填空,并說明算法和算理。
、6米=()分米=()厘米
5平方米=()平方分米=()平方厘米
算法:進率×高級單位的數(shù)
、700厘米=( )分米=( )米
800平方厘米=()平方分米
算法:低級單位的數(shù)÷進率
4、我們已經(jīng)認識了哪些體積單位?這些相鄰體積單位間的進率各是多少?今天這節(jié)課我們就一起來探究這個問題。
(板書課題:體積單位之間的進率)
板書:立方米 立方分米 立方厘米
【設(shè)計意圖:從學(xué)生已有的知識經(jīng)驗出發(fā)展開教學(xué),有利于學(xué)生認知結(jié)構(gòu)的形成!
二、探究新知
1、推導(dǎo)立方分米和立方厘米間的進率。
課件出示:棱長是1分米的正方體的體積是多少?
1×1×1=1(立方分米)
師:因為1分米=10厘米,如果把棱長1分米改寫成10厘米,那么這個正方體的體積又是多少呢?(課件出示:棱長是10厘米的正方體)
學(xué)生計算:10×10×10=1000(立方厘米)
師:同一個正方體,它的體積可以用1立方分米或者1000立方厘米來表示,說明這兩者之間有怎樣的關(guān)系呢?
引導(dǎo)學(xué)生比較總結(jié)出:
板書:1立方分米=1000立方厘米
2、推導(dǎo)立方米與立方分米的進率
師:仿照上面的方法你能推算1立方米等于多少立方分米?
棱長是1米的正方體的體積是1立方米。而1米=10分米,所以棱長是1米的正方體可以劃分成1000個棱長是1分米的小正方體,即1立方米=1000立方分米。
學(xué)生計算:10×10×10=1000(立方分米)
板書:1
立方米=1000立方分米
3、師:你能用一句話來概括每相鄰兩個體積單位之間的進率嗎?
師生交流總結(jié):每相鄰兩個體積單位之間的進率是1000。
4、思考:1立方米等于多少立方厘米呢?
板書:1立方米=1000000立方厘米
【設(shè)計意圖:學(xué)生通過計算,自主探索得出1立方分米=1000立方厘米;同時及時引導(dǎo)學(xué)生回顧得出這一結(jié)論的方法與過程,用類比、遷移的方法,放手讓學(xué)生根據(jù)探索中得到的經(jīng)驗自主進行推算立方米與立方分米的進率,不僅掌握了數(shù)學(xué)知識,而且潛移默化地受到了數(shù)學(xué)思想方法的熏陶。】
5、比較相鄰長度單位、面積單位、體積單位之間的進率關(guān)系
單位名稱 相鄰兩個單位間的進率
長度單位 米、分米、厘米 10
面積單位 平方米、平方分米、平方厘米 100
體積單位 立方米、立方分米、立方厘米 1000
【設(shè)計意圖:通過比較,使學(xué)生進一步明確長度單位、面積單位、體積單位這三者每相鄰兩個單位間的進率是不同的,即長度十、面積百、體積千,加強學(xué)生的理解與掌握!
6、體積單位的互化
師:我們已經(jīng)學(xué)習了長度單位,面積單位的轉(zhuǎn)化。從高級單位、低級單位之間的轉(zhuǎn)化是怎樣進行讓學(xué)生相互說說后,教師指出:體積單位間的轉(zhuǎn)化與我們學(xué)過的長度單位,面積單位的換算的方法相同。
、俪鍪窘虒W(xué)例3
3.8立方米=()立方分米2400立方厘米=()立方米
讓學(xué)生試一試!
教師提示:看一看問題是從高級單位向低級單位轉(zhuǎn)換,還是低級單位向高級單位轉(zhuǎn)換?
想:因為方米=1000立方分米,所以1000×3.8=3800。
3.8立方米(=3800)立方分米
想:因為立方米=1000立方分米,所以2400÷1000=2.4。
2400立方厘米=(2.4)立方分米
師:請對比例3的這兩道小題有什么不同?
板書:
高級單位→低級單位,用進率×高級單位的數(shù)
低級單位→高級單位,用低級單位的數(shù)÷進率
小結(jié):相鄰體積單位間的進率是1000,把高級單位的數(shù)改寫成低級單位的數(shù)要乘進率1000,所以要把小數(shù)點向右移動三位;把體積低級單位的數(shù)改寫成高級單位的數(shù),要除以進率1000,所以要把小數(shù)點向左移動三位。
【設(shè)計意圖:突出學(xué)生的獨立思考和概括能力的培養(yǎng).體積單位名數(shù)的改寫雖然是新知,但是學(xué)生已有長度單位、面積單位名數(shù)的改寫作基礎(chǔ),獨立解答這類新知并不困難,因此這一層的教學(xué)放手讓學(xué)生獨立思考,突出學(xué)生學(xué)習的主體作用,學(xué)生在嘗試做了幾道題的基礎(chǔ)上概括出解題的一般方法,提高學(xué)生運用舊知識解決新問題的能力。】
、诮虒W(xué)例4
課件出示:一個牛奶包裝箱上的尺寸:50×30×40。這個牛奶包裝箱的體積是多少立方米?
教師提示:箱上的尺寸一般是這個長方體的長、寬、高。(單位:厘米)
學(xué)生獨立解決可能有兩種方法:
。1)先算出用立方厘米作單位的數(shù),再改寫成用立方米作單位。
。2)先把厘米數(shù)改寫成用米作單位的數(shù),算出體積,就是立方米作單位了。
50厘米=0.5米30厘米=0.3米40厘米=0.4米
方法一:V=abh=0.5×0.3×0.4=0.06(立方米)
方法二:V=abh=50×30×40=60000(立方厘米)=60(立方分米)=0.06(立方米)
【組織學(xué)生先自主讀題,并進行仔細審題,交流題目的意思,交流解決的方法。適當培養(yǎng)學(xué)生的分析能力,養(yǎng)成仔細審題的良好習慣。對于這兩種方法,組織學(xué)生進行比較,可以進一步驗證相鄰體積單位間的進率是1000,發(fā)展和提高學(xué)生解決問題的能力!
三、鞏固練習
1、口答,說出計算過程。
1.02立方米=()立方分米980立方厘米=()立方分米
68立方分米=()立方厘米2090立方厘米=()立方分米
0.55立方米=()立方分米8.63立方米=()立方分米
0.6立方米=()立方分米 1200平方分米=()平方米
2.8米=()分米60厘米=()分米
2、一塊長方體鋼板長2.5米,寬1.6米,厚0.03米.它的體積是多少立方分米?
【設(shè)計意圖:鞏固練習是課堂教學(xué)的重要環(huán)節(jié),是新知識的補充和延伸,是形成知識結(jié)構(gòu)和發(fā)展能力的重要過程。通過單位換算的對比練習,使學(xué)生進一步掌握體積單位間的進率,進一步掌握體積單位的換算方法,同時溝通長度單位、面積單位和體積單位的聯(lián)系和區(qū)別,加深對這些單位意義的理解。】
四、課堂總結(jié)
通過這節(jié)課的學(xué)習,你有什么收獲?
【設(shè)計意圖:訓(xùn)練學(xué)生的語言表達能力,培養(yǎng)學(xué)生歸納概括的能力!
小學(xué)五年級數(shù)學(xué)《體積單位之間的進率》教案 5
各位領(lǐng)導(dǎo)、老師,你們好。今天我要為大家說課的內(nèi)容是北師大版六年級數(shù)學(xué)下冊第一單元——《圓錐的體積》。下面我從教材分析、教法選擇、學(xué)法指導(dǎo)和教學(xué)過程等方面進行闡述。
一、教材分析
圓錐的體積是在學(xué)生已經(jīng)掌握了圓柱體積計算及應(yīng)用和認識了圓錐的基本特征的基礎(chǔ)上學(xué)習的,是小學(xué)階段學(xué)習幾何知識的最后一課時的內(nèi)容。圓錐是人們生產(chǎn)、生活中經(jīng)常遇到的形體。教學(xué)好這部分內(nèi)容,有利于進一步發(fā)展學(xué)生的空間觀念,為進一步解決一些實際問題打下基礎(chǔ)。
數(shù)學(xué)課程標準要求:教師是學(xué)生數(shù)學(xué)活動的組織者、引導(dǎo)者、合作者。教師要積極利用各種教學(xué)資源,創(chuàng)造性地使用教材,設(shè)計適合學(xué)生發(fā)展的教學(xué)過程。根據(jù)新課程標準的理念和教材特點以及學(xué)生的實際,我制定了如下的教學(xué)目標及教學(xué)重難點。
1、教學(xué)目標:
(1)理解圓錐體積公式的推導(dǎo)過程,掌握圓錐體積計算公式,能運用體積公式計算圓錐的體積。
(2)培養(yǎng)學(xué)生的觀察、理解能力、空間觀念,應(yīng)用所學(xué)的知識解決實際問題的能力。
。3)使學(xué)生在經(jīng)歷中獲得成功的體驗,體驗數(shù)學(xué)與生活的聯(lián)系。
2、教學(xué)重點:掌握圓錐體積計算公式,能運用體積公式計算圓錐的體積以及解決一些實際問題。
3、教學(xué)難點:理解圓柱體積、圓錐體積在等底等高的條件下,體積之間的倍數(shù)關(guān)系。
4、教具準備:
。1)多媒體課件。
。2)等底等高、等底不等高、等高不等底的圓錐和圓柱若干套,沙、實驗報告單;帶有刻度的直尺,繩子等。
二、說教法
我國著名教育家葉圣陶先生指出:教是為了用不著教。教學(xué)有法,但教無定法、貴在得法。依據(jù)新課程標準理念和教材特點以及學(xué)生的認知規(guī)律,這節(jié)課我主要運用以下教學(xué)方法。
1、復(fù)習引入法。通過復(fù)習長方體、正方體、圓柱體的體積計算公式和推導(dǎo)過程幫助學(xué)生溫故知新,溝通新舊知識間的聯(lián)系。
2、情景教學(xué)法。通過讓學(xué)生猜測圓柱體積與圓錐體積的關(guān)系,誘發(fā)學(xué)生對猜測進行驗證的情景,融知識性與趣味性為一體,以情激情、以情激趣、以情促知。
3、啟發(fā)分析法。通過對三次實驗結(jié)果的分析、比較,培養(yǎng)學(xué)生問題意識,啟迪學(xué)生思維,發(fā)展學(xué)生智力。
并將自主探究的學(xué)習方式貫穿于教材的全過程。恰當運用多媒體教學(xué)手段增強教學(xué)的新穎性,從而激發(fā)學(xué)生參與學(xué)習的積極性,使他們在求知的學(xué)習狀態(tài)中展示特別,體驗到學(xué)數(shù)學(xué)用數(shù)學(xué)的樂趣。
三、說學(xué)法
教與學(xué)密不可分,教是為了更好的學(xué)。教法是學(xué)法的導(dǎo)航,學(xué)法是教法的縮影。著名教育家陶行知指出:好的先生不是教書,不是教學(xué)生,乃是教學(xué)生學(xué)。鑒于這樣的認識,在強調(diào)教法的同時,更要注重學(xué)法的指導(dǎo)。本節(jié)課在學(xué)習過程中,我主要指導(dǎo)學(xué)生學(xué)會以下學(xué)習方法:
1、轉(zhuǎn)化遷移的方法。通過復(fù)習圓柱體積的推導(dǎo)過程,使學(xué)生學(xué)會發(fā)現(xiàn)、撲捉知識間的內(nèi)在聯(lián)系,促進認知水平的形成和新知的內(nèi)化。
2、比較分析的方法。通過對三次實驗結(jié)果的比較、分析,拓展學(xué)生的視野,防止知識混淆,提高分析問題和解決問題的能力。
3、合作探究的方法。通過在分組做實驗中同學(xué)之間的交互作用,樹立團體意識,促進共同提高。
四、說程序
新課程把教學(xué)過程看成是師生交往、積極互動、共同發(fā)展的過程。根據(jù)新課程理念和
。ㄒ唬﹦(chuàng)設(shè)情境,引發(fā)問題
出示長方體、正方體、圓柱體、圓錐體,問:
1、我們學(xué)過了哪些物體體積的計算方法?它們的計算公式各是什么?
2、圓柱的體積計算方法是怎樣推導(dǎo)出來的?這節(jié)課我們就來學(xué)習圓錐的體積。(板書:圓錐的體積)
3、你認為哪一種物體體積的計算方法與圓錐有關(guān)?為什么?
4、猜測一下圓柱體積與圓錐體積有什么關(guān)系?(板書:v圓柱=3v圓錐?猜測)
。ū经h(huán)節(jié)通過創(chuàng)設(shè)圓錐體積與誰的體積關(guān)系更密切的情景,自然而然導(dǎo)入新課,吸引了學(xué)生的注意力,激發(fā)學(xué)生探索知識的積極性,為新課的學(xué)習做了良好的鋪墊。)
5、怎樣驗證自己的猜測?(板書:驗證)
(二)合作探索,解決問題
探索是數(shù)學(xué)的'生命線,倡導(dǎo)探索性學(xué)習,引導(dǎo)學(xué)生經(jīng)歷知識的形成過程,是當前小學(xué)數(shù)學(xué)改革的理念。理解圓錐體積計算公式是本節(jié)課的重點,我設(shè)計了以下幾個環(huán)節(jié),讓學(xué)生通過小組合作,自主探究、動手操作來發(fā)現(xiàn)圓錐的體積。
1、出示實驗記錄單
實驗次數(shù)
選擇一個圓柱和圓錐比較,我們發(fā)現(xiàn)
實驗結(jié)果:它們體積之間的關(guān)系
第一次
第二次
第三次
2、師引導(dǎo)學(xué)生看懂實驗單,按照實驗記錄單做實驗,師巡視指導(dǎo)。
3、讓學(xué)生介紹實驗過程和實驗結(jié)果。(去掉?)
4、問:做了3次實驗,結(jié)果為什么不一樣?
5、等底等高的圓柱體積和圓錐體積有什么關(guān)系?(板書:v圓錐=v圓柱=sh)
6、在這個公式中,s、h分別代表什么?Sh得到什么?為什么要乘?
7、求圓錐的體積要知道什么條件?
師小結(jié):通過猜測、實驗驗證得出v圓錐=sh
。ㄟ@樣設(shè)計,讓學(xué)生親身經(jīng)歷知識的形成過程,在與同伴的交流、比較中不斷完善優(yōu)化自己的知識結(jié)構(gòu),通過自主探究、合作交流,突出重點,突破難點。)
。ㄈ┻w移應(yīng)用,分層提高
練習是掌握知識、形成技能、發(fā)展智力的重要環(huán)節(jié),根據(jù)學(xué)生的年齡特點和認知規(guī)律,由易到難,由淺入深,力求體現(xiàn)知識的縱橫聯(lián)系,我設(shè)計以下幾組練習題,請看:
1、嘗試解答
出示3組數(shù)據(jù),讓學(xué)生任選一組進行解答。
底面半徑4厘米,高6厘米
底面直徑4厘米,高5厘米
底面周長25.12厘米,高4厘米
解答完后,叫一名同學(xué)板書。
問:為什么都選底面半徑和高?
小結(jié):求圓錐的體積,先求出圓錐的底面積,再根據(jù)公式求出圓錐的體積。
2、例1:(課件出示教材情景圖)在打谷場上,有一個近似于圓錐的小麥堆,底面半徑是2米,高是1.5米。你能計算出小麥堆的體積嗎?
。ㄉ毩⒘惺接嬎闳嘟涣鳎
3、判斷
。1)圓錐體積等于圓柱體積的。
。2)圓柱體積大于與它等底等高的圓錐體積。
。3)圓錐的`高是圓柱的3倍,圓錐體積等于圓柱體積。
。、填空
。1)一個圓柱的體積是6立方米,與它等底等高的圓錐體積是()。
。2)一個圓柱和一個圓錐,底面半徑和高都相等,圓錐的體積是18立方米,圓柱的體積是()。
。ㄟ@個環(huán)節(jié)的設(shè)計,第1、2兩題主要是突出本節(jié)課的重點,能運用體積公式計算圓錐的體積以及解決一些實際問題;第3、4兩題是突破本節(jié)課的難點,理解圓柱體積、圓錐體積在等底等高的條件下,體積之間的倍數(shù)關(guān)系。這些習題的設(shè)計,起到鞏固提高的作用。體現(xiàn)數(shù)學(xué)來源于生活,運用于生活。)
。ㄋ模┛偨Y(jié)評價,激勵發(fā)展
課堂總結(jié)是對本節(jié)課所學(xué)知識進行歸納和總結(jié),以及對學(xué)生學(xué)習情況的評價,因此我設(shè)計了以下幾個問題:
1、上了這些課,你有什么收獲和體會?
2、你還有什么新的想法?還有什么問題?
(這樣不僅能夠幫助學(xué)生鞏固新學(xué)的知識,完善知識結(jié)構(gòu),提高整理知識的能力,還能使學(xué)生體驗到探索成功的的樂趣,樹立學(xué)好數(shù)學(xué)的信心)
五、說板書設(shè)計
圓錐的體積
等底等高v圓柱=3v圓錐猜測
↓
驗證
v圓錐=v圓柱/3=sh/3
板書設(shè)計力求體現(xiàn)知識性和簡潔性,使學(xué)生一目了然,又起到畫龍點睛的作用。
以上僅僅是我對這節(jié)課的整體設(shè)想和教學(xué)預(yù)設(shè),在實際的教學(xué)過程中,我會十分重視課堂資源的生成情況,不斷進行課中反思,及時調(diào)控教學(xué)過程,以達到最佳的教學(xué)效果。
小學(xué)五年級數(shù)學(xué)《體積單位之間的進率》教案 6
一、說教材
(一)地位和作用
錐體的體積是《立體幾何》第二章第三節(jié)中的重要內(nèi)容,是歷年高考的重點區(qū)。通過本節(jié)知識的學(xué)習,使學(xué)生既加深了對祖原理的理解,同時也為學(xué)習臺體的體積打下基礎(chǔ)。所以,本節(jié)內(nèi)容在教材中有著承前啟后的作用
(二)對教材的認識
本節(jié)內(nèi)容不單純是為了讓學(xué)生知道錐體體積的公式,更重要的是讓學(xué)生知道這個公式是怎么得出的,在得出這個公式的過程中,采用了什么樣的科學(xué)方法和研究手段。所以,我把書中對錐體體積公式的驗證變?yōu)樘剿,沒有按照教材那樣直接給出錐體體積的公式再去詳細證明,而是通過演示實驗、設(shè)置疑問和微機顯示引導(dǎo)學(xué)生觀察、猜想、分析、論證,從而得出錐體的體積公式
(三)教學(xué)目標
1.知識目標:使學(xué)生掌握錐體的體積公式及其推導(dǎo)線索,并能初步掌握其應(yīng)用
2.能力目標:通過本節(jié)課的學(xué)習培養(yǎng)學(xué)生空間想象能力、分析解決問題能力、歸納總結(jié)能力和語言表達能力。素質(zhì)教育是高中教學(xué)的.主要任務(wù),素質(zhì)的一個重要體現(xiàn)就是能力的培養(yǎng)學(xué)生經(jīng)過近一年的學(xué)習已經(jīng)對高中數(shù)學(xué)的研究方法有了一定的認識,這正是培養(yǎng)能力的一個好時機。
3.德育目標:通過借助微機模擬演示對錐體體積公式的探求,強化學(xué)生從感性認識到理性認識的過程,培養(yǎng)學(xué)生勇于探索的精神和“從特殊到一般”的辯證唯物主義觀點。
(四)重點、難點和關(guān)鍵
錐體體積公式的探求既是重點又是難點,在探求錐體體積公式的過程中,三棱錐體積公式的發(fā)現(xiàn)是本節(jié)內(nèi)容的關(guān)鍵
二、說教法
在教學(xué)過程中我主要采取啟發(fā)式綜合教學(xué)法,通過設(shè)疑置問提出一些思考性問題,利用計算機輔助教學(xué)來最大限度地調(diào)動學(xué)生積極參與教學(xué)活動。
三、說學(xué)法
本節(jié)課主要利用計算機輔助教學(xué),充分發(fā)揮學(xué)生學(xué)習的潛能,不僅要使學(xué)生掌握運用聯(lián)想、類比、證明等合情推理和邏輯推理來學(xué)習數(shù)學(xué)知識的方法,而還要促使學(xué)生確立科學(xué)的態(tài)度和科學(xué)的方法。
四、說教學(xué)過程
(一)新課導(dǎo)入
1.錐體平行底面的截面有什么性質(zhì)?
2.祖原理的內(nèi)容是什么?
3.柱體體積公式是什么?
(二)新課教學(xué)
設(shè)問1:等底面積等高的兩個錐體的體積有何關(guān)系?
設(shè)問2:通過上面的研究我們已經(jīng)知道等底面積等高的兩個錐體的體積是相等的關(guān)系,那么它們有什么樣的數(shù)量關(guān)系呢?
設(shè)問3:通過上面的研究我們已經(jīng)知道了三棱錐的體積公式,那么對于所有錐體的體積公式又如何呢?
(三)例題與鞏固練習
例1:已知三棱錐A-BCD的側(cè)棱AD垂直于底面BCD,側(cè)面ABC與底面的成角為θ。
例3:如圖:已知正四面體A-BCD的棱長為a,求該正四面體的體積。
練習1:已知如圖四面體ABCD,AB=b,CD=a,且AB與CD之間的距離為h,成角為θ。試求:錐體A-BCD的體積。
練習2:一塊正方形薄鐵板的邊長是22cm,以它的一個頂點為圓心,邊長為半徑畫弧,沿弧剪下一個扇形,用這塊扇形鐵板圍成一個圓錐筒,求它的容積(保留兩位有效數(shù)字)
(四)歸納總結(jié)、布置作業(yè)
五、說創(chuàng)新點和教學(xué)手段
建構(gòu)理論認為:知識不是通過教師的傳授得到的,而是學(xué)習者在一定的情境,即社會文化背景下,借助學(xué)習過程中獲取知識的其他人(包括教師和學(xué)習伙伴)的幫助,利用必要的學(xué)習資料,通過意義建構(gòu)的方式而獲得;教師只是意義建構(gòu)的幫助者、促進者,而不是知識的傳授者與灌輸者。
在教學(xué)過程中,主要借助計算機輔助教學(xué),為學(xué)生創(chuàng)設(shè)學(xué)習的情境,提供建構(gòu)知識的素材,讓學(xué)生始終處于動態(tài)的活動之中。
六、說測評反饋
學(xué)生通過本節(jié)課的學(xué)習,知識內(nèi)容是自己動腦、動手而得到的,不是由老師強行灌輸?shù)玫降模哉莆盏帽容^扎實,而且通過練習和測試反映地比較好。
點擊下載完整WORD文檔,含圖片數(shù)學(xué)符號等。
小學(xué)五年級數(shù)學(xué)《體積單位之間的進率》教案 7
今天我說課的內(nèi)容是《六年級數(shù)學(xué)》(人教版)下冊第二單元《圓柱和圓錐》中的第二課時《圓錐的體積》。本次說課包括五個內(nèi)容:說教材、說教法。
一、說教材
1、教材分析
“圓錐的體積”教學(xué)是在學(xué)生學(xué)習了立體圖形——長方體、正方體、圓柱體的基礎(chǔ)上,認識了圓柱和圓錐的特征,會計算圓柱的表面積、體積的基礎(chǔ)上進行教學(xué)的。
教材突出了探索體積計算公式的過程,引導(dǎo)學(xué)生在裝沙或裝米的實驗基礎(chǔ)上進行公式推導(dǎo)。通過觀察,比較,分析,推理,概括和抽象,自主發(fā)現(xiàn)圓錐的體積計算公式,進一步積累數(shù)學(xué)活動經(jīng)驗。經(jīng)歷數(shù)學(xué)化的過程,獲得解決問題的方法。
2、學(xué)情分析
學(xué)生以前學(xué)習了長方體、正方體,在此前又學(xué)了由曲面和圓圍成的立體圖形——圓柱,且經(jīng)歷了圓柱體積計算方法的推導(dǎo)過程,具有了初步的類比思維意識。通過前一節(jié)《圓錐的認識》,學(xué)生對圓錐的特征也有了一些了解,對學(xué)生來說,求體積并非陌生的新知識,只是像圓錐這樣學(xué)生認為不規(guī)則幾何體的圖形,求體積有困難。
對于六年級的學(xué)生來說, 絕大多數(shù)學(xué)生的動手實踐能力比較強,有一定的'空間觀念基礎(chǔ),但公式的推導(dǎo)過程卻比較抽象、枯燥,對于他們來說該部分內(nèi)容是一個難點。同時對于圓錐體積計算的實際運用,從以往的`經(jīng)驗判斷,學(xué)生對3倍的關(guān)系難以理解,教師應(yīng)幫助學(xué)生理解。
3、教學(xué)目標
知識與技能目標:通過學(xué)生參與實驗,從而推導(dǎo)出圓錐體積的計算公式,并運用公式計算圓錐的體積;解決一些有關(guān)圓錐體積的實際問題。
過程與方法目標: 通過實驗推導(dǎo)圓錐體積公式的過程,增強學(xué)生的實踐操作能力,并培養(yǎng)學(xué)生觀察、比較、分析、總結(jié)歸納的學(xué)習方法。
情感與價值目標:通過實驗,引導(dǎo)學(xué)生探索知識的內(nèi)在聯(lián)系,滲透轉(zhuǎn)化思想,并感受發(fā)現(xiàn)知識的快樂,激發(fā)學(xué)習的興趣,感受數(shù)學(xué)與生活的密切聯(lián)系,培養(yǎng)學(xué)數(shù)學(xué)、用數(shù)學(xué)的樂趣。
4、教學(xué)重難點
教學(xué)重點:理解和掌握公式,能正確運用公式解決實際問題
教學(xué)難點:圓錐體積公式的推導(dǎo)過程
5、教具、學(xué)具準備
教具:一個圓柱、2個與圓柱等底、等高的圓錐、沙子;學(xué)生自制的圓柱及各類型的圓錐若干、三角尺、直尺
二、說教法
在公式推導(dǎo)階段,為了打破枯燥無味的公式推導(dǎo)過程,在教授本節(jié)課時,結(jié)合小學(xué)生的認知規(guī)律,以引導(dǎo)法、實驗法、觀察法,探索法為主,以討論法、練習法為輔,實現(xiàn)教學(xué)目標。在教學(xué)中,從:①、讓學(xué)生測量自制圓柱、圓錐的高(在上一節(jié)讓學(xué)生自己動手制作圓柱、圓錐);②、讓學(xué)生用自制的等底等高、等高不等底、等底不等高圓柱與圓錐分別裝沙實驗入手。通過學(xué)生自己動手測量、實驗操作后總結(jié)實驗規(guī)律。《圓錐的體積》說課稿
通過小組實驗、討論、交流,歸納、推導(dǎo)出圓錐體積的計算公式:v= 《圓錐的體積》
在公式運用方面:采取逐步深入的模式,讓學(xué)生討論在:①、已知圓錐的高與底面半徑;②、已知圓錐的高與底面直徑;③、已知圓錐的高與底面周長三種情況下,如何使用公式計算。然后通過讓學(xué)生列舉身邊的實例,引入實際運用。
這樣,既充分發(fā)揮了學(xué)生的主體作用,又調(diào)動學(xué)生積極主動地參與教學(xué)的全過程。力求為學(xué)生創(chuàng)造一個自主探索與合作交流的環(huán)境,引導(dǎo)學(xué)生主動去從事觀察、猜想、實驗、驗證、推理與交流等數(shù)學(xué)活動,從而使學(xué)生形成自己對數(shù)學(xué)知識的理解和有效的學(xué)習策略。
小學(xué)五年級數(shù)學(xué)《體積單位之間的進率》教案 8
一、說教材:
1、本課教學(xué)內(nèi)容是義務(wù)教育課程標準實驗教材小學(xué)數(shù)學(xué)六年級下冊的第一單元《圓柱與圓錐》中《圓錐體積》的第一課時。教學(xué)內(nèi)容為圓錐體積計算公式的推導(dǎo),例2、例3,相應(yīng)的“做一做”及練習四的習題。
2、本課是在學(xué)生已經(jīng)掌握了圓柱體積計算和認識了圓錐的基本特征的基礎(chǔ)上學(xué)習的,是小學(xué)階段幾何知識的最后一課。學(xué)好這一部分內(nèi)容,有利于進一步發(fā)展學(xué)生的空間觀念,進一步解決一些實際問題打下基礎(chǔ)。教材按照實驗、觀察、推導(dǎo)、歸納、實際應(yīng)用的程序進行安排。
3、教學(xué)重點:能正確運用圓錐體積計算公式求圓錐的體積。
教學(xué)難點:理解圓錐體積公式的推導(dǎo)過程。
4、教學(xué)目標:
知識目標:理解并掌握圓錐體積公式的推導(dǎo)過程,學(xué)會運用圓錐體積計算公式求圓錐的體積;
能力目標:能解決一些有關(guān)圓錐的實際問題,通過圓錐體積公式的推導(dǎo)實驗,增強學(xué)生的實踐操作能力和觀察比較能力;
情感與價值觀:通過實驗,引導(dǎo)學(xué)生探索知識的內(nèi)在聯(lián)系,滲透轉(zhuǎn)化思想,培養(yǎng)交流與合作的團隊精神。
5、教具準備:等底等高的圓柱、圓錐一對,與圓柱等底不等高的圓錐一個,與圓柱等高不等底的圓錐一個。
學(xué)具準備:讓學(xué)生分組制作等底等高的圓柱、圓錐若干對,一定量的細沙。
二、說教法:
1、實驗操作法。
波利亞說過:“學(xué)習任何知識的最佳途徑是由自己去發(fā)現(xiàn),因為這種發(fā)現(xiàn)理解最深刻,也最容易掌握其中的內(nèi)在規(guī)律、性質(zhì)和聯(lián)系。”因此,我在課上設(shè)計了一個實驗,通過學(xué)生動手操作,用空圓錐盛滿沙后倒入等底等高空圓柱中,發(fā)現(xiàn)“圓錐的體積等于和它等底等高的圓柱體積的三分之一”。利用實驗法,為推導(dǎo)出圓錐的體積公式發(fā)揮橋梁和啟智的作用,有助于發(fā)展學(xué)生的空間觀念,培養(yǎng)觀察能力、思維能力和動手操作能力。
2、比較法、討論法、發(fā)現(xiàn)法三法優(yōu)化組合。
幾何知識具有邏輯性、嚴密性、系統(tǒng)性的'特點。因此在做實驗時,我要求學(xué)生運用比較法、討論法、發(fā)現(xiàn)法得出結(jié)論:“圓錐的體積等于與它等底等高圓柱體積的三分之一”。然后再讓學(xué)生討論假如這句話中去掉“等底等高”這幾個字還能否成立,并讓學(xué)生用不等底等高的空圓錐、空圓柱盛沙做實驗,發(fā)現(xiàn)有時裝不下,有時不夠裝,有時剛好裝滿,得出結(jié)論:不是所有的圓錐體積都是圓柱體積的三分之一,從而加深了“等底等高”這個重要的前提條件。
三、說學(xué)法
我在研究教法的`同時,更重視對學(xué)生學(xué)法的指導(dǎo)。
1、實驗操作法。
2、嘗試練習法。
四、說教學(xué)程序:
本節(jié)課我設(shè)計了以下五個教學(xué)程序:
1、復(fù)習舊知,做好鋪墊。
復(fù)習圓錐的認識和圓柱的體積公式及其應(yīng)用,為新知遷移做好鋪墊。
2、談話激趣,導(dǎo)入新課。
(1)我們掌握了圓柱體積公式及其應(yīng)用,并認識了圓錐,這節(jié)課,我們一起來學(xué)習圓錐的體積。(板書課題)
(2)圓錐體積和圓柱體積有什么關(guān)系嗎?
3、實驗操作,探究新知。
本環(huán)節(jié)教學(xué)是本節(jié)幾何課成敗的關(guān)鍵。為了使學(xué)生成為學(xué)習的主人,在這個環(huán)節(jié)中,我盡量給學(xué)生有對象可說,有東西可做,有問題可想,有步驟可循,讓學(xué)生都能主動地操作、觀察、比較、分析和歸納。
(1)在實驗時,我提出了四個問題,讓學(xué)生帶著問題進行操作:
a比一比,量一量,圓柱和圓錐的底和高之間有什么關(guān)系?
b用空圓錐裝滿沙,倒進空圓柱中,可以倒幾次?每次結(jié)果怎樣?
c通過實驗?zāi)惆l(fā)現(xiàn)了什么?
d你能用實驗說明“圓錐的體積不一定是圓柱體積的三分之一”嗎?
(2)學(xué)生匯報實驗結(jié)果。說出圓錐體及計算公式。
(3)教師歸納公式,學(xué)生記憶公式。(板書結(jié)論和公式)
4、嘗試練習,鞏固提高。
(1)同時出示例2和例3。
①課件示例題,指名讀題,說出已知條件和所求問題;
、诜治鲱}意。
、壑该逖荨
、奂w訂正,指出計算圓錐體積時,一定不要忘了乘“1/3”。
(2)鞏固練習,形成技能,完成“做一做”。
這個環(huán)節(jié)充分放手讓學(xué)生自己嘗試練習,可以挖掘?qū)W生的潛能,讓學(xué)生體驗成功的樂趣。
5、看書質(zhì)疑,布置作業(yè)。
通過這節(jié)課的學(xué)習,你學(xué)到了什么知識?還有什么疑問的嗎?看書總結(jié)和質(zhì)疑,是一堂課的重要環(huán)節(jié)。每一節(jié)成功的課,都應(yīng)該留有足夠的時間讓學(xué)生去質(zhì)疑答難,從而實現(xiàn)課內(nèi)向課外的延伸。在完成了書上的基礎(chǔ)練習之后,設(shè)計了三個發(fā)展練習,分別是知道半徑和高;直徑和高;周長和高;求體積,這樣即滿足了基礎(chǔ)知識的學(xué)習,又使優(yōu)生能有所提高。
以上是我對《圓錐的體積》一課的說課,如有不妥望各位老師給予幫助指導(dǎo)。
小學(xué)五年級數(shù)學(xué)《體積單位之間的進率》教案 9
一、說教材
本篇教學(xué)內(nèi)容是在學(xué)生學(xué)習了體積及體積單位后進行教學(xué)的,長方體體積計算公式,教材讓學(xué)生用體積為1cm的小正方體擺成不同的長方體,通過對擺法不同的長方體相關(guān)數(shù)據(jù)的分析,引導(dǎo)學(xué)生找出長方體中所含體積單位的數(shù)量與它的長、寬、高的關(guān)系,從而總結(jié)出長方體體積的計算公式,并用字母表示出來。接著,教材安排了例1,計算長方體的體積,以鞏固長方體的體積計算公式。正方體的體積公式,教材是通過啟發(fā)學(xué)生根;據(jù)長方體和正方體的關(guān)系,推導(dǎo)出來的。在用字母表示正方體的公式時,教材介紹了“立方’’的含意,說明三個相同的'數(shù)連乘就是這個數(shù)的立方,之后安排例2,計算正方體的體積。
二、說教學(xué)重難點
根據(jù)教學(xué)明白的要求,本教材的教學(xué)重難點主要體現(xiàn)為兩點;
1、能正確運用體積公式計算長方體和正方體的體積。
2、能正確理解長方體和正方體體積公式的推導(dǎo)過程。
三、說教法學(xué)法
根據(jù)新課標的要求,在教法與學(xué)法上主要體現(xiàn)為以下兩點;
1、給學(xué)生更多的動手操作實驗與實踐的空間。
2、課堂教學(xué)的組織,將突出探究性活動,使學(xué)生辛歷;做數(shù)學(xué)’的過程。并在這一過程中,通過自主探索,認識和掌握圖形性質(zhì),積累數(shù)學(xué)活動的經(jīng)驗,發(fā)現(xiàn)空間觀念和推理能力,其間特別注意給學(xué)生提供充分的數(shù)學(xué)活動交流的機會。
四、說教學(xué)設(shè)計
鑒于新課標的要求,本節(jié)內(nèi)容是在學(xué)生于掌握了體積的概念和體積單位的基礎(chǔ)上進行的。教學(xué)過程中主要通過學(xué)生操作的方式,調(diào)動學(xué)生積極參與長方體體積公式的推導(dǎo)、推理和最后的結(jié)論,都由學(xué)生得出,老師只起‘導(dǎo)’的作用。正方體體積公式,小組合作的方式引導(dǎo)學(xué)生把它歸為長方體的特殊情況來學(xué)習,這樣既加深了對長方體、正方體之間包含關(guān)系的理解,同時也加深了對其它體積計算公式的理解。
小學(xué)五年級數(shù)學(xué)《體積單位之間的進率》教案 10
各位領(lǐng)導(dǎo)、各位同仁:
大家好!
今天我說課的內(nèi)容是《六年級數(shù)學(xué)》(人教版)下冊第二單元《圓柱和圓錐》中的第二課時《圓錐的體積》。本次說課包括五個內(nèi)容:說教材、說教法、說學(xué)法、說教學(xué)程序和說板書。
一、說教材
1、教材分析
“圓錐的體積”教學(xué)是在學(xué)生學(xué)習了立體圖形——長方體、正方體、圓柱體的基礎(chǔ)上,認識了圓柱和圓錐的特征,會計算圓柱的表面積、體積的基礎(chǔ)上進行教學(xué)的。
教材突出了探索體積計算公式的過程,引導(dǎo)學(xué)生在裝沙或裝米的實驗基礎(chǔ)上進行公式推導(dǎo)。通過觀察,比較,分析,推理,概括和抽象,自主發(fā)現(xiàn)圓錐的體積計算公式,進一步積累數(shù)學(xué)活動經(jīng)驗.經(jīng)歷數(shù)學(xué)化的過程,獲得解決問題的方法.
2、學(xué)情分析
學(xué)生以前學(xué)習了長方體、正方體,在此前又學(xué)了由曲面和圓圍成的立體圖形——圓柱,且經(jīng)歷了圓柱體積計算方法的推導(dǎo)過程,具有了初步的類比思維意識。通過前一節(jié)《圓錐的認識》,學(xué)生對圓錐的特征也有了一些了解,對學(xué)生來說,求體積并非陌生的新知識,只是像圓錐這樣學(xué)生認為不規(guī)則幾何體的圖形,求體積有困難。
對于六年級的學(xué)生來說,絕大多數(shù)學(xué)生的動手實踐能力比較強,有一定的空間觀念基礎(chǔ),但公式的推導(dǎo)過程卻比較抽象、枯燥,對于他們來說該部分內(nèi)容是一個難點。同時對于圓錐體積計算的實際運用,從以往的經(jīng)驗判斷,學(xué)生對3倍的關(guān)系難以理解,教師應(yīng)幫助學(xué)生理解。
3、教學(xué)目標
知識與技能目標:通過學(xué)生參與實驗,從而推導(dǎo)出圓錐體積的計算公式,并運用公式計算圓錐的體積;解決一些有關(guān)圓錐體積的實際問題。
過程與方法目標:通過實驗推導(dǎo)圓錐體積公式的過程,增強學(xué)生的實踐操作能力,并培養(yǎng)學(xué)生觀察、比較、分析、總結(jié)歸納的學(xué)習方法。
情感與價值目標:通過實驗,引導(dǎo)學(xué)生探索知識的內(nèi)在聯(lián)系,滲透轉(zhuǎn)化思想,并感受發(fā)現(xiàn)知識的快樂,激發(fā)學(xué)習的興趣,感受數(shù)學(xué)與生活的密切聯(lián)系,培養(yǎng)學(xué)數(shù)學(xué)、用數(shù)學(xué)的樂趣。
4、教學(xué)重難點
教學(xué)重點:理解和掌握公式,能正確運用公式解決實際問題
教學(xué)難點:圓錐體積公式的推導(dǎo)過程
5、教具、學(xué)具準備
教具:一個圓柱、2個與圓柱等底、等高的圓錐、沙子;學(xué)生自制的圓柱及各類型的圓錐若干、三角尺、直尺
二、說教法
在公式推導(dǎo)階段,為了打破枯燥無味的公式推導(dǎo)過程,在教授本節(jié)課時,結(jié)合小學(xué)生的認知規(guī)律,以引導(dǎo)法、實驗法、觀察法,探索法為主,以討論法、練習法為輔,實現(xiàn)教學(xué)目標。在教學(xué)中,從:①、讓學(xué)生測量自制圓柱、圓錐的高(在上一節(jié)讓學(xué)生自己動手制作圓柱、圓錐);②、讓學(xué)生用自制的等底等高、等高不等底、等底不等高圓柱與圓錐分別裝沙實驗入手。通過學(xué)生自己動手測量、實驗操作后總結(jié)實驗規(guī)律。《圓錐的體積》說課稿
通過小組實驗、討論、交流,歸納、推導(dǎo)出圓錐體積的計算公式:v=《圓錐的體積》說課稿sh
在公式運用方面:采取逐步深入的模式,讓學(xué)生討論在:①、已知圓錐的高與底面半徑;②、已知圓錐的高與底面直徑;③、已知圓錐的高與底面周長三種情況下,如何使用公式計算。然后通過讓學(xué)生列舉身邊的實例,引入實際運用。
這樣,既充分發(fā)揮了學(xué)生的主體作用,又調(diào)動學(xué)生積極主動地參與教學(xué)的全過程。力求為學(xué)生創(chuàng)造一個自主探索與合作交流的環(huán)境,引導(dǎo)學(xué)生主動去從事觀察、猜想、實驗、驗證、推理與交流等數(shù)學(xué)活動,從而使學(xué)生形成自己對數(shù)學(xué)知識的理解和有效的學(xué)習策略。
三、說學(xué)法
以往的教學(xué)是教師處于主導(dǎo)地位,學(xué)生基本上是處于被動的`聽講,被灌輸者的被動地位,這樣教出來的學(xué)生沒有靈活性,隨機應(yīng)變的能力差,發(fā)現(xiàn)問題,分析問題,解決問題的能力差,學(xué)生的情感也低落。
新課改要求:教師要把課堂和時間還給學(xué)生,讓學(xué)生有充足的時間和廣闊的空間學(xué)習、探討、商量、研究,教師只是學(xué)生學(xué)習的指導(dǎo)者和參與者。
針對本節(jié),在學(xué)法上主要采取:
1、學(xué)生在學(xué)習圓錐體積公式的推導(dǎo)時,通過自己動手進行操作實驗、觀察比較、討論小結(jié),最終推導(dǎo)出圓錐的計算公式,從而初步學(xué)會運用實驗的方法來探索新知識。
2、充分發(fā)揮學(xué)生的主體作用:學(xué)生能做的盡量讓學(xué)生自己做,學(xué)生能想的盡量讓學(xué)生自己想,學(xué)生能說的盡量讓學(xué)生自己說。學(xué)生不能想的,教師啟發(fā)、引導(dǎo)學(xué)生想。
3、教師提出與所學(xué)課程內(nèi)容有關(guān)的恰當合理的問題,讓學(xué)生在分析、討論、探索的前提下爭取自己解決,對于有一定困難的問題,老師再從中提醒、點撥。從而挖掘?qū)W生的潛能,讓他們體驗學(xué)習成功的樂趣,調(diào)動學(xué)生學(xué)習的積極性和主動性,發(fā)揮學(xué)生的主體作用,養(yǎng)成良好的學(xué)習習慣。
四、說教學(xué)程序
本節(jié)課的教學(xué),我安排了6個教學(xué)程序:
1、學(xué)生自主探索,預(yù)習
第一步:回憶《圓錐的`認識》
(1)讓學(xué)生將他們準備的沙子或米拿到老師這里來,我們玩堆沙子游戲。我把它倒在桌子上,緩慢地倒,形成一個近似的圓錐,你們看這是什么形狀?
引導(dǎo)學(xué)生從沙堆的形狀:底面是個圓,有一個頂點,側(cè)面是一個斜面,抽象畫出圓錐的圖形(邊提問、邊引導(dǎo)、邊畫圖板書)。
頂點
圓心
高
(2)讓學(xué)生在圖中找出圓錐的頂點、畫出圓錐的高。向?qū)W生明確:從圓錐的頂點到底面圓心的距離是圓錐的高。(在圖上表示板書這條高)。
。3)圖里畫的這條高和底面圓的所有直徑有什么關(guān)系?
。4)怎樣測量圓錐高?(讓學(xué)生根據(jù)上述方法使用三角尺、直尺測量自制圓錐的高。)
第二步:回憶圓柱體積的計算公式
畫一個與上圖圓錐等底、等高的圓柱,指名學(xué)生回答,并板書公式:
圓柱的體積=底面積×高
v圓柱=s·h
第三步:課堂展示
。1)我想知道堆起的沙堆的體積怎么辦?
。2)能不能也通過已學(xué)過的圖形來求呢?轉(zhuǎn)化成什么圖形最合適?
。3)你感覺它和前面學(xué)過的那個圖形聯(lián)系密切?
。4)引導(dǎo):可以通過實驗的方法,得到計算圓錐(沙堆)體積的公式。
2、實驗操作
這個環(huán)節(jié)分兩個步驟進行。
小學(xué)五年級數(shù)學(xué)《體積單位之間的進率》教案 11
一、說教材
1、教學(xué)內(nèi)容
本節(jié)課是人教版六年小學(xué)數(shù)學(xué)課本第十二冊第三單元第二小節(jié)第一課時。內(nèi)容包括圓柱體的體積計算公式的推導(dǎo)和運用公式計算它的體積。
2、本節(jié)課在教材中所處的地位和作用
《圓柱和圓錐》這一單元是小學(xué)階段學(xué)習幾何形體知識的最后部分,是幾何知識的綜合運用。<<圓柱的體積>>一課,是在學(xué)生已經(jīng)學(xué)過了圓面積公式的推導(dǎo)和長方體、正方體的體積公式的基礎(chǔ)上進行學(xué)習的,學(xué)生已經(jīng)有了把圓形拼成近似的長方形的經(jīng)驗,聯(lián)想到把圓柱切拼成長方體并不難,學(xué)好這部分知識,為今后學(xué)習復(fù)雜的形體知識打下扎實的基礎(chǔ),是后繼學(xué)習的前提。
3、教材的重點和難點
由于圓柱體積計算是圓錐體積計算的基礎(chǔ),因此圓柱體積和應(yīng)用是本節(jié)課教學(xué)重點。其中,圓柱體積計算公式的推導(dǎo)過程比較復(fù)雜,需要用轉(zhuǎn)化的方法來考慮,推導(dǎo)過程要有一定的邏輯推理能力,因此,推導(dǎo)圓柱體積公式的過程是本節(jié)課的難點。弄清楚圓柱與轉(zhuǎn)化后的近似長方體之間的關(guān)系是教學(xué)關(guān)鍵。
4、教學(xué)目標
。1)知道圓柱體積計算公式的推導(dǎo)過程,會應(yīng)用該公式計算圓柱的體積。
(2)初步建立空間觀念和邏輯推理能力。
。3)知道知識間是可以互相轉(zhuǎn)化的。
二、說教法
從學(xué)生已有的知識水平和認識規(guī)律出發(fā),為了更好地突出重點,化解難點,掃清學(xué)生認知上的思維障礙,在實施教學(xué)過程中,主要體現(xiàn)以下幾個特點:
1、直觀演示,操作發(fā)現(xiàn)
教師充分利用直觀教具演示,引導(dǎo)學(xué)生觀察比較,再讓學(xué)生動手操作討論,使學(xué)生在豐富感性認識的基礎(chǔ)上,在老師的指導(dǎo)下,推導(dǎo)出圓柱體積計算的公式。從而使學(xué)生從感性認識上升到理性認識,體會知識的由來,并通過已學(xué)知識解決實際問題,充分發(fā)揮了直觀教學(xué)在知識形成過程中的積極作用,同時也培養(yǎng)了學(xué)生學(xué)習數(shù)學(xué)的能力和學(xué)習習慣。
2、巧設(shè)疑問,體現(xiàn)兩“主”
教師通過設(shè)疑,指明觀察方向,營造探究新知識的氛圍,在引導(dǎo)學(xué)生歸納推理等方面充分發(fā)揮了其主導(dǎo)作用,有目的、有計劃、有層次地啟迪學(xué)生的思維,充分發(fā)揮了學(xué)生的主體作用。把學(xué)生當作教學(xué)活動的主體,成為學(xué)習活動的主人,使學(xué)生在觀察、比較、討論、研究等一系列活動中參與教學(xué)全過程,從而達到掌握新知識和發(fā)展能力的目的。
3、運用遷移,深化提高
運用知識的遷移規(guī)律,培養(yǎng)學(xué)生利用舊知學(xué)習新知的能力,從而使學(xué)生主動學(xué)習,掌握知識,形成技能。
三、說學(xué)法
課堂教學(xué)中,不是老師單純地傳授知識,而是在老師的指引下,讓學(xué)生自己學(xué),任何人都不能替代學(xué)生學(xué)習。所以要把教法融于學(xué)法中,在學(xué)法中體現(xiàn)教法。
本節(jié)課的教學(xué),使學(xué)生掌握一些基本的學(xué)習方法
1、學(xué)會通過觀察、比較、推理能概括出圓柱體積的.推導(dǎo)過程。
2、學(xué)會利用舊知轉(zhuǎn)化成新知,解決新問題的能力。
3、學(xué)會利用知識的遷移規(guī)律,把知識轉(zhuǎn)化成相應(yīng)的技能,從而提高靈活運用的能力。
四、說教學(xué)過程
對本節(jié)課的教學(xué),我們設(shè)計了以下幾個環(huán)節(jié)。
。ㄒ唬⿵(fù)習舊知識,為引入新知識作準備
1、求下面各圓的面積(口算),單位為厘米
。1)半徑為1厘米;
。2)直徑為4厘米;
(3)周長為62.8厘米。
2、什么叫做體積?怎樣計算長方體的體積?
。ǘ⿲(dǎo)入新課,隱射教學(xué)目標
1、觀察比較:出示幾組圓柱體實物(同底等高、同底不等高、等高不等底),引導(dǎo)學(xué)生觀察比較,老師提出問題:通過觀察,你發(fā)現(xiàn)誰的體積些大?再出示一個長方體實物,與一個圓柱體實物比較誰的體積大些?引導(dǎo)學(xué)生產(chǎn)生疑問后,教師這時交待,我們今天要學(xué)習的新知識,就能很好地解決這個問題(揭示課題)。這一活動的設(shè)計,激發(fā)了學(xué)生的學(xué)習興趣,使學(xué)生為了驗證自己的猜想而產(chǎn)生了強烈的求知欲望,從而進入最佳的學(xué)習狀態(tài)。)
2、展示學(xué)習目標,學(xué)生認讀目標
教師通過展示目標,學(xué)生認讀目標,這時學(xué)生就能清楚地知道了學(xué)習的主要任務(wù)和要求,從而把教師的教學(xué)目標,轉(zhuǎn)化成了學(xué)生的學(xué)習目標。使學(xué)生帶著目標,有目的、有準備地學(xué)習下一步的新知識,學(xué)生就真正能成為學(xué)習的主人,也使教學(xué)變得更加明確具體,可操作、可檢測。同時也能激發(fā)起全體學(xué)生的參與達標意識,學(xué)生的主體地位就充分地顯示出來了。
。ㄈ⿲(dǎo)入新課,實施教學(xué)目標
1、設(shè)疑:要判斷圓柱體積的大小,究竟哪個大?哪個?到底圓柱的體積的大小與什么有關(guān)呢?能不能把圓柱轉(zhuǎn)化成我們學(xué)過的立體圖形來計算它的體積?這里老師引導(dǎo)學(xué)生回憶圓的面積公式的推導(dǎo)過程,教師出示投影,幫助學(xué)生思考。
2、演示操作,揭示新知。
學(xué)生小組合作討論如何把圓柱轉(zhuǎn)化成我們學(xué)過的立體圖形,并讓學(xué)生上臺操作演示。讓學(xué)生動手操作,啟發(fā)學(xué)生說出轉(zhuǎn)化成我們熟悉的形體。
教師課件演示:引導(dǎo)學(xué)生觀察,沿著圓柱底面把圓柱切開,可以得到大小相等的16塊。演示給學(xué)生看以后,在讓學(xué)生動手操作,啟發(fā)學(xué)生說出轉(zhuǎn)化成我們熟悉的形體。同時引導(dǎo)學(xué)生觀察轉(zhuǎn)化前后兩種幾何形體之間的內(nèi)在聯(lián)系,(圓柱體轉(zhuǎn)化成長方體后體積不變)圓柱的底面與長方體的底面有什么關(guān)系?圓柱的高與長方體的高又有什么關(guān)系?從而推導(dǎo)出圓柱體體積計算的公式,最后讓學(xué)生說一說圓柱體計算公式的推動過程。并板書:圓柱體的體積=底面積·高
引導(dǎo)學(xué)生用字母表示出來,最后讓學(xué)生看書質(zhì)疑。
這部分教學(xué)設(shè)計意圖:根據(jù)教材特點,學(xué)生的認知過程,充分調(diào)動學(xué)生的學(xué)習熱情,激發(fā)求知欲望,調(diào)動學(xué)生的各種感官,充分發(fā)揮了直觀教學(xué)在知識形成過程中的積極作用,同時也培養(yǎng)了學(xué)生學(xué)習數(shù)學(xué)的能力和學(xué)習習慣。實現(xiàn)由感性到理性,由具體到抽象,這種教學(xué)方法符合學(xué)生的認知規(guī)律,有助于突破難點,化解難點。
關(guān)于難點的突破,我們主要從以下幾個方面著手:
。1)引導(dǎo)學(xué)生通過觀察比較,明確圓柱體的體積與它的底面積和高有關(guān)。
(2)運用知識遷移的規(guī)律,啟發(fā)引導(dǎo),層層深入促進學(xué)生在積極的思維中獲得新知識。
。3)充分利用直觀教具,師生互動,通過演示操作,幫助學(xué)生找出兩種幾何形體轉(zhuǎn)化前后的關(guān)系。
。4)根據(jù)新舊知識的連接點,精心設(shè)計討論內(nèi)容,分散難點,促進知識的形成。
3、運用。
出示例1:先由學(xué)生自己嘗試練習,請一位學(xué)生板演,集體講評時提問學(xué)生,在解題時要注意什么?讓學(xué)生自己來概括總結(jié),通過學(xué)生的語言說出:
。1)單位要統(tǒng)一
。2)求出的是體積要用體積單位。
在掌握了圓柱體積計算的方法之后,安排例1進行嘗試練習,這樣既可以調(diào)動學(xué)生的學(xué)習積極性和主動性,又可以培養(yǎng)學(xué)生學(xué)習新知識的能力,同時把所學(xué)知識轉(zhuǎn)化為相應(yīng)的技能。
(四)鞏固練習,檢驗?zāi)繕?/p>
1、求下面各圓柱的體積。
。1)底面圓的半徑是3厘米,高4厘米。
。2)底面積4.5平方米,高3米。
。3)底面圓的直徑是6分米,高是8分米。
。4)底面圓的`周長是12.56厘米,高是6厘米。
通過練習,鞏固新知識,加深對新知識的理解,把所學(xué)知識進一步轉(zhuǎn)化為能力,在練習中發(fā)展智力,培養(yǎng)優(yōu)良的思維品質(zhì)和學(xué)習習慣。
2、判斷:
(1)圓柱體、長方體和正方體的體積都可以用底面積乘以高的方法來計算。()
(2)圓柱的底面積擴大3倍,體積也擴大3倍。()
。3)一個長方體與一個圓柱體,底面積相等,高也相等,那么它們的體積也相等。()
。4)圓柱體體積一定,圓柱體底面積和高成反比例。()
。5)兩個圓柱體的側(cè)面積相等,體積也一定相等。()
(6)一個圓柱形的水桶能裝水15升,我們就說水桶的體積是15立方分米。()
3、變式練習:已知圓柱的體積、底面積,求圓柱的高。
這道題的安排是對所學(xué)內(nèi)容的深化,在掌握基礎(chǔ)知識的前提下,培養(yǎng)思維的靈活性,同時深化教學(xué)內(nèi)容,防止思維定勢。
4、動手實踐:讓學(xué)生測量自帶的圓柱體。
教師提問:如果要知道這個圓柱體積,該用什么方法?讓學(xué)生說一說是怎樣測量的?又是如何計算的?
這道題的設(shè)計,一方面培養(yǎng)了學(xué)生解決實際問題的能力,另一方面也加深了對圓柱體積計算公式的理解,同時數(shù)學(xué)知識也和學(xué)生的生活實際結(jié)合起來,使學(xué)生明白,我們所學(xué)的數(shù)學(xué)是身邊的數(shù)學(xué),是有趣的、有用的數(shù)學(xué),從而激發(fā)學(xué)生的學(xué)習興趣。
(五)總結(jié)全課,深化教學(xué)目標
結(jié)合板書,引導(dǎo)學(xué)生說出本課所學(xué)的內(nèi)容,我們是這樣設(shè)計的:這節(jié)課我們學(xué)習了哪些內(nèi)容?圓柱體積的計算公式是怎樣推導(dǎo)出來的?你有什么收獲?然后教師歸納,通過本節(jié)課的學(xué)習,我們懂得了新知識的得來是通過已學(xué)的知識來解決的,以后希望同學(xué)們多動腦,勤思考,在我們的生活中還有好多問題需要利用所學(xué)知識來解決的,望同學(xué)們能學(xué)會運用,善于用轉(zhuǎn)化的思想來武裝自己的頭腦,思考問題。
【小學(xué)五年級數(shù)學(xué)《體積單位之間的進率》教案】相關(guān)文章:
《面積單位間的進率》教學(xué)反思04-16
小學(xué)數(shù)學(xué)《圓柱的體積》教案03-13
小學(xué)數(shù)學(xué)《圓柱的體積》教案02-04
小學(xué)數(shù)學(xué)圓柱體積教案01-06
小學(xué)數(shù)學(xué)《圓柱的體積》教案13篇02-04