【精】八年級(jí)數(shù)學(xué)教案
作為一位優(yōu)秀的人民教師,就有可能用到教案,借助教案可以提高教學(xué)質(zhì)量,收到預(yù)期的教學(xué)效果。那要怎么寫好教案呢?以下是小編幫大家整理的八年級(jí)數(shù)學(xué)教案,歡迎閱讀,希望大家能夠喜歡。
八年級(jí)數(shù)學(xué)教案1
一、教學(xué)目標(biāo)
1、理解分式的基本性質(zhì)。
2、會(huì)用分式的基本性質(zhì)將分式變形。
二、重點(diǎn)、難點(diǎn)
1、重點(diǎn):理解分式的基本性質(zhì)。
2、難點(diǎn):靈活應(yīng)用分式的基本性質(zhì)將分式變形。
3、認(rèn)知難點(diǎn)與突破方法
教學(xué)難點(diǎn)是靈活應(yīng)用分式的基本性質(zhì)將分式變形。突破的方法是通過(guò)復(fù)習(xí)分?jǐn)?shù)的通分、約分總結(jié)出分?jǐn)?shù)的基本性質(zhì),再用類比的方法得出分式的基本性質(zhì)。應(yīng)用分式的基本性質(zhì)導(dǎo)出通分、約分的概念,使學(xué)生在理解的基礎(chǔ)上靈活地將分式變形。
三、練習(xí)題的意圖分析
1.P7的例2是使學(xué)生觀察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后應(yīng)用分式的基本性質(zhì),相應(yīng)地把分子(或分母)乘以或除以了這個(gè)整式,填到括號(hào)里作為答案,使分式的值不變。
2.P9的例3、例4地目的'是進(jìn)一步運(yùn)用分式的基本性質(zhì)進(jìn)行約分、通分。值得注意的是:約分是要找準(zhǔn)分子和分母的公因式,最后的結(jié)果要是最簡(jiǎn)分式;通分是要正確地確定各個(gè)分母的最簡(jiǎn)公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡(jiǎn)公分母。
教師要講清方法,還要及時(shí)地糾正學(xué)生做題時(shí)出現(xiàn)的錯(cuò)誤,使學(xué)生在做提示加深對(duì)相應(yīng)概念及方法的理解。
3.P11習(xí)題16.1的第5題是:不改變分式的值,使下列分式的分子和分母都不含“-”號(hào)。這一類題教材里沒(méi)有例題,但它也是由分式的基本性質(zhì)得出分子、分母和分式本身的符號(hào),改變其中任何兩個(gè),分式的值不變。
“不改變分式的值,使分式的分子和分母都不含‘-’號(hào)”是分式的基本性質(zhì)的應(yīng)用之一,所以補(bǔ)充例5。
四、課堂引入
1、請(qǐng)同學(xué)們考慮:與相等嗎?與相等嗎?為什么?
2、說(shuō)出與之間變形的過(guò)程,與之間變形的過(guò)程,并說(shuō)出變形依據(jù)?
3、提問(wèn)分?jǐn)?shù)的基本性質(zhì),讓學(xué)生類比猜想出分式的基本性質(zhì)。
五、例題講解
P7例2.填空:
[分析]應(yīng)用分式的基本性質(zhì)把已知的分子、分母同乘以或除以同一個(gè)整式,使分式的值不變。
P11例3.約分:
[分析]約分是應(yīng)用分式的基本性質(zhì)把分式的分子、分母同除以同一個(gè)整式,使分式的值不變。所以要找準(zhǔn)分子和分母的公因式,約分的結(jié)果要是最簡(jiǎn)分式。
P11例4.通分:
[分析]通分要想確定各分式的公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡(jiǎn)公分母。
八年級(jí)數(shù)學(xué)教案2
一、教材分析:
《正方形》這節(jié)課是九年義務(wù)教育人教版數(shù)學(xué)教材八年級(jí)下冊(cè)第十九章第二節(jié)的內(nèi)容?v觀整個(gè)初中教材,《正方形》是在學(xué)生掌握了平行線、三角形、平行四邊形、矩形、菱形等有關(guān)知識(shí)及簡(jiǎn)單圖形的平移和旋轉(zhuǎn)等平面幾何知識(shí),并且具備有初步的觀察、操作等活動(dòng)經(jīng)驗(yàn)的基礎(chǔ)上出現(xiàn)的。既是前面所學(xué)知識(shí)的延續(xù),又是對(duì)平行四邊形、菱形、矩形進(jìn)行綜合的不可缺少的重要環(huán)節(jié)。
本節(jié)課的重點(diǎn)是正方形的概念和性質(zhì),難點(diǎn)是理解正方形與平行四邊形、矩形、菱形之間的內(nèi)在聯(lián)系。根據(jù)大綱要求,本節(jié)課制定了知識(shí)、能力、情感三方面的目標(biāo)。
(一)知識(shí)目標(biāo):
1、要求學(xué)生掌握正方形的概念及性質(zhì);
2、能正確運(yùn)用正方形的性質(zhì)進(jìn)行簡(jiǎn)單的計(jì)算、推理、論證;
。ǘ┠芰δ繕(biāo):
1、通過(guò)本節(jié)課培養(yǎng)學(xué)生觀察、動(dòng)手、探究、分析、歸納、總結(jié)等能力;
2、發(fā)展學(xué)生合情推理意識(shí),主動(dòng)探究的習(xí)慣,逐步掌握說(shuō)理的`基本方法;
(三)情感目標(biāo):
1、讓學(xué)生樹(shù)立科學(xué)、嚴(yán)謹(jǐn)、理論聯(lián)系實(shí)際的良好學(xué)風(fēng);
2、培養(yǎng)學(xué)生互相幫助、團(tuán)結(jié)協(xié)作、相互討論的團(tuán)隊(duì)精神;
3、通過(guò)正方形圖形的完美性,培養(yǎng)學(xué)生品格的完美性。
二、學(xué)生分析:
該段學(xué)生具有一定的獨(dú)立思考和探究的能力,但語(yǔ)言表達(dá)能力方面稍有欠缺,所以在本節(jié)課的教學(xué)過(guò)程中,特意設(shè)計(jì)了讓學(xué)生自己組織語(yǔ)言培養(yǎng)說(shuō)理能力,讓學(xué)生們能逐步提高。
三、教法分析:
針對(duì)本節(jié)課的特點(diǎn),采用"實(shí)踐--觀察--總結(jié)歸納--運(yùn)用"為主線的教學(xué)方法。
通過(guò)學(xué)生動(dòng)手,采取幾種不同的方法構(gòu)造出正方形,然后引導(dǎo)學(xué)生探究正方形的概念。通過(guò)觀察、討論、歸納、總結(jié)出正方形性質(zhì)定理,最后以課堂練習(xí)加以鞏固定理,并通過(guò)一道拔高題對(duì)定義、性質(zhì)理解、鞏固加以升華。
四、學(xué)法分析:
本節(jié)課重點(diǎn)是從培養(yǎng)學(xué)生探索精神和分析歸納總結(jié)能力為出發(fā)點(diǎn),著重指導(dǎo)學(xué)生動(dòng)手、觀察、思考、分析、總結(jié)得出結(jié)論。在小組討論中通過(guò)互相學(xué)習(xí),讓學(xué)生體驗(yàn)合作學(xué)習(xí)的樂(lè)趣。
五、教學(xué)程序:
第一環(huán)節(jié):相關(guān)知識(shí)回顧
以提問(wèn)的形式復(fù)習(xí)平行四邊形、矩形、菱形的定義及性質(zhì)之后,引導(dǎo)學(xué)生發(fā)現(xiàn)矩形、菱形的實(shí)質(zhì)是由平行四邊形角度、邊長(zhǎng)的變化得到的。并啟發(fā)學(xué)生考慮,若這兩種變化同時(shí)發(fā)生在平行四邊形上,則會(huì)得到什么樣的圖形?讓學(xué)生們通過(guò)手上的學(xué)具演示以上兩種變化,從而得出結(jié)論。
第二環(huán)節(jié):新課講解通過(guò)學(xué)生們的發(fā)現(xiàn)引出課題“正方形”
1、正方形的定義:引導(dǎo)學(xué)生說(shuō)出自己變化出正方形的過(guò)程,并再次利用課件形象演示出由平行四邊形的邊、角的變化演變出正方形的過(guò)程。請(qǐng)同學(xué)們舉手發(fā)言,歸納總結(jié)出正方形定義:一組鄰邊相等,且一個(gè)角是直角的平行四邊形是正方形。再由此定義啟發(fā)學(xué)生們發(fā)現(xiàn)正方形的三個(gè)必要條件,并且由這三個(gè)條件通過(guò)重新組合即一組鄰邊相等與平行四邊形組成菱形再加上一個(gè)角是直角可得到正方形的另兩個(gè)定義:一個(gè)角是直角的菱形是正方形;一組鄰邊相等的矩形是正方形。此內(nèi)容借助課件演示其變化過(guò)程,進(jìn)一步啟發(fā)學(xué)生發(fā)現(xiàn),正方形既是特殊的菱形,又是特殊的矩形,從而總結(jié)出正方形的性質(zhì)。
2、正方形的性質(zhì)定理1:正方形的四個(gè)角都是直角,四條邊都相等;
定理2:正方形的兩條對(duì)角線相等,并且互相垂直、平分,每條對(duì)角線平分一組對(duì)角。
以上是對(duì)正方形定義和性質(zhì)的學(xué)習(xí),之后是進(jìn)行例題講解。
3、例題講解:求證:正方形的兩條對(duì)角線把正方形分成四個(gè)全等的等腰直角三角形。此題是文字證明題,由學(xué)生們分組相互探討,共同研究此題的已知、求證部分,然后由小組派代表闡述證明過(guò)程,教師板書,在板書的過(guò)程中,請(qǐng)其它小組的同學(xué)提出合理化建議,使此題證明過(guò)程條理更加清晰,更加符合邏輯,同時(shí)強(qiáng)調(diào)證明格式的書寫。從而培養(yǎng)他們語(yǔ)言表達(dá)能力,讓學(xué)生的個(gè)性得到充分的展示
4、課堂練習(xí):第一部分采用三道有關(guān)正方形的周長(zhǎng)、面積、對(duì)角線、邊長(zhǎng)計(jì)算的填空題,目的是對(duì)正方形性質(zhì)的進(jìn)一步理解,并考察學(xué)生掌握的情況。
第二部分是選擇題,通過(guò)體現(xiàn)生活中實(shí)際問(wèn)題,來(lái)提升學(xué)生所學(xué)的知識(shí),并加以綜合練習(xí),提高他們的綜合素質(zhì),使他們充分認(rèn)識(shí)到數(shù)學(xué)實(shí)質(zhì)是來(lái)源于生活并要服務(wù)于生活。
5、課堂小結(jié):此環(huán)節(jié)我是通過(guò)圖框的形式小結(jié)正方形和前階段所學(xué)特殊四邊形之間的內(nèi)在聯(lián)系,通過(guò)對(duì)所學(xué)幾種四邊形內(nèi)在聯(lián)系體現(xiàn)正方形完美的本質(zhì),渲染學(xué)生們應(yīng)追求象正方形一樣方正的品質(zhì),從而要努力學(xué)習(xí)以豐富的知識(shí)充實(shí)自己,達(dá)到理想中的完美。
6、作業(yè)設(shè)計(jì):作業(yè)是教材159頁(yè),第12、14兩小道證明題,通過(guò)此作業(yè)讓同學(xué)們進(jìn)一步鞏固有關(guān)正方形的知識(shí)。
八年級(jí)數(shù)學(xué)教案3
教學(xué)目標(biāo):
1、知識(shí)目標(biāo):了解圖案最常見(jiàn)的構(gòu)圖方式:軸對(duì)稱、平移、旋轉(zhuǎn)……,理解簡(jiǎn)單圖案設(shè)計(jì)的意圖。認(rèn)識(shí)和欣賞平移,旋轉(zhuǎn)在現(xiàn)實(shí)生活中的應(yīng)用,能夠靈活運(yùn)用軸對(duì)稱、平移、旋轉(zhuǎn)的組合,設(shè)計(jì)出簡(jiǎn)單的圖案。
2、能力目標(biāo):經(jīng)歷收集、欣賞、分析、操作和設(shè)計(jì)的過(guò)程,培養(yǎng)學(xué)生收集和整理信息的能力,分析和解決問(wèn)題的能力,合作和交流的能力以及創(chuàng)新能力。
3、情感體驗(yàn)點(diǎn):經(jīng)歷對(duì)典型圖案設(shè)計(jì)意圖的分析,進(jìn)一步發(fā)展學(xué)生的空間觀念,增強(qiáng)審美意識(shí),培養(yǎng)學(xué)生積極進(jìn)取的生活態(tài)度。
重點(diǎn)與難點(diǎn):
重點(diǎn):靈活運(yùn)用軸對(duì)稱、平移、旋轉(zhuǎn)……等方法及它們的組合進(jìn)行的圖案設(shè)計(jì)。
難點(diǎn):分析典型圖案的設(shè)計(jì)意圖。
疑點(diǎn):在設(shè)計(jì)的圖案中清晰地表現(xiàn)自己的設(shè)計(jì)意圖
教具學(xué)具準(zhǔn)備:
提前一周布置學(xué)生以小組為單位,通過(guò)各種渠道收集到的圖案、圖標(biāo)的剪貼、臨摹以及。多種常見(jiàn)的圖案及其形成過(guò)程的動(dòng)畫演示。
教學(xué)過(guò)程設(shè)計(jì):
1、情境導(dǎo)入:在優(yōu)美的音樂(lè)中,逐個(gè)展示生活中常見(jiàn)的典型圖案,并讓學(xué)生試著說(shuō)一說(shuō)每種圖案標(biāo)志的對(duì)象。(展示課本圖3—23)
明確在欣賞了圖案后,簡(jiǎn)單地復(fù)習(xí)平移、旋轉(zhuǎn)的'概念,為下面圖案的設(shè)計(jì)作好理論準(zhǔn)備。對(duì)教材給出的六個(gè)圖案通過(guò)觀察、分析進(jìn)行議論交流,讓學(xué)生初步了解圖案的設(shè)計(jì)中常常運(yùn)用圖形變換的思想方法,為學(xué)生自己設(shè)計(jì)圖案指明方向。其中圖(1)、(2)、(3)、(4)、(5)、(6)都可以通過(guò)旋轉(zhuǎn)適合角度形成(可以讓學(xué)生自己說(shuō)說(shuō)每個(gè)旋轉(zhuǎn)的角度和旋轉(zhuǎn)的次數(shù)及旋轉(zhuǎn)中心的位置),另外圖(2)、(3)、(5)也可以通過(guò)軸對(duì)稱變換形成(可以讓學(xué)生指出對(duì)軸對(duì)稱及對(duì)稱軸的條數(shù)),而圖(2)可以通過(guò)平移形成。
2、課本
1 欣賞課本75頁(yè)圖3—24的圖案,并分析這個(gè)圖案形成過(guò)程。
評(píng)注:圖案是密鋪圖案的代表,旨在通過(guò)對(duì)典型圖案的分析欣賞,使學(xué)生逐步能夠進(jìn)行圖案設(shè)計(jì),同時(shí)了解軸對(duì)稱、平移、旋轉(zhuǎn)變換是圖案制作的基本手段。例題解答的關(guān)鍵是確定“基本圖案”,然后再運(yùn)用平移、旋轉(zhuǎn)關(guān)系加以說(shuō)明,注意旋轉(zhuǎn)中心可以為圖形上某一特征的點(diǎn)。
評(píng)注:可以取其中的任何一個(gè)為基本圖案,然后通過(guò)變換得到。而且變化方式也可以是:左下角的圖案通過(guò)軸對(duì)稱變換得到左上圖和右下圖。
(二)課內(nèi)練習(xí)
(1) 以小組為單位,由每組指定一個(gè)同學(xué)展示該組搜集得到的圖案,并在全班交流。
(2) 利用下面提供的基本圖形,用平移、旋轉(zhuǎn)、軸對(duì)稱、中心對(duì)稱等方法進(jìn)行圖案設(shè)計(jì),并簡(jiǎn)要說(shuō)明自己的設(shè)計(jì)意圖。
(三)議一議
生活中還有那些圖案用到了平移或旋轉(zhuǎn)?分析其中的一個(gè),并與同伴進(jìn)行交流。
(四)課時(shí)小結(jié)
本課時(shí)的重點(diǎn)是了解平移、旋轉(zhuǎn)和軸對(duì)稱變換是圖案設(shè)計(jì)的基本方法,并能運(yùn)用這些變換設(shè)計(jì)出一些簡(jiǎn)單的圖案。
通過(guò)今天的學(xué)習(xí),你對(duì)圖案的設(shè)計(jì)又增加了哪些新的認(rèn)識(shí)?(可以利用平移、旋轉(zhuǎn)、軸對(duì)稱等多種方法來(lái)設(shè)計(jì),而且設(shè)計(jì)的圖案要能表達(dá)自己的創(chuàng)作意圖,再就是圖案的設(shè)計(jì)一定要新穎,獨(dú)特,這樣才能使人過(guò)目不忘,達(dá)到標(biāo)志的效果。)
八年級(jí)數(shù)學(xué)上冊(cè)教案(五)延伸拓展
進(jìn)一步搜集身邊的各種標(biāo)志性圖案,嘗試著重新設(shè)計(jì)它,并結(jié)合實(shí)際背景分析它的設(shè)計(jì)意圖。
八年級(jí)數(shù)學(xué)教案4
一、教材分析
1、特點(diǎn)與地位:重點(diǎn)中的重點(diǎn)。
本課是教材求兩結(jié)點(diǎn)之間的最短路徑問(wèn)題是圖最常見(jiàn)的應(yīng)用的之一,在交通運(yùn)輸、通訊網(wǎng)絡(luò)等方面具有一定的實(shí)用意義。
2、重點(diǎn)與難點(diǎn):結(jié)合學(xué)生現(xiàn)有抽象思維能力水平,已掌握基本概念等學(xué)情,以及求解最短路徑問(wèn)題的自身特點(diǎn),確立本課的重點(diǎn)和難點(diǎn)如下:
(1)重點(diǎn):如何將現(xiàn)實(shí)問(wèn)題抽象成求解最短路徑問(wèn)題,以及該問(wèn)題的解決方案。
。2)難點(diǎn):求解最短路徑算法的程序?qū)崿F(xiàn)。
3、教學(xué)安排:最短路徑問(wèn)題包含兩種情況:一種是求從某個(gè)源點(diǎn)到其他各結(jié)點(diǎn)的最短路徑,另一種是求每一對(duì)結(jié)點(diǎn)之間的最短路徑。根據(jù)教學(xué)大綱安排,重點(diǎn)講解第一種情況問(wèn)題的解決。安排一個(gè)課時(shí)講授。教材直接分析算法,考慮實(shí)際應(yīng)用需要,補(bǔ)充旅游景點(diǎn)線路選擇的實(shí)例,實(shí)例中問(wèn)題解決與算法分析相結(jié)合,逐步推動(dòng)教學(xué)過(guò)程。
二、教學(xué)目標(biāo)分析
1、知識(shí)目標(biāo):掌握最短路徑概念、能夠求解最短路徑。
2、能力目標(biāo):
。1)通過(guò)將旅游景點(diǎn)線路選擇問(wèn)題抽象成求最短路徑問(wèn)題,培養(yǎng)學(xué)生的數(shù)據(jù)抽象能力。
。2)通過(guò)旅游景點(diǎn)線路選擇問(wèn)題的解決,培養(yǎng)學(xué)生的獨(dú)立思考、分析問(wèn)題、解決問(wèn)題的能力。
3、素質(zhì)目標(biāo):培養(yǎng)學(xué)生講究工作方法、與他人合作,提高效率。
三、教法分析
課前充分準(zhǔn)備,研讀教材,查閱相關(guān)資料,制作多媒體課件。教學(xué)過(guò)程中除了使用傳統(tǒng)的“講授法”以外,主要采用“案例教學(xué)法”,同時(shí)輔以多媒體課件,以啟發(fā)的方式展開(kāi)教學(xué)。由于本節(jié)課的內(nèi)容屬于圖這一章的難點(diǎn),考慮學(xué)生的接受能力,注意與學(xué)生溝通,根據(jù)學(xué)生的'反應(yīng)控制好教學(xué)進(jìn)度是本節(jié)課成功的關(guān)鍵。
四、學(xué)法指導(dǎo)
1、課前上次課結(jié)課時(shí)給學(xué)生布置任務(wù),使其有針對(duì)性的預(yù)習(xí)。
2、課中指導(dǎo)學(xué)生討論任務(wù)解決方法,引導(dǎo)學(xué)生分析本節(jié)課知識(shí)點(diǎn)。
3、課后給學(xué)生布置同類型任務(wù),加強(qiáng)練習(xí)。
五、教學(xué)過(guò)程分析
。ㄒ唬┱n前復(fù)習(xí)(3~5分鐘)回顧“路徑”的概念,為引出“最短路徑”做鋪墊。
教學(xué)方法及注意事項(xiàng):
(1)采用提問(wèn)方式,注意及時(shí)小結(jié),提問(wèn)的目的是幫助學(xué)生回憶概念。
。2)提示學(xué)生“溫故而知新”,養(yǎng)成良好的學(xué)習(xí)習(xí)慣。
。ǘ⿲(dǎo)入新課(3~5分鐘)以城市公路網(wǎng)為例,基于求兩個(gè)點(diǎn)間最短距離的實(shí)際需要,引出本課教學(xué)內(nèi)容“求最短路徑問(wèn)題”。教學(xué)方法及注意事項(xiàng):
。1)先講實(shí)例,再指出概念,既可以吸引學(xué)生注意力,激發(fā)學(xué)習(xí)興趣,又可以實(shí)現(xiàn)教學(xué)內(nèi)容的自然過(guò)渡。
。2)此處使用案例教學(xué)法,不在于問(wèn)題的求解過(guò)程,只是為了說(shuō)明問(wèn)題的存在,所以這里的例子只需要概述,能夠說(shuō)明問(wèn)題即可。
。ㄈ┲v授新課(25~30分鐘)
1、求某一結(jié)點(diǎn)到其他各結(jié)點(diǎn)的最短路徑(重點(diǎn))主要采用案例教學(xué)法,提出旅游景點(diǎn)選擇的例子,解決如何選擇代價(jià)小、景點(diǎn)多的路線。
。1)將實(shí)際問(wèn)題抽象成圖中求任一結(jié)點(diǎn)到其他結(jié)點(diǎn)最短路徑問(wèn)題。(3~5分鐘)教學(xué)方法及注意事項(xiàng):
、僦饕捎弥v授法,將實(shí)際問(wèn)題用圖形表示出來(lái)。語(yǔ)言描述轉(zhuǎn)換的方法(用圓圈加標(biāo)號(hào)表示某一景點(diǎn),用箭頭表示從某景點(diǎn)到其他景點(diǎn)是否存在旅游線路,并且將旅途費(fèi)用寫在箭頭的旁邊。)一邊用語(yǔ)言描述,一邊在黑上畫圖。
、谧⒁馐痉懂媹D只進(jìn)行一部分,讓學(xué)生獨(dú)立思考、自主完成余下部分的轉(zhuǎn)化。
、奂皶r(shí)總結(jié),原型抽象(景點(diǎn)作為圖的結(jié)點(diǎn),景點(diǎn)間的線路作為圖的邊,旅途費(fèi)用作為邊的權(quán)值),將案例求解問(wèn)題抽象成求圖中某一結(jié)點(diǎn)到其他各結(jié)點(diǎn)的最短路徑問(wèn)題。
、芾枚嗝襟w課件,向?qū)W生展示一張帶權(quán)有向圖,并略作解釋,為后續(xù)教學(xué)做準(zhǔn)備。
教學(xué)方法及注意事項(xiàng):
①啟發(fā)式教學(xué),如何實(shí)現(xiàn)按路徑長(zhǎng)度遞增產(chǎn)生最短路徑?
、诮Y(jié)合案例分析求解最短路徑過(guò)程中(重點(diǎn))注意此處借助黑板,按照算法思想的步驟。同樣,也是只示范一部分,余下部分由學(xué)生獨(dú)立思考完成。
(四)課堂小結(jié)(3~5分鐘)
1、明確本節(jié)課重點(diǎn)
2、提示學(xué)生,這種方式形成的圖又可以解決哪類實(shí)際問(wèn)題呢?
。ㄎ澹┎贾米鳂I(yè)
1、書面作業(yè):復(fù)習(xí)本次課內(nèi)容,準(zhǔn)備一道備用習(xí)題,靈活把握時(shí)間安排。
六、教學(xué)特色
以旅游路線選擇為主線,靈活采用案例教學(xué)、示范教學(xué)、多媒體課件等多種手段輔助教學(xué),使枯燥的理論講解生動(dòng)起來(lái)。在順利開(kāi)展教學(xué)的同時(shí),體現(xiàn)所講內(nèi)容的實(shí)用性,提高學(xué)生的學(xué)習(xí)興趣。
八年級(jí)數(shù)學(xué)教案5
一、教學(xué)目標(biāo):
1、加深對(duì)加權(quán)平均數(shù)的理解
2、會(huì)根據(jù)頻數(shù)分布表求加權(quán)平均數(shù),從而解決一些實(shí)際問(wèn)題
3、會(huì)用計(jì)算器求加權(quán)平均數(shù)的值
二、重點(diǎn)、難點(diǎn)和難點(diǎn)的突破方法:
1、重點(diǎn):根據(jù)頻數(shù)分布表求加權(quán)平均數(shù)
2、難點(diǎn):根據(jù)頻數(shù)分布表求加權(quán)平均數(shù)
3、難點(diǎn)的突破方法:
首先應(yīng)先復(fù)習(xí)組中值的定義,在七年級(jí)下教材P72中已經(jīng)介紹過(guò)組中值定義。因?yàn)樵诟鶕?jù)頻數(shù)分布表求加權(quán)平均數(shù)近似值過(guò)程中要用到組中值去代替一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)的值,所以有必要在這里復(fù)習(xí)組中值定義。
應(yīng)給學(xué)生介紹為什么可以利用組中值代替一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)的值,以及這樣代替的好處、不妨舉一個(gè)例子,在一組中如果數(shù)據(jù)分布較為均勻時(shí),比如教材P140探究問(wèn)題的表格中的第三組數(shù)據(jù),它的范圍是41≤X≤61,共有20個(gè)數(shù)據(jù),若分布較為平均,41、42、43、44…60個(gè)出現(xiàn)1次,那么這組數(shù)據(jù)的和為41+42+…+60=1010。而用組中值51去乘以頻數(shù)20恰好為1020≈1010,即當(dāng)數(shù)據(jù)分布較為平均時(shí)組中值恰好近似等于它的平均數(shù)。所以利用組中值X頻數(shù)去代替這組數(shù)據(jù)的和還是比較合理的,而且這樣做的好處是簡(jiǎn)化了計(jì)算量。
為了更好的理解這種近似計(jì)算的方法和合理性,可以讓學(xué)生去讀統(tǒng)計(jì)表,體會(huì)表格的實(shí)際意義。
三、例習(xí)題的意圖分析
1、教材P140探究欄目的意圖。
(1)、主要是想引出根據(jù)頻數(shù)分布表求加權(quán)平均數(shù)近似值的計(jì)算方法。
(2)、加深了對(duì)“權(quán)”意義的理解:當(dāng)利用組中值近似取代替一組數(shù)據(jù)中的平均值時(shí),頻數(shù)恰好反映這組數(shù)據(jù)的輕重程度,即權(quán)。
這個(gè)探究欄目也可以幫助學(xué)生去回憶、復(fù)習(xí)七年級(jí)下的關(guān)于頻數(shù)分布表的一些內(nèi)容,比如組、組中值及頻數(shù)在表中的具體意義。
2、教材P140的思考的意圖。
(1)、使學(xué)生通過(guò)思考這兩個(gè)問(wèn)題過(guò)程中體會(huì)利用統(tǒng)計(jì)知識(shí)可以解決生活中的許多實(shí)際問(wèn)題
(2)、幫助學(xué)生理解表中所表達(dá)出來(lái)的信息,培養(yǎng)學(xué)生分析數(shù)據(jù)的`能力。
3、P141利用計(jì)算器計(jì)算平均值
這部分篇幅較小,與傳統(tǒng)教材那種詳細(xì)介紹計(jì)算器使用方法產(chǎn)生明顯對(duì)比。一則由于學(xué)校中學(xué)生使用計(jì)算器不同,其操作過(guò)程有差別亦不同,再者,各種計(jì)算器的使用說(shuō)明書都有詳盡介紹,同時(shí)也說(shuō)明在今后中考趨勢(shì)仍是不允許使用計(jì)算器。所以本節(jié)課的重點(diǎn)內(nèi)容不是利用計(jì)算器求加權(quán)平均數(shù),但是掌握其使用方法確實(shí)可以運(yùn)算變得簡(jiǎn)單。統(tǒng)計(jì)中一些數(shù)據(jù)較大、較多的計(jì)算也變得容易些了。
四、課堂引入
采用教材原有的引入問(wèn)題,設(shè)計(jì)的幾個(gè)問(wèn)題如下:
(1)、請(qǐng)同學(xué)讀P140探究問(wèn)題,依據(jù)統(tǒng)計(jì)表可以讀出哪些信息
(2)、這里的組中值指什么,它是怎樣確定的?
(3)、第二組數(shù)據(jù)的頻數(shù)5指什么呢?
(4)、如果每組數(shù)據(jù)在本組中分布較為均勻,比組數(shù)據(jù)的平均值和組中值有什么關(guān)系。
五、隨堂練習(xí)
1、某校為了了解學(xué)生作課外作業(yè)所用時(shí)間的情況,對(duì)學(xué)生作課外作業(yè)所用時(shí)間進(jìn)行調(diào)查,下表是該校初二某班50名學(xué)生某一天做數(shù)學(xué)課外作業(yè)所用時(shí)間的情況統(tǒng)計(jì)表
所用時(shí)間t(分鐘)人數(shù)
0 0<≤ 6 20 30 40 50 (1)、第二組數(shù)據(jù)的組中值是多少? (2)、求該班學(xué)生平均每天做數(shù)學(xué)作業(yè)所用時(shí)間 2、某班40名學(xué)生身高情況如下圖, 請(qǐng)計(jì)算該班學(xué)生平均身高 答案1.(1).15. (2)28. 2. 165 六、課后練習(xí): 1、某公司有15名員工,他們所在的部門及相應(yīng)每人所創(chuàng)的年利潤(rùn)如下表 部門A B C D E F G 人數(shù)1 1 2 4 2 2 5 每人創(chuàng)得利潤(rùn)20 5 2.5 2 1.5 1.5 1.2 該公司每人所創(chuàng)年利潤(rùn)的平均數(shù)是多少萬(wàn)元? 2、下表是截至到20xx年費(fèi)爾茲獎(jiǎng)得主獲獎(jiǎng)時(shí)的年齡,根據(jù)表格中的信息計(jì)算獲費(fèi)爾茲獎(jiǎng)得主獲獎(jiǎng)時(shí)的平均年齡? 年齡頻數(shù) 28≤X<30 4 30≤X<32 3 32≤X<34 8 34≤X<36 7 36≤X<38 9 38≤X<40 11 40≤X<42 2 3、為調(diào)查居民生活環(huán)境質(zhì)量,環(huán)保局對(duì)所轄的50個(gè)居民區(qū)進(jìn)行了噪音(單位:分貝)水平的調(diào)查,結(jié)果如下圖,求每個(gè)小區(qū)噪音的平均分貝數(shù)。 答案:1.約2.95萬(wàn)元2.約29歲3.60.54分貝 一、平移:在平面內(nèi),將一個(gè)圖形沿某個(gè)方向移動(dòng)一定的距離,這樣的圖形運(yùn)動(dòng)稱為平移。 1.平移 2.平移的性質(zhì): 、沤(jīng)過(guò)平移,對(duì)應(yīng)點(diǎn)所連的線段平行且相等; 、茖(duì)應(yīng)線段平行且相等,對(duì)應(yīng)角相等。 、瞧揭撇桓淖儓D形的大小和形狀(只改變圖形的位置)。 (4)平移后的圖形與原圖形全等。 3.簡(jiǎn)單的平移作圖 、俅_定個(gè)圖形平移后的位置的條件: ⑴需要原圖形的位置; 、菩枰揭频姆较; ⑶需要平移的距離或一個(gè)對(duì)應(yīng)點(diǎn)的位置。 ②作平移后的圖形的方法: 、耪页鲫P(guān)鍵點(diǎn);⑵作出這些點(diǎn)平移后的對(duì)應(yīng)點(diǎn); 、菍⑺鞯膶(duì)應(yīng)點(diǎn)按原來(lái)方式順次連接,所得的; 二、旋轉(zhuǎn):在平面內(nèi),將一個(gè)圖形繞一個(gè)定點(diǎn)沿某個(gè)方向轉(zhuǎn)動(dòng)一個(gè)角度,這樣的圖形運(yùn)動(dòng)稱為旋轉(zhuǎn),這個(gè)定點(diǎn)稱為旋轉(zhuǎn)中心,轉(zhuǎn)動(dòng)的角稱為旋轉(zhuǎn)角。 1.旋轉(zhuǎn) 2.旋轉(zhuǎn)的性質(zhì) 、判D(zhuǎn)變化前后,對(duì)應(yīng)線段,對(duì)應(yīng)角分別相等,圖形的大小,形狀都不改變(只改變圖形的`位置)。 、菩D(zhuǎn)過(guò)程中,圖形上每一個(gè)點(diǎn)都繞旋轉(zhuǎn)中心沿相同方向轉(zhuǎn)動(dòng)了相同的角度。 、侨我庖粚(duì)對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線所成的角都是旋轉(zhuǎn)角,對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等。 、刃D(zhuǎn)前后的兩個(gè)圖形全等。 3.簡(jiǎn)單的旋轉(zhuǎn)作圖 ⑴已知原圖,旋轉(zhuǎn)中心和一對(duì)對(duì)應(yīng)點(diǎn),求作旋轉(zhuǎn)后的圖形。 ⑵已知原圖,旋轉(zhuǎn)中心和一對(duì)對(duì)應(yīng)線段,求作旋轉(zhuǎn)后的圖形。 、且阎瓐D,旋轉(zhuǎn)中心和旋轉(zhuǎn)角,求作旋轉(zhuǎn)后的圖形。 三、分析組合圖案的形成 、俅_定組合圖案中的“基本圖案” ②發(fā)現(xiàn)該圖案各組成部分之間的內(nèi)在聯(lián)系 、厶剿髟搱D案的形成過(guò)程,類型有:⑴平移變換;⑵旋轉(zhuǎn)變換;⑶軸對(duì)稱變換;⑷旋轉(zhuǎn)變換與平移變換的組合; 、尚D(zhuǎn)變換與軸對(duì)稱變換的組合;⑹軸對(duì)稱變換與平移變換的組合。 教學(xué)目標(biāo): 【知識(shí)與技能】 1、理解并掌握等腰三角形的性質(zhì)。 2、會(huì)用符號(hào)語(yǔ)言表示等腰三角形的性質(zhì)。 3、能運(yùn)用等腰三角形性質(zhì)進(jìn)行證明和計(jì)算。 【過(guò)程與方法】 1、通過(guò)觀察等腰三角形的對(duì)稱性,發(fā)展學(xué)生的形象思維。 2、通過(guò)實(shí)踐、觀察、證明等腰三角形的性質(zhì),積累數(shù)學(xué)活動(dòng)經(jīng)驗(yàn),感受數(shù)學(xué)思考過(guò)程的條理性,發(fā)展學(xué)生的合情推理能力。 3、通過(guò)運(yùn)用等腰三角形的性質(zhì)解決有關(guān)問(wèn)題,提高學(xué)生運(yùn)用幾何語(yǔ)言表達(dá)問(wèn)題的,運(yùn)用知識(shí)和技能解決問(wèn)題的能力。 【情感態(tài)度】 引導(dǎo)學(xué)生對(duì)圖形的觀察、發(fā)現(xiàn),激發(fā)學(xué)生的好奇心和求知欲,并在運(yùn)用數(shù)學(xué)知識(shí)解答問(wèn)題的活動(dòng)中取得成功的體驗(yàn)。 【教學(xué)重點(diǎn)】 等腰三角形的性質(zhì)及應(yīng)用。 【教學(xué)難點(diǎn)】 等腰三角形的證明。 教學(xué)過(guò)程: 一、情境導(dǎo)入,初步認(rèn)識(shí) 問(wèn)題1什么叫等腰三角形?它是一個(gè)軸對(duì)稱圖形嗎?請(qǐng)根據(jù)自己的理解,利用軸對(duì)稱的知識(shí),自己做一個(gè)等腰三角形。要求學(xué)生獨(dú)立思考,動(dòng)手作圖后再互相交流評(píng)價(jià)。 可按下列方法做出: 作一條直線l,在l上取點(diǎn)A,在l外取點(diǎn)B,作出點(diǎn)B關(guān)于直線l的對(duì)稱點(diǎn)C,連接AB,AC,CB,則可得到一個(gè)等腰三角形。 問(wèn)題2每位同學(xué)請(qǐng)拿出事先準(zhǔn)備好的長(zhǎng)方形紙片,按下圖方式折疊剪裁,再把它展開(kāi),觀察并討論:得到的△ABC有什么特點(diǎn)? 教師指導(dǎo):上述過(guò)程中,剪刀剪過(guò)的兩條邊是相等的,即△ABC中AB=AC,所以△ABC是等腰三角形。 把剪出的等腰三角形ABC沿折痕對(duì)折,找出其中重合的線段和角。由這些重合的線段和角,你能發(fā)現(xiàn)等腰三角形的'性質(zhì)嗎?說(shuō)說(shuō)你的猜想。 在一張白紙上任意畫一個(gè)等腰三角形,把它剪下來(lái),請(qǐng)你試著折一折。你的猜想仍然成立嗎? 教學(xué)說(shuō)明:通過(guò)學(xué)生的動(dòng)手操作與觀察發(fā)現(xiàn),加深學(xué)生對(duì)等腰三角形性質(zhì)的理解。 二、思考探究,獲取新知 教師依據(jù)學(xué)生討論發(fā)言的情況,歸納等腰三角形的性質(zhì): 、佟螧=∠C→兩個(gè)底角相等。 、贐D=CD→AD為底邊BC上的中線。 、邸螧AD=∠CAD→AD為頂角∠BAC的平分線。 ∠ADB=∠ADC=90°→AD為底邊BC上的高。 指導(dǎo)學(xué)生用語(yǔ)言敘述上述性質(zhì)。 性質(zhì)1等腰三角形的兩個(gè)底角相等(簡(jiǎn)寫成:“等邊對(duì)等角”)。 性質(zhì)2等腰三角形的頂角平分線、底邊上的中線,底邊上的高重合(簡(jiǎn)記為:“三線合一”)。 教師指導(dǎo)對(duì)等腰三角形性質(zhì)的證明。 1、證明等腰三角形底角的性質(zhì)。 教師要求學(xué)生根據(jù)猜想的結(jié)論畫出相應(yīng)的圖形,寫出已知和求證。在引導(dǎo)學(xué)生分析思路時(shí)強(qiáng)調(diào): (1)利用三角形全等來(lái)證明兩角相等。為證∠B=∠C,需證明以∠B,∠C為元素的兩個(gè)三角形全等,需要添加輔助線構(gòu)造符合證明要求的兩個(gè)三角形。 (2)添加輔助線的方法可以有多種方式:如作頂角平分線,或作底邊上的中線,或作底邊上的高等。 2、證明等腰三角形“三線合一”的性質(zhì)。 【教學(xué)說(shuō)明】在證明中,設(shè)計(jì)輔助線是關(guān)鍵,引導(dǎo)學(xué)生用全等的方法去處理,在不同的輔助線作法中,由輔助線帶來(lái)的條件是不同的,重視這一點(diǎn),要求學(xué)生板書證明過(guò)程,以體會(huì)一題多解帶來(lái)的體驗(yàn)。 三、典例精析,掌握新知 例如圖,在△ABC中,AB=AC,點(diǎn)D在AC上,且BD=BC=AD,求△ABC各角的度數(shù)。 解:∵AB=AC,BD=BC=AD, ∴∠ABC=∠C=∠BDC,∠A=∠ABD(等邊對(duì)等角)。 設(shè)∠A=x,則∠BDC=∠A+∠ABD=2x, 從而∠ABC=∠C=∠BDC=2x。 于是在△ABC中,有∠A+∠ABC+∠C=x+2x+2x=180°, 解得x=36° 于是在△ABC中,有∠A=36°,∠ABC=∠C=72°。 【教學(xué)說(shuō)明】等腰三角形“等邊對(duì)等角”及“三線合一”性質(zhì),可以實(shí)現(xiàn)由邊到角的轉(zhuǎn)化,從而可求出相應(yīng)角的度數(shù)。要在解題過(guò)程中,學(xué)會(huì)從復(fù)雜圖形中分解出等腰三角形,用方程思想和數(shù)形結(jié)合思想解決幾何問(wèn)題。 四、運(yùn)用新知,深化理解 第1組練習(xí): 1、如圖,在下列等腰三角形中,分別求出它們的底角的度數(shù)。 如圖,△ABC是等腰直角三角形,AB=AC,∠BAC=90°,AD是底邊BC上的高,標(biāo)出∠B,∠C,∠BAD,∠DAC的度數(shù),指出圖中有哪些相等線段。 2、如圖,在△ABC,AB=AD=DC,∠BAD=26°,求∠B和∠C的度數(shù)。 第2組練習(xí): 1、如果△ABC是軸對(duì)稱圖形,則它一定是( ) A、等邊三角形 B、直角三角形 C、等腰三角形 D、等腰直角三角形 2、等腰三角形的一個(gè)外角是100°,它的頂角的度數(shù)是( ) A、80° B、20° C、80°和20° D、80°或50° 3、已知等腰三角形的腰長(zhǎng)比底邊多2cm,并且它的周長(zhǎng)為16cm。求這個(gè)等腰三角形的邊長(zhǎng)。 4、如圖,在△ABC中,過(guò)C作∠BAC的平分線AD的垂線,垂足為D,DE∥AB交AC于E。求證:AE=CE。 【教學(xué)說(shuō)明】 等腰三角形解邊方面的計(jì)算類型較多,引導(dǎo)學(xué)生見(jiàn)識(shí)不同類型,并適時(shí)概括歸納,幫學(xué)生形成解題能力,注意提醒學(xué)生分類討論思想的應(yīng)用。 【答案】 第1組練習(xí)答案: 1、(1)72°;(2)30° 2、∠B=∠C=∠BAD=∠DAC=45°;AB=AC,BD=DC=AD 3、∠B=77°,∠C=38、5° 第2組練習(xí)答案: 1、C 2、C 3、設(shè)三角形的底邊長(zhǎng)為xcm,則其腰長(zhǎng)為(x+2)cm,根據(jù)題意,得2(x+2)+x=16。解得x=4。∴等腰三角形的三邊長(zhǎng)為4cm,6cm和6cm。 4、延長(zhǎng)CD交AB的延長(zhǎng)線于P,在△ADP和△ADC中,∠PAD=∠CAD,AD=AD,∠PDA=∠CDA,∴△ADP≌△ADC。∴∠P=∠ACD。又∵DE∥AP,∴∠CDE=∠P!唷螩DE=∠ACD,∴DE=EC。同理可證:AE=DE!郃E=CE。 四、師生互動(dòng),課堂小結(jié) 這節(jié)課主要探討了等腰三角形的性質(zhì),并對(duì)性質(zhì)作了簡(jiǎn)單的應(yīng)用。請(qǐng)學(xué)生表述性質(zhì),提醒每個(gè)學(xué)生要靈活應(yīng)用它們。 學(xué)生間可交流體會(huì)與收獲。 教學(xué)目標(biāo): 1、知道負(fù)整數(shù)指數(shù)冪=(a≠0,n是正整數(shù))、 2、掌握整數(shù)指數(shù)冪的運(yùn)算性質(zhì)、 3、會(huì)用科學(xué)計(jì)數(shù)法表示小于1的數(shù)、 教學(xué)重點(diǎn): 掌握整數(shù)指數(shù)冪的運(yùn)算性質(zhì)。 難點(diǎn): 會(huì)用科學(xué)計(jì)數(shù)法表示小于1的數(shù)。 情感態(tài)度與價(jià)值觀: 通過(guò)學(xué)習(xí)課堂知識(shí)使學(xué)生懂得任何事物之間是相互聯(lián)系的,理論來(lái)源于實(shí)踐,服務(wù)于實(shí)踐。能利用事物之間的類比性解決問(wèn)題、 教學(xué)過(guò)程: 一、課堂引入 1、回憶正整數(shù)指數(shù)冪的運(yùn)算性質(zhì): 。1)同底數(shù)的冪的乘法:am?an = am+n(m,n是正整數(shù)); (2)冪的乘方:(am)n = amn (m,n是正整數(shù)); 。3)積的乘方:(ab)n = anbn (n是正整數(shù)); 。4)同底數(shù)的冪的除法:am÷an = am?n(a≠0,m,n是正整數(shù),m>n); 。5)商的乘方:()n = (n是正整數(shù)); 2、回憶0指數(shù)冪的規(guī)定,即當(dāng)a≠0時(shí),a0 = 1、 3、你還記得1納米=10?9米,即1納米=米嗎? 4、計(jì)算當(dāng)a≠0時(shí),a3÷a5 ===,另一方面,如果把正整數(shù)指數(shù)冪的運(yùn)算性質(zhì)am÷an = am?n (a≠0,m,n是正整數(shù),m>n)中的m>n這個(gè)條件去掉,那么a3÷a5 = a3?5 = a?2,于是得到a?2 =(a≠0)。 二、總結(jié):一般地,數(shù)學(xué)中規(guī)定:當(dāng)n是正整數(shù)時(shí),=(a≠0)(注意:適用于m、n可以是全體整數(shù))教師啟發(fā)學(xué)生由特殊情形入手,來(lái)看這條性質(zhì)是否成立、事實(shí)上,隨著指數(shù)的取值范圍由正整數(shù)推廣到全體整數(shù),前面提到的運(yùn)算性質(zhì)都可推廣到整數(shù)指數(shù)冪;am?an = am+n(m,n是整數(shù))這條性質(zhì)也是成立的、 三、科學(xué)記數(shù)法: 我們已經(jīng)知道,一些較大的數(shù)適合用科學(xué)記數(shù)法表示,有了負(fù)整數(shù)指數(shù)冪后,小于1的正數(shù)也可以用科學(xué)記數(shù)法來(lái)表示,例如:0。000012 = 1。2×10?即小于1的正數(shù)可以用科學(xué)記數(shù)法表示為a×10?n的'形式,其中a是整數(shù)位數(shù)只有1位的正數(shù),n是正整數(shù)。啟發(fā)學(xué)生由特殊情形入手,比如0。012 = 1。2×10?2,0。0012 = 1。2×10?3,0。00012 = 1。2×10?4,以此發(fā)現(xiàn)其中的規(guī)律,從而有0。0000000012 = 1。2×10?9,即對(duì)于一個(gè)小于1的正數(shù),如果小數(shù)點(diǎn)后到第一個(gè)非0數(shù)字前有8個(gè)0,用科學(xué)記數(shù)法表示這個(gè)數(shù)時(shí),10的指數(shù)是?9,如果有m個(gè)0,則10的指數(shù)應(yīng)該是?m?1。 學(xué)習(xí)目標(biāo) 1、通過(guò)運(yùn)算多項(xiàng)式乘法,來(lái)推導(dǎo)平方差公式,學(xué)生的認(rèn)識(shí)由一般法則到特殊法則的能力。 2、通過(guò)親自動(dòng)手、觀察并發(fā)現(xiàn)平方差公式的結(jié)構(gòu)特征,并能從廣義上理解公式中字母的`含義。 3、初步學(xué)會(huì)運(yùn)用平方差公式進(jìn)行計(jì)算。 學(xué)習(xí)重難點(diǎn)重點(diǎn): 平方差公式的推導(dǎo)及應(yīng)用。 難點(diǎn)是對(duì)公式中a,b的廣泛含義的理解及正確運(yùn)用。 自學(xué)過(guò)程設(shè)計(jì)教學(xué)過(guò)程設(shè)計(jì) 看一看 認(rèn)真閱讀教材,記住以下知識(shí): 文字?jǐn)⑹銎椒讲罟剑篲________________ 用字母表示:________________ 做一做: 1、完成下列練習(xí): ①(m+n)(p+q) 、(a+b)(x-y) ③(2x+3y)(a-b) 、(a+2)(a-2) 、(3-x)(3+x) 、(2m+n)(2m-n) 想一想 你還有哪些地方不是很懂?請(qǐng)寫出來(lái)。 _______________________________ _______________________________ ________________________________、 1、下列計(jì)算對(duì)不對(duì)?若不對(duì),請(qǐng)?jiān)跈M線上寫出正確結(jié)果、 (1)(x-3)(x+3)=x2-3( ),__________; (2)(2x-3)(2x+3)=2x2-9( ),_________; (3)(-x-3)(x-3)=x2-9( ),_________; (4)(2xy-1)(2xy+1)=2xy2-1( ),________、 2、(1)(3a-4b)( )=9a2-16b2; (2)(4+2x)( )=16-4x2; (3)(-7-x)( )=49-x2; (4)(-a-3b)(-3b+a)=_________、 3、計(jì)算:50×49=_________、 應(yīng)用探究 1、幾何解釋平方差公式 展示:邊長(zhǎng)a的大正方形中有一個(gè)邊長(zhǎng)為b的小正方形。 (1)請(qǐng)計(jì)算圖的陰影部分的面積(讓學(xué)生用正方形的面積公式計(jì)算)。 (2)小明將陰影部分拼成一個(gè)長(zhǎng)方形,這個(gè)長(zhǎng)方形長(zhǎng)與寬是多少?你能表示出它的面積嗎? 2、用平方差公式計(jì)算 (1)103×93 (2)59、8×60、2 拓展提高 1、閱讀題: 我們?cè)谟?jì)算(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)時(shí),發(fā)現(xiàn)直接運(yùn)算很麻煩,如果在算式前乘以(2-1),即1,原算式的值不變,而且還使整個(gè)算式能用乘法公式計(jì)算、解答過(guò)程如下: 原式=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)(232+1) =(22-1)(22+1)(24+1)(28+1)(216+1)(232+1) =(24-1)(24+1)(28+1)(216+1)(232+1) =……=264-1 你能用上述方法算出(3+1)(32+1)(34+1)(38+1)(316+1)的值嗎?請(qǐng)?jiān)囋嚳? 2、仔細(xì)觀察,探索規(guī)律: (x-1)(x+1)=x2-1 (x-1)(x2+x+1)=x3-1 (x-1)(x3+x2+x+1)=x4-1 (x-1)(x4+x3+x2+x+1)=x5-1 …… (1)試求25+24+23+22+2+1的值; (2)寫出22006+22005+22004+…+2+1的個(gè)位數(shù)、 堂堂清 一、選擇題 1、下列各式中,能用平方差公式計(jì)算的是( ) (1)(a-2b)(-a+2b); (2)(a-2b)(-a-2b); (3)(a-2b)(a+2b); (4)(a-2b)(2a+b)、 教學(xué)目標(biāo) 。ㄒ唬┙虒W(xué)知識(shí)點(diǎn) 1、等腰三角形的概念、 2、等腰三角形的性質(zhì)、 3、等腰三角形的概念及性質(zhì)的應(yīng)用、 1、經(jīng)歷作(畫)出等腰三角形的過(guò)程,從軸對(duì)稱的角度去體會(huì)等腰三角形的特點(diǎn)、 2、探索并掌握等腰三角形的性質(zhì)、 。ㄈ┣楦信c價(jià)值觀要求 通過(guò)學(xué)生的操作和思考,使學(xué)生掌握等腰三角形的相關(guān)概念,并在探究等腰三角形性質(zhì)的過(guò)程中培養(yǎng)學(xué)生認(rèn)真思考的習(xí)慣、 教學(xué)重點(diǎn) 1、等腰三角形的概念及性質(zhì)、 2、等腰三角形性質(zhì)的應(yīng)用、 教學(xué)難點(diǎn) 等腰三角形三線合一的性質(zhì)的理解及其應(yīng)用、 教學(xué)方法 探究歸納法、 教具準(zhǔn)備 師:多媒體課件、投影儀; 生:硬紙、剪刀、 教學(xué)過(guò)程 1、提出問(wèn)題,創(chuàng)設(shè)情境 (師)在前面的學(xué)習(xí)中,我們認(rèn)識(shí)了軸對(duì)稱圖形,探究了軸對(duì)稱的性質(zhì),并且能夠作出一個(gè)簡(jiǎn)單平面圖形關(guān)于某一直線的軸對(duì)稱圖形,還能夠通過(guò)軸對(duì)稱變換來(lái)設(shè)計(jì)一些美麗的圖案、這節(jié)課我們就是從軸對(duì)稱的角度來(lái)認(rèn)識(shí)一些我們熟悉的幾何圖形、來(lái)研究: ①三角形是軸對(duì)稱圖形嗎? ②什么樣的三角形是軸對(duì)稱圖形? (生)有的三角形是軸對(duì)稱圖形,有的三角形不是。 。◣煟┠鞘裁礃拥娜切问禽S對(duì)稱圖形? (生)滿足軸對(duì)稱的條件的三角形就是軸對(duì)稱圖形,也就是將三角形沿某一條直線對(duì)折后兩部分能夠完全重合的就是軸對(duì)稱圖形。 。◣煟┖芎茫覀冞@節(jié)課就來(lái)認(rèn)識(shí)一種成軸對(duì)稱圖形的三角形──等腰三角形。 2、導(dǎo)入新課 。◣煟┩瑢W(xué)們通過(guò)自己的思考來(lái)做一個(gè)等腰三角形。作一條直線L,在L上取點(diǎn)A,在L外取點(diǎn)B,作出點(diǎn)B關(guān)于直線L的對(duì)稱點(diǎn)C,連結(jié)AB、BC、CA,則可得到一個(gè)等腰三角形。 (生乙)在甲同學(xué)的做法中,A點(diǎn)可以取直線L上的任意一點(diǎn)。 。◣煟⿲(duì),按這種方法我們可以得到一系列的等腰三角形、現(xiàn)在同學(xué)們拿出自己準(zhǔn)備的硬紙和剪刀,按自己設(shè)計(jì)的方法,也可以用課本P138探究中的方法,剪出一個(gè)等腰三角形。 。◣煟┌凑瘴覀兊淖龇,可以得到等腰三角形的定義:有兩條邊相等的三角形叫做等腰三角形、相等的兩邊叫做腰,另一邊叫做底邊,兩腰所夾的角叫做頂角,底邊與腰的夾角叫底角、同學(xué)們?cè)谧约鹤鞒龅牡妊切沃,注明它的腰、底邊、頂角和底角?/p> (師)有了上述概念,同學(xué)們來(lái)想一想。 。ㄑ菔菊n件) 1、等腰三角形是軸對(duì)稱圖形嗎?請(qǐng)找出它的對(duì)稱軸。 2、等腰三角形的兩底角有什么關(guān)系? 3、頂角的平分線所在的直線是等腰三角形的對(duì)稱軸嗎? 4、底邊上的中線所在的直線是等腰三角形的對(duì)稱軸嗎?底邊上的高所在的直線呢? 。ㄉ祝┑妊切问禽S對(duì)稱圖形、它的對(duì)稱軸是頂角的平分線所在的直線、因?yàn)榈妊切蔚膬裳嗟,所以把這兩條腰重合對(duì)折三角形便知:等腰三角形是軸對(duì)稱圖形,它的對(duì)稱軸是頂角的平分線所在的直線。 (師)同學(xué)們把自己做的等腰三角形進(jìn)行折疊,找出它的對(duì)稱軸,并看它的兩個(gè)底角有什么關(guān)系。 。ㄉ遥┪野炎约鹤龅牡妊切握郫B后,發(fā)現(xiàn)等腰三角形的兩個(gè)底角相等。 。ㄉ┪野训妊切握郫B,使兩腰重合,這樣頂角平分線兩旁的部分就可以重合,所以可以驗(yàn)證等腰三角形的對(duì)稱軸是頂角的平分線所在的直線。 (生。┪野训妊切窝氐走吷系闹芯對(duì)折,可以看到它兩旁的部分互相重合,說(shuō)明底邊上的中線所在的直線是等腰三角形的對(duì)稱軸。 。ㄉ欤├蠋煟野l(fā)現(xiàn)底邊上的高所在的直線也是等腰三角形的對(duì)稱軸。 。◣煟┠銈冋f(shuō)的是同一條直線嗎?大家來(lái)動(dòng)手折疊、觀察。 。ㄉR聲)它們是同一條直線。 。◣煟┖芎谩F(xiàn)在同學(xué)們來(lái)歸納等腰三角形的性質(zhì)。。 。ㄉ┪已氐妊切蔚捻斀堑钠椒志對(duì)折,發(fā)現(xiàn)它兩旁的部分互相重合,由此可知這個(gè)等腰三角形的兩個(gè)底角相等,而且還可以知道頂角的平分線既是底邊上的中線,也是底邊上的高。 (師)很好,大家看屏幕。 。ㄑ菔菊n件) 等腰三角形的.性質(zhì): 1、等腰三角形的兩個(gè)底角相等(簡(jiǎn)寫成“等邊對(duì)等角”) 2、等腰三角形的頂角平分線,底邊上的中線、底邊上的高互相重合(通常稱作“三線合一”)、 。◣煟┯缮厦嬲郫B的過(guò)程獲得啟發(fā),我們可以通過(guò)作出等腰三角形的對(duì)稱軸,得到兩個(gè)全等的三角形,從而利用三角形的全等來(lái)證明這些性質(zhì)、同學(xué)們現(xiàn)在就動(dòng)手來(lái)寫出這些證明過(guò)程) (投影儀演示學(xué)生證明過(guò)程) 。ㄉ祝┤缬覉D,在ABC中,AB=AC,作底邊BC的中線AD,因?yàn)?/p> 所以BAD≌CAD(SSS)、 所以∠B=∠C、 (生乙)如右圖,在ABC中,AB=AC,作頂角∠BAC的角平分線AD,因?yàn)?/p> 所以BAD≌CAD、 所以BD=CD,∠BDA=∠CDA=∠BDC=90°。 。◣煟┖芎,甲、乙兩同學(xué)給出了等腰三角形兩個(gè)性質(zhì)的證明,過(guò)程也寫得很條理、很規(guī)范、下面我們來(lái)看大屏幕。 。ㄑ菔菊n件) 。ɡ1)如圖,在ABC中,AB=AC,點(diǎn)D在AC上,且BD=BC=AD,求:ABC各角的度數(shù)、 (師)同學(xué)們先思考一下,我們?cè)賮?lái)分析這個(gè)題、 。ㄉ└鶕(jù)等邊對(duì)等角的性質(zhì),我們可以得到 ∠A=∠ABD,∠ABC=∠C=∠BDC,再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A。再由三角形內(nèi)角和為180°,就可求出ABC的三個(gè)內(nèi)角。 。◣煟┻@位同學(xué)分析得很好,對(duì)我們以前學(xué)過(guò)的定理也很熟悉、如果我們?cè)诮獾倪^(guò)程中把∠A設(shè)為x的話,那么∠ABC、∠C都可以用x來(lái)表示,這樣過(guò)程就更簡(jiǎn)捷。 。ㄕn件演示) 。ɡ┮?yàn)锳B=AC,BD=BC=AD,所以∠ABC=∠C=∠BDC、∠A=∠ABD(等邊對(duì)等角)、 設(shè)∠A=x,則∠BDC=∠A+∠ABD=2x,從而∠ABC=∠C=∠BDC=2x、 于是在ABC中,有∠A+∠ABC+∠C=x+2x+2x=180°,解得x=36°。 在ABC中,∠A=35°,∠ABC=∠C=72°、 。◣煟┫旅嫖覀兺ㄟ^(guò)練習(xí)來(lái)鞏固這節(jié)課所學(xué)的知識(shí)、 3、隨堂練習(xí) (一)課本P141練習(xí)1、2、3。 練習(xí) 1、如下圖,在下列等腰三角形中,分別求出它們的底角的度數(shù)、 答案:(1)72°(2)30° 2、如右圖,ABC是等腰直角三角形(AB=AC,∠BAC=90°),AD是底邊BC上的高,標(biāo)出∠B、∠C、∠BAD、∠DAC的度數(shù),圖中有哪些相等線段? 答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC,BD=DC=AD、 3、如右圖,在ABC中,AB=AD=DC,∠BAD=26°,求∠B和∠C的度數(shù)、 答:∠B=77°,∠C=38、5°、 。ǘ╅喿x課本P138~P140,然后小結(jié)、 4、課時(shí)小結(jié) 這節(jié)課我們主要探討了等腰三角形的性質(zhì),并對(duì)性質(zhì)作了簡(jiǎn)單的應(yīng)用、等腰三角形是軸對(duì)稱圖形,它的兩個(gè)底角相等(等邊對(duì)等角),等腰三角形的對(duì)稱軸是它頂角的平分線,并且它的頂角平分線既是底邊上的中線,又是底邊上的高、 我們通過(guò)這節(jié)課的學(xué)習(xí),首先就是要理解并掌握這些性質(zhì),并且能夠靈活應(yīng)用它們、 5、課后作業(yè) 。ㄒ唬┱n本P147─1、3、4、8題、 。ǘ1、預(yù)習(xí)課本P141~P143、 2、預(yù)習(xí)提綱:等腰三角形的判定、 6、活動(dòng)與探究 如右圖,在ABC中,過(guò)C作∠BAC的平分線AD的垂線,垂足為D,DE∥AB交AC于E、 求證:AE=CE、 過(guò)程:通過(guò)分析、討論,讓學(xué)生進(jìn)一步了解全等三角形的性質(zhì)和判定,等腰三角形的性質(zhì)、 結(jié)果: 證明:延長(zhǎng)CD交AB的延長(zhǎng)線于P,如右圖,在ADP和ADC中 ADP≌ADC、 ∠P=∠ACD、 又DE∥AP, ∠4=∠P、 ∠4=∠ACD、 DE=EC、 同理可證:AE=DE、 AE=CE、 板書設(shè)計(jì) 總課時(shí):7課時(shí) 使用人: 備課時(shí)間:第八周 上課時(shí)間:第十周 第4課時(shí):5、2平面直角坐標(biāo)系(2) 教學(xué)目標(biāo) 知識(shí)與技能 1.在給定的直角坐標(biāo)系下,會(huì)根據(jù)坐標(biāo)描出點(diǎn)的位置; 2.通過(guò)找點(diǎn)、連線、觀察,確定圖形的大致形狀的問(wèn)題,能進(jìn)一步掌握平面直角坐標(biāo)系的基本內(nèi)容。 過(guò)程與方法 1.經(jīng)歷畫坐標(biāo) 系、描點(diǎn)、連線、看圖以及由點(diǎn)找坐標(biāo)等過(guò)程,發(fā)展學(xué)生的數(shù)形結(jié)合思想,培養(yǎng)學(xué)生的合作 交流能力; 2.通過(guò)由點(diǎn)確定坐標(biāo)到根據(jù)坐標(biāo)描點(diǎn)的轉(zhuǎn)化過(guò)程,進(jìn)一步培養(yǎng)學(xué)生的轉(zhuǎn)化意識(shí)。 情感態(tài)度與價(jià)值觀 通過(guò)生動(dòng)有趣的教學(xué)活動(dòng),發(fā)展學(xué)生的合情推理能力和豐富的情感、態(tài)度,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的'興趣。 教學(xué)重點(diǎn):在已知的直角坐標(biāo)系下找點(diǎn)、連線、觀察,確定圖形的大致形狀。 教學(xué)難點(diǎn):在已知的直角坐標(biāo)系下找點(diǎn)、連線、觀察,確定圖形的大致形狀。 教學(xué)過(guò)程 第一環(huán)節(jié) 感 受生活中的情境,導(dǎo)入新課(10分鐘,學(xué)生自己繪圖找點(diǎn)) 在上節(jié)課中我們學(xué)習(xí)了平面直角坐標(biāo)系的定義,以及橫軸、縱軸、點(diǎn) 的坐標(biāo)的定義,練習(xí)了在平面直角坐標(biāo)系中由點(diǎn)找坐標(biāo),還探討了橫坐標(biāo)或縱坐標(biāo)相同的點(diǎn)的連線與坐標(biāo)軸的關(guān)系,坐標(biāo)軸上點(diǎn)的坐標(biāo)有什么特點(diǎn)。 練習(xí):指出下列 各點(diǎn)以及所在象限或坐標(biāo)軸: A(-1,-2.5),B(3,-4),C( ,5),D(3,6),E (-2.3,0),F(xiàn)(0, ), G(0,0) (抽取學(xué)生作答) 由點(diǎn)找坐標(biāo)是已知點(diǎn)在直角坐標(biāo) 系中的位置,根據(jù)這點(diǎn)在方格紙上對(duì)應(yīng)的x軸、y軸上的數(shù)字寫出它的坐標(biāo),反過(guò)來(lái),已知坐標(biāo),讓 你在直角坐標(biāo)系中找點(diǎn),你能找到嗎?這就是本節(jié)課的內(nèi)容。 第二環(huán)節(jié) 分類討論,探索新知.(15分鐘,小組討論,全班交流) 1.請(qǐng)同學(xué)們拿出準(zhǔn)備好的方格紙,自己建立平面直角坐標(biāo)系,然后按照我給出的坐標(biāo),在直角坐標(biāo)系中描點(diǎn),并依次用線段連接起來(lái)。 (-9,3),(-9,0),(-3,0),( -3,3) ( 學(xué)生操作完畢后) 2.(出示投影)還是在這個(gè)平面直角坐標(biāo)系中,描出下列各組內(nèi)的點(diǎn)用線段依次連接起來(lái)。 (1)(-6,5),(-10,3),(-9,3),(-3,3),(-2,3),(-6,5); (2)(3.5,9),(2,7),(3,7),(4,7) ,(5,7),(3.5,9); (3)(3,7),(1,5),(2,5),(5,5),(6,5),(4,7); (4)(2,5),( 0,3),(3,3),(3,0),(4,0),(4,3),(7,3),(5,5)。 觀察所得的圖形,你覺(jué)得它像什么? 分成4人小組,大家合作在剛才建立的平面直角坐標(biāo)系中(選出小組中最好的)添畫。各人分工,每人畫一小題?茨膫(gè)小組做得最快? (出示學(xué)生的作品)畫出是 這樣的嗎?這幅圖畫很美,你們覺(jué)得它像什么? 這個(gè)圖形像一棟房子旁邊還有一棵大樹(shù)。 3.做一做 (出示投影) 在書上已建立的直角坐標(biāo)系畫,要求每位同學(xué)獨(dú)立完成。 (學(xué)生描點(diǎn)、畫圖) (拿出一位做對(duì)的學(xué)生的作品投影) 你們觀察所得的圖形和它是否一樣?若一樣,你能判斷出它像什么呢? (像貓臉) 第三環(huán)節(jié) 學(xué)有所用.(10分鐘,先獨(dú)立完成,后小組討論) (補(bǔ)充)1.在直角坐標(biāo)系中描出下列各點(diǎn),并將各組內(nèi)的點(diǎn)用線段順次連接起來(lái)。 (1)(0,3),(-4,0),(0,-3),(4,0),(0,3); (2)(0,0),(4,-3),(8,0),(4,3),(0,0); (3)(2,0) 觀察所得的圖形,你覺(jué)得它像什么?(像移動(dòng)的菱形) 2.在直角坐標(biāo)系中,設(shè)法找到若干個(gè)點(diǎn)使得連接各點(diǎn)所得的封閉圖形是如下圖所示的十字。 先獨(dú)立完成,然后小組討論是否正確。 第四環(huán)節(jié) 感悟與收獲(5分鐘,學(xué)生總結(jié),全班交流) 本節(jié)課在復(fù)習(xí)上節(jié)課的基礎(chǔ)上,通過(guò)找點(diǎn)、連 線、觀察,確定圖形的大致形狀,進(jìn)一步掌握平面直角坐標(biāo)系的基本內(nèi)容。 在例題和練習(xí)中,我們畫出了不少美麗的圖形,自己設(shè)計(jì)一些圖形,并把圖形放在直角坐標(biāo)系下,寫出點(diǎn)的坐標(biāo)。 第五環(huán)節(jié) 布置作業(yè) 習(xí)題5、4 A組(優(yōu)等生)1、2、3 B組(中等生)1、2 C組(后三分之一生)1、2 數(shù)據(jù)的波動(dòng) 教學(xué)目標(biāo): 1、經(jīng)歷數(shù)據(jù)離散程度的探索過(guò)程 2、了解刻畫數(shù)據(jù)離散程度的三個(gè)量度極差、標(biāo)準(zhǔn)差和方差,能借助計(jì)算器求出相應(yīng)的數(shù)值。 教學(xué)重點(diǎn):會(huì)計(jì)算某些數(shù)據(jù)的極差、標(biāo)準(zhǔn)差和方差。 教學(xué)難點(diǎn):理解數(shù)據(jù)離散程度與三個(gè)差之間的關(guān)系。 教學(xué)準(zhǔn)備:計(jì)算器,投影片等 教學(xué)過(guò)程: 一、創(chuàng)設(shè)情境 1、投影課本P138引例。 (通過(guò)對(duì)問(wèn)題串的解決,使學(xué)生直觀地估計(jì)從甲、乙兩廠抽取的20只雞腿的平均質(zhì)量,同時(shí)讓學(xué)生初步體會(huì)平均水平相近時(shí),兩者的離散程度未必相同,從而順理成章地引入刻畫數(shù)據(jù)離散程度的一個(gè)量度極差) 2、極差:是指一組數(shù)據(jù)中最大數(shù)據(jù)與最小數(shù)據(jù)的差,極差是用來(lái)刻畫數(shù)據(jù)離散程度的一個(gè)統(tǒng)計(jì)量。 二、活動(dòng)與探究 如果丙廠也參加了競(jìng)爭(zhēng),從該廠抽樣調(diào)查了20只雞腿,數(shù)據(jù)如圖(投影課本159頁(yè)圖) 問(wèn)題:1、丙廠這20只雞腿質(zhì)量的平均數(shù)和極差是多少? 2、如何刻畫丙廠這20只雞腿質(zhì)量與其平均數(shù)的差距?分別求出甲、丙兩廠的20只雞腿質(zhì)量與對(duì)應(yīng)平均數(shù)的差距。 3、在甲、丙兩廠中,你認(rèn)為哪個(gè)廠雞腿質(zhì)量更符合要求?為什么? (在上面的'情境中,學(xué)生很容易比較甲、乙兩廠被抽取雞腿質(zhì)量的極差,即可得出結(jié)論。這里增加一個(gè)丙廠,其平均質(zhì)量和極差與甲廠相同,此時(shí)導(dǎo)致學(xué)生思想認(rèn)識(shí)上的矛盾,為引出另兩個(gè)刻畫數(shù)據(jù)離散程度的量度標(biāo)準(zhǔn)差和方差作鋪墊。 三、講解概念: 方差:各個(gè)數(shù)據(jù)與平均數(shù)之差的平方的平均數(shù),記作s2 設(shè)有一組數(shù)據(jù):x1, x2, x3,,xn,其平均數(shù)為 則s2= , 而s= 稱為該數(shù)據(jù)的標(biāo)準(zhǔn)差(既方差的算術(shù)平方根) 從上面計(jì)算公式可以看出:一組數(shù)據(jù)的極差,方差或標(biāo)準(zhǔn)差越小,這組數(shù)據(jù)就越穩(wěn)定。 四、做一做 你能用計(jì)算器計(jì)算上述甲、丙兩廠分別抽取的20只雞腿質(zhì)量的方差和標(biāo)準(zhǔn)差嗎?你認(rèn)為選哪個(gè)廠的雞腿規(guī)格更好一些?說(shuō)說(shuō)你是怎樣算的? (通過(guò)對(duì)此問(wèn)題的解決,使學(xué)生回顧了用計(jì)算器求平均數(shù)的步驟,并自由探索求方差的詳細(xì)步驟) 五、鞏固練習(xí):課本第172頁(yè)隨堂練習(xí) 六、課堂小結(jié): 1、怎樣刻畫一組數(shù)據(jù)的離散程度? 2、怎樣求方差和標(biāo)準(zhǔn)差? 七、布置作業(yè):習(xí)題5.5第1、2題。 第11章平面直角坐標(biāo)系 11。1平面上點(diǎn)的坐標(biāo) 第1課時(shí)平面上點(diǎn)的坐標(biāo)(一) 教學(xué)目標(biāo) 【知識(shí)與技能】 1。知道有序?qū)崝?shù)對(duì)的概念,認(rèn)識(shí)平面直角坐標(biāo)系的相關(guān)知識(shí),如平面直角坐標(biāo)系的構(gòu)成:橫軸、縱軸、原點(diǎn)等。 2。理解坐標(biāo)平面內(nèi)的點(diǎn)與有序?qū)崝?shù)對(duì)的一一對(duì)應(yīng)關(guān)系,能寫出給定的平面直角坐標(biāo)系中某一點(diǎn)的坐標(biāo)。已知點(diǎn)的坐標(biāo),能在平面直角坐標(biāo)系中描出點(diǎn)。 3。能在方格紙中建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系來(lái)描述點(diǎn)的位置。 【過(guò)程與方法】 1。結(jié)合現(xiàn)實(shí)生活中表示物體位置的例子,理解有序?qū)崝?shù)對(duì)和平面直角坐標(biāo)系的作用。 2。學(xué)會(huì)用有序?qū)崝?shù)對(duì)和平面直角坐標(biāo)系中的點(diǎn)來(lái)描述物體的位置。 【情感、態(tài)度與價(jià)值觀】 通過(guò)引入有序?qū)崝?shù)對(duì)、平面直角坐標(biāo)系讓學(xué)生體會(huì)到現(xiàn)實(shí)生活中的問(wèn)題的解決與數(shù)學(xué)的發(fā)展之間有聯(lián)系,感受到數(shù)學(xué)的價(jià)值。 重點(diǎn)難點(diǎn) 【重點(diǎn)】 認(rèn)識(shí)平面直角坐標(biāo)系,寫出坐標(biāo)平面內(nèi)點(diǎn)的坐標(biāo),已知坐標(biāo)能在坐標(biāo)平面內(nèi)描出點(diǎn)。 【難點(diǎn)】 理解坐標(biāo)系中的坐標(biāo)與坐標(biāo)軸上的數(shù)字之間的關(guān)系。 教學(xué)過(guò)程 一、創(chuàng)設(shè)情境、導(dǎo)入新知 師:如果讓你描述自己在班級(jí)中的位置,你會(huì)怎么說(shuō)? 生甲:我在第3排第5個(gè)座位。 生乙:我在第4行第7列。 師:很好!我們買的電影票上寫著幾排幾號(hào),是對(duì)應(yīng)某一個(gè)座位,也就是這個(gè)座位可以用排號(hào)和列號(hào)兩個(gè)數(shù)字確定下來(lái)。 二、合作探究,獲取新知 師:在以上幾個(gè)問(wèn)題中,我們根據(jù)一個(gè)物體在兩個(gè)互相垂直的方向上的數(shù)量來(lái)表示這個(gè)物體 的位置,這兩個(gè)數(shù)量我們可以用一個(gè)實(shí)數(shù)對(duì)來(lái)表示,但是,如果(5,3)表示5排3號(hào)的話,那么(3,5)表示什么呢? 生:3排5號(hào)。 師:對(duì),它們對(duì)應(yīng)的不是同一個(gè)位置,所以要求表示物體位置的這個(gè)實(shí)數(shù)對(duì)是有序的。誰(shuí)來(lái)說(shuō)說(shuō)我們應(yīng)該怎樣表示一個(gè)物體的位置呢? 生:用一個(gè)有序的實(shí)數(shù)對(duì)來(lái)表示。 師:對(duì)。我們學(xué)過(guò)實(shí)數(shù)與數(shù)軸上的點(diǎn)是一一對(duì)應(yīng)的`,有序?qū)崝?shù)對(duì)是不是也可以和一個(gè)點(diǎn)對(duì)應(yīng)起來(lái)呢? 生:可以。 教師在黑板上作圖: 我們可以在平面內(nèi)畫兩條互相垂直、原點(diǎn)重合的數(shù)軸。水平的數(shù)軸叫做x軸或橫軸,取向右為 正方向;豎直的數(shù)軸叫做y軸或縱軸,取向上為正方向;兩軸交點(diǎn)為原點(diǎn)。這樣就構(gòu)成了平面直角坐標(biāo)系,這個(gè)平面叫做坐標(biāo)平面。 師:有了平面直角坐標(biāo)系,平面內(nèi)的點(diǎn)就可以用一個(gè)有序?qū)崝?shù)對(duì)來(lái)表示了,F(xiàn)在請(qǐng)大家自己動(dòng)手畫一個(gè)平面直角坐標(biāo)系。 學(xué)生操作,教師巡視。教師指正學(xué)生易犯的錯(cuò)誤。 教師邊操作邊講解: 如圖,由點(diǎn)P分別向x軸和y軸作垂線,垂足M在x軸上的坐標(biāo)是3,垂足N在y軸上的坐標(biāo)是5,我們就說(shuō)P點(diǎn)的橫坐標(biāo)是3,縱坐標(biāo)是5,我們把橫坐標(biāo)寫在前,縱坐標(biāo)寫在后,(3,5)就是點(diǎn)P的坐標(biāo)。在x軸上的點(diǎn),過(guò)這點(diǎn)向y軸作垂線,對(duì)應(yīng)的坐標(biāo)是0,所以它的縱坐標(biāo)就是0;在y軸上的點(diǎn),過(guò)這點(diǎn)向x軸作垂線,對(duì)應(yīng)的坐標(biāo)是0,所以它的橫坐標(biāo)就是0;原點(diǎn)的橫坐標(biāo)和縱坐標(biāo)都是0,即原點(diǎn)的坐標(biāo)是(0,0)。 教師多媒體出示: 師:如圖,請(qǐng)同學(xué)們寫出A、B、C、D這四點(diǎn)的坐標(biāo)。 生甲:A點(diǎn)的坐標(biāo)是(—5,4)。 生乙:B點(diǎn)的坐標(biāo)是(—3,—2)。 生丙:C點(diǎn)的坐標(biāo)是(4,0)。 生。篋點(diǎn)的坐標(biāo)是(0,—6)。 師:很好!我們已經(jīng)知道了怎樣寫出點(diǎn)的坐標(biāo),如果已知一點(diǎn)的坐標(biāo)為(3,—2),怎樣在平面直角坐標(biāo)系中找到這個(gè)點(diǎn)呢? 教師邊操作邊講解: 在x軸上找出橫坐標(biāo)是3的點(diǎn),過(guò)這一點(diǎn)向x軸作垂線,橫坐標(biāo)是3的點(diǎn)都在這條直線上;在y軸上找出縱坐標(biāo)是—2的點(diǎn),過(guò)這一點(diǎn)向y軸作垂線,縱坐標(biāo)是—2的點(diǎn)都在這條直線上;這兩條直線交于一點(diǎn),這一點(diǎn)既滿足橫坐標(biāo)為3,又滿足縱坐標(biāo)為—2,所以這就是坐標(biāo)為(3,—2)的點(diǎn)。下面請(qǐng)同學(xué)們?cè)诜礁窦堉薪⒁粋(gè)平面直角坐標(biāo)系,并描出A(2,—4),B(0,5),C(—2,—3),D(—5,6)這幾個(gè)點(diǎn)。 學(xué)生動(dòng)手作圖,教師巡視指導(dǎo)。 三、深入探究,層層推進(jìn) 師:兩個(gè)坐標(biāo)軸把坐標(biāo)平面劃分為四個(gè)區(qū)域,從x軸正半軸開(kāi)始,按逆時(shí)針?lè)较,把這四個(gè)區(qū)域分別叫做第一象限、第二象限、第三象限和第四象限。注意:坐標(biāo)軸不屬于任何一個(gè)象限。在同一象限內(nèi)的點(diǎn),它們的橫坐標(biāo)的符號(hào)一樣嗎?縱坐標(biāo)的符號(hào)一樣嗎? 生:都一樣。 師:對(duì),由作垂線求坐標(biāo)的過(guò)程,我們知道第一象限內(nèi)的點(diǎn)的橫坐標(biāo)的符號(hào)為+,縱坐標(biāo)的符號(hào)也為+。你能說(shuō)出其他象限內(nèi)點(diǎn)的坐標(biāo)的符號(hào)嗎? 生:能。第二象限內(nèi)的點(diǎn)的坐標(biāo)的符號(hào)為(—,+),第三象限內(nèi)的點(diǎn)的坐標(biāo)的符號(hào)為(—,—),第四象限內(nèi)的點(diǎn)的坐標(biāo)的符號(hào)為(+,—)。 師:很好!我們知道了一點(diǎn)所在的象限,就能知道它的坐標(biāo)的符號(hào)。同樣的,我們由點(diǎn)的坐標(biāo)也能知道它所在的象限。一點(diǎn)的坐標(biāo)的符號(hào)為(—,+),你能判斷這點(diǎn)是在哪個(gè)象限嗎? 生:能,在第二象限。 四、練習(xí)新知 師:現(xiàn)在我給出幾個(gè)點(diǎn),你們判斷一下它們分別在哪個(gè)象限。 教師寫出四個(gè)點(diǎn)的坐標(biāo):A(—5,—4),B(3,—1),C(0,4),D(5,0)。 生甲:A點(diǎn)在第三象限。 生乙:B點(diǎn)在第四象限。 生丙:C點(diǎn)不屬于任何一個(gè)象限,它在y軸上。 生。篋點(diǎn)不屬于任何一個(gè)象限,它在x軸上。 師:很好!現(xiàn)在請(qǐng)大家在方格紙上建立一個(gè)平面直角坐標(biāo)系,在上面描出這些點(diǎn)。 學(xué)生作圖,教師巡視,并予以指導(dǎo)。 五、課堂小結(jié) 師:本節(jié)課你學(xué)到了哪些新的知識(shí)? 生:認(rèn)識(shí)了平面直角坐標(biāo)系,會(huì)寫出坐標(biāo)平面內(nèi)點(diǎn)的坐標(biāo),已知坐標(biāo)能描點(diǎn),知道了四個(gè)象限以及四個(gè)象限內(nèi)點(diǎn)的符號(hào)特征。 教師補(bǔ)充完善。 教學(xué)反思 物體位置的說(shuō)法和表述物體的位置等問(wèn)題,學(xué)生在實(shí)際生活中經(jīng)常遇到,但可能沒(méi)有想到這些問(wèn)題與數(shù)學(xué)的聯(lián)系。教師在這節(jié)課上引導(dǎo)學(xué)生去想到建立一個(gè)平面直角坐標(biāo)系來(lái)表示物體的位置,讓學(xué)生參與到探索獲取新知的活動(dòng)中,主動(dòng)學(xué)習(xí)思考,感受數(shù)學(xué)的魅力。在教學(xué)中我讓學(xué)生由生活中的實(shí)例與坐標(biāo)的聯(lián)系感受坐標(biāo)的實(shí)用性,增強(qiáng)了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。 第2課時(shí)平面上點(diǎn)的坐標(biāo)(二) 教學(xué)目標(biāo) 【知識(shí)與技能】 進(jìn)一步學(xué)習(xí)和應(yīng)用平面直角坐標(biāo)系,認(rèn)識(shí)坐標(biāo)系中的圖形。 【過(guò)程與方法】 通過(guò)探索平面上的點(diǎn)連接成的圖形,形成二維平面圖形的概念,發(fā)展抽象思維能力。 【情感、態(tài)度與價(jià)值觀】 培養(yǎng)學(xué)生的合作交流意識(shí)和探索精神,體驗(yàn)通過(guò)二維坐標(biāo)來(lái)描述圖形頂點(diǎn),從而描述圖形的方法。 重點(diǎn)難點(diǎn) 【重點(diǎn)】 理解平面上的點(diǎn)連接成的圖形,計(jì)算圍成的圖形的面積。 【難點(diǎn)】 不規(guī)則圖形面積的求法。 教學(xué)過(guò)程 一、創(chuàng)設(shè)情境,導(dǎo)入新知 師:上節(jié)課我們學(xué)習(xí)了平面直角坐標(biāo)系的概念,也學(xué)習(xí)了已知點(diǎn)的坐標(biāo),怎樣在平面直角坐標(biāo)系中把這個(gè)點(diǎn)表示出來(lái)。下面請(qǐng)大家在方格紙上建立一個(gè)平面直角坐標(biāo)系,并在上面標(biāo)出A(5,1),B(2,1),C(2,—3)這三個(gè)點(diǎn)。 學(xué)生作圖。 教師邊操作邊講解: 二、合作探究,獲取新知 師:現(xiàn)在我們把這三個(gè)點(diǎn)用線段連接起來(lái),看一下得到的是什么圖形? 生甲:三角形。 生乙:直角三角形。 師:你能計(jì)算出它的面積嗎? 生:能。 教師挑一名學(xué)生:你是怎樣算的呢? 生:AB的長(zhǎng)是5—2=3,BC的長(zhǎng)是1—(—3)=4,所以三角形ABC的面積是×3×4=6。 師:很好! 教師邊操作邊講解: 大家再描出四個(gè)點(diǎn):A(—1,2),B(—2,—1),C(2,—1),D(3,2),并將它們依次連接起來(lái)看看形成的是什么 圖形? 學(xué)生完成操作后回答:平行四邊形。 師:你能計(jì)算它的面積嗎? 生:能。 教師挑一名學(xué)生:你是怎么計(jì)算的呢? 生:以BC為底,A到BC的垂線段AE為高,BC的長(zhǎng)為4,AE的長(zhǎng)為3,平行四邊形的面積就是4×3=12。師:很好!剛才是已知點(diǎn),我們將它們順次連接形成圖形,下面我們來(lái)看這樣一個(gè)連接成的圖形: 教師多媒體出示下圖: 課題:一元二次方程實(shí)數(shù)根錯(cuò)例剖析課 【教學(xué)目的】 精選學(xué)生在解一元二次方程有關(guān)問(wèn)題時(shí)出現(xiàn)的典型錯(cuò)例加以剖析,幫助學(xué)生找出產(chǎn)生錯(cuò)誤的原因和糾正錯(cuò)誤的方法,使學(xué)生在解題時(shí)少犯錯(cuò)誤,從而培養(yǎng)學(xué)生思維的批判性和深刻性。 【課前練習(xí)】 1、關(guān)于x的方程ax2+bx+c=0,當(dāng)a_____時(shí),方程為一元一次方程;當(dāng) a_____時(shí),方程為一元二次方程。 2、一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=_______,當(dāng)△_______時(shí),方程有兩個(gè)相等的實(shí)數(shù)根,當(dāng)△_______時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根,當(dāng)△________時(shí),方程沒(méi)有實(shí)數(shù)根。 【典型例題】 例1 下列方程中兩實(shí)數(shù)根之和為2的方程是() (A) x2+2x+3=0 (B) x2-2x+3=0 (c) x2-2x-3=0 (D) x2+2x+3=0 錯(cuò)答: B 正解: C 錯(cuò)因剖析:由根與系數(shù)的關(guān)系得x1+x2=2,極易誤選B,又考慮到方程有實(shí)數(shù)根,故由△可知,方程B無(wú)實(shí)數(shù)根,方程C合適。 例2 若關(guān)于x的方程x2+2(k+2)x+k2=0 兩個(gè)實(shí)數(shù)根之和大于-4,則k的取值范圍是( ) (A) k>-1 (B) k<0 (c) -1< k<0 (D) -1≤k<0 錯(cuò)解 :B 正解:D 錯(cuò)因剖析:漏掉了方程有實(shí)數(shù)根的前提是△≥0 例3(20xx廣西中考題) 已知關(guān)于x的一元二次方程(1-2k)x2-2 x-1=0有兩個(gè)不相等的實(shí)根,求k的取值范圍。 錯(cuò)解: 由△=(-2 )2-4(1-2k)(-1) =-4k+8>0得 k<2又∵k+1≥0∴k≥ -1。即 k的取值范圍是 -1≤k<2 錯(cuò)因剖析:漏掉了二次項(xiàng)系數(shù)1-2k≠0這個(gè)前提。事實(shí)上,當(dāng)1-2k=0即k= 時(shí),原方程變?yōu)橐淮畏匠,不可能有兩個(gè)實(shí)根。 正解: -1≤k<2且k≠ 例4 (20xx山東太原中考題) 已知x1,x2是關(guān)于x的一元二次方程x2+(2m+1)x+m2+1=0的兩個(gè)實(shí)數(shù)根,當(dāng)x12+x22=15時(shí),求m的值。 錯(cuò)解:由根與系數(shù)的關(guān)系得 x1+x2= -(2m+1), x1x2=m2+1, ∵x12+x22=(x1+x2)2-2 x1x2 。絒-(2m+1)]2-2(m2+1) =2 m2+4 m-1 又∵ x12+x22=15 ∴ 2 m2+4 m-1=15 ∴ m1 = -4 m2 = 2 錯(cuò)因剖析:漏掉了一元二次方程有兩個(gè)實(shí)根的前提條件是判別式△≥0。因?yàn)楫?dāng)m = -4時(shí),方程為x2-7x+17=0,此時(shí)△=(-7)2-4×17×1= -19<0,方程無(wú)實(shí)數(shù)根,不符合題意。 正解:m = 2 例5 若關(guān)于 x的方程(m2-1)x2-2 (m+2)x+1=0有實(shí)數(shù)根,求m的取值范圍。 錯(cuò)解:△=[-2(m+2)]2-4(m2-1) =16 m+20 ∵ △≥0 ∴ 16 m+20≥0, ∴ m≥ -5/4 又 ∵ m2-1≠0, ∴ m≠±1 ∴ m的取值范圍是m≠±1且m≥ - 錯(cuò)因剖析:此題只說(shuō)(m2-1)x2-2 (m+2)x+1=0是關(guān)于未知數(shù)x的方程,而未限定方程的次數(shù),所以在解題時(shí)就必須考慮m2-1=0和m2-1≠0兩種情況。當(dāng)m2-1=0時(shí),即m=±1時(shí),方程變?yōu)橐辉淮畏匠,仍有?shí)數(shù)根。 正解:m的取值范圍是m≥- 例6 已知二次方程x2+3 x+a=0有整數(shù)根,a是非負(fù)數(shù),求方程的整數(shù)根。 錯(cuò)解:∵方程有整數(shù)根, ∴△=9-4a>0,則a<2.25 又∵a是非負(fù)數(shù),∴a=1或a=2 令a=1,則x= -3± ,舍去;令a=2,則x1= -1、 x2= -2 ∴方程的整數(shù)根是x1= -1, x2= -2 錯(cuò)因剖析:概念模糊。非負(fù)整數(shù)應(yīng)包括零和正整數(shù)。上面答案僅是一部分,當(dāng)a=0時(shí),還可以求出方程的另兩個(gè)整數(shù)根,x3=0, x4= -3 正解:方程的.整數(shù)根是x1= -1, x2= -2 , x3=0, x4= -3 【練習(xí)】 練習(xí)1、(01濟(jì)南中考題)已知關(guān)于x的方程k2x2+(2k-1)x+1=0有兩個(gè)不相等的實(shí)數(shù)根x1、x2。 。1)求k的取值范圍; (2)是否存在實(shí)數(shù)k,使方程的兩實(shí)數(shù)根互為相反數(shù)?如果存在,求出k的值;如果不存在,請(qǐng)說(shuō)明理由。 解:(1)根據(jù)題意,得△=(2k-1)2-4 k2>0 解得k< ∴當(dāng)k< 時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根。 。2)存在。 如果方程的兩實(shí)數(shù)根x1、x2互為相反數(shù),則x1+ x2=- =0,得k= 。經(jīng)檢驗(yàn)k= 是方程- 的解。 ∴當(dāng)k= 時(shí),方程的兩實(shí)數(shù)根x1、x2互為相反數(shù)。 讀了上面的解題過(guò)程,請(qǐng)判斷是否有錯(cuò)誤?如果有,請(qǐng)指出錯(cuò)誤之處,并直接寫出正確答案。 解:上面解法錯(cuò)在如下兩個(gè)方面: 。1)漏掉k≠0,正確答案為:當(dāng)k< 時(shí)且k≠0時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根。 。2)k= 。不滿足△>0,正確答案為:不存在實(shí)數(shù)k,使方程的兩實(shí)數(shù)根互為相反數(shù) 練習(xí)2(02廣州市)當(dāng)a取什么值時(shí),關(guān)于未知數(shù)x的方程ax2+4x-1=0只有正實(shí)數(shù)根 ? 解:(1)當(dāng)a=0時(shí),方程為4x-1=0,∴x= (2)當(dāng)a≠0時(shí),∵△=16+4a≥0 ∴a≥ -4 ∴當(dāng)a≥ -4且a≠0時(shí),方程有實(shí)數(shù)根。 又因?yàn)榉匠讨挥姓龑?shí)數(shù)根,設(shè)為x1,x2,則: x1+x2=- >0 ; x1. x2=- >0 解得 :a<0 綜上所述,當(dāng)a=0、a≥ -4、a<0時(shí),即當(dāng)-4≤a≤0時(shí),原方程只有正實(shí)數(shù)根。 【小結(jié)】 以上數(shù)例,說(shuō)明我們?cè)谇蠼庥嘘P(guān)二次方程的問(wèn)題時(shí),往往急于尋求結(jié)論而忽視了實(shí)數(shù)根的存在與“△”之間的關(guān)系。 1、運(yùn)用根的判別式時(shí),若二次項(xiàng)系數(shù)為字母,要注意字母不為零的條件。 2、運(yùn)用根與系數(shù)關(guān)系時(shí),△≥0是前提條件。 3、條件多面時(shí)(如例5、例6)考慮要周全。 【布置作業(yè)】 1、當(dāng)m為何值時(shí),關(guān)于x的方程x2+2(m-1)x+ m2-9=0有兩個(gè)正根? 2、已知,關(guān)于x的方程mx2-2(m+2)x+ m+5=0(m≠0)沒(méi)有實(shí)數(shù)根。 求證:關(guān)于x的方程 。╩-5)x2-2(m+2)x + m=0一定有一個(gè)或兩個(gè)實(shí)數(shù)根。 考題匯編 1、(20xx年廣東省中考題)設(shè)x1、 x2是方程x2-5x+3=0的兩個(gè)根,不解方程,利用根與系數(shù)的關(guān)系,求(x1-x2)2的值。 2、(20xx年廣東省中考題)已知關(guān)于x的方程x2-2x+m-1=0 。1)若方程的一個(gè)根為1,求m的值。 (2)m=5時(shí),原方程是否有實(shí)數(shù)根,如果有,求出它的實(shí)數(shù)根;如果沒(méi)有,請(qǐng)說(shuō)明理由。 3、(20xx年廣東省中考題)已知關(guān)于x的方程x2+2(m-2)x+ m2=0有兩個(gè)實(shí)數(shù)根,且兩根的平方和比兩根的積大33,求m的值。 4、(20xx年廣東省中考題)已知x1、x2為方程x2+px+q=0的兩個(gè)根,且x1+x2=6,x12+x22=20,求p和q的值。 一、教材的地位和作用 現(xiàn)實(shí)生活中,等腰三角形的應(yīng)用比比皆是、所以,利用“軸對(duì)稱”的知識(shí),進(jìn)一步研究等腰三角形的特殊性質(zhì),不僅是現(xiàn)實(shí)生活的需要,而且從思想方法和知識(shí)儲(chǔ)備上,為今后研究“四邊形”和“圓”的性質(zhì)打下堅(jiān)實(shí)的基礎(chǔ)、 性質(zhì)“等腰三角形的兩個(gè)底角相等”是幾何論證過(guò)程中,證明“兩個(gè)角相等”的重要方法之一、“等腰三角形底邊上的三條重要線段重合”的性質(zhì)是今后證明“兩條線段相等” “兩條直線互相垂直”“兩個(gè)角相等”等結(jié)論的重要理論依據(jù)、 教學(xué)重點(diǎn): 1、讓學(xué)生主動(dòng)經(jīng)歷思考和探索的過(guò)程、 2、掌握等腰三角形性質(zhì)及其應(yīng)用、 教學(xué)難點(diǎn):等腰三角形性質(zhì)的理解和探究過(guò)程、 二、學(xué)情分析 本年級(jí)的學(xué)生已經(jīng)研究過(guò)一般三角形的性質(zhì),積累了一定的經(jīng)驗(yàn),動(dòng)手能力強(qiáng),善于與同伴交流,這就為本節(jié)課的學(xué)習(xí)做好了知識(shí)、能力、情感方面的準(zhǔn)備、不同層次的學(xué)生因?yàn)榛A(chǔ)不同,在學(xué)習(xí)中必然會(huì)出現(xiàn)相異構(gòu)想,這也將是我在教學(xué)過(guò)程中著重關(guān)注的一點(diǎn)、 三、目標(biāo)分析 知識(shí)與技能 1、了解等腰三角形的有關(guān)概念和掌握等腰三角形的性質(zhì) 2、了解等邊三角形的概念并探索其性質(zhì) 3、運(yùn)用等腰三角形的性質(zhì)解決問(wèn)題 過(guò)程與方法 1、通過(guò)觀察等腰三角形的對(duì)稱性,發(fā)展學(xué)生的形象思維、 2、探索等腰三角形的性質(zhì)時(shí),經(jīng)歷了觀察、動(dòng)手實(shí)踐、猜想、驗(yàn)證等數(shù)學(xué)過(guò)程,積累數(shù)學(xué)活動(dòng)經(jīng)驗(yàn),發(fā)展了學(xué)生的歸納推理,類比遷移的能力、在與他人交流的過(guò)程中,能運(yùn)用數(shù)學(xué)語(yǔ)言合乎邏輯的進(jìn)行討論和質(zhì)疑,提高了數(shù)學(xué)語(yǔ)言表達(dá)能力、 情感態(tài)度價(jià)值觀: 1、通過(guò)情境創(chuàng)設(shè),使學(xué)生感受到等腰三角形就在自己的身邊,從而使學(xué)生認(rèn)識(shí)到學(xué)習(xí)等腰三角形的必要性、 2、通過(guò)等腰三角形的性質(zhì)的歸納,使學(xué)生認(rèn)識(shí)到科學(xué)結(jié)論的發(fā)現(xiàn),是一個(gè)不斷完善的過(guò)程,培養(yǎng)學(xué)生堅(jiān)強(qiáng)的意志品質(zhì)、 3、通過(guò)小組合作,發(fā)展學(xué)生互幫互助的精神,體驗(yàn)合作學(xué)習(xí)中的樂(lè)趣和成就感、 四、教法分析 根據(jù)學(xué)生已有的認(rèn)知,采取了激疑引趣——猜想探究——應(yīng)用體驗(yàn)——建構(gòu)延伸的教學(xué)模式,并利用多媒體輔助教學(xué)、 設(shè)計(jì)意圖 同學(xué)們,我們?cè)谄吣昙?jí)已研究了一般三角形的性質(zhì),今天我們一起來(lái)探究特殊的三角形:等腰三角形、 等腰三角形的定義 有兩條邊相等的三角形叫做等腰三角形、 等腰三角形中,相等的兩邊都叫做腰,另一邊叫做底邊,兩腰的夾角叫做頂角、腰和底邊的夾角叫做底角、 提出問(wèn)題:生活中有哪些現(xiàn)象讓你聯(lián)想到等腰三角形? 首先讓學(xué)生明確:本學(xué)段的幾何圖形都是按一般的到特殊的順序研究的 通過(guò)學(xué)生描述等腰三角形在生活中的應(yīng)用,讓學(xué)生感受到數(shù)學(xué)就在我們身邊,以及研究等腰三角形的必要性、 剪紙游戲 你能利用手中的這個(gè)矩形紙片剪出一個(gè)等腰三角形嗎?注意安全呦! 學(xué)情分析: 大部分學(xué)生會(huì)有自己的想法,根據(jù)軸對(duì)稱圖形的性質(zhì),利用對(duì)折紙片,再“剪一刀”就是就得到了兩條“腰”; 可能還有的同學(xué)會(huì)利用正方形的折法,獲得特殊的等腰直角三角形; 可能還有同學(xué)先畫圖,再依線條剪得、 在這個(gè)過(guò)程中,注重落實(shí)三維目標(biāo)、讓學(xué)生在獲取新知的過(guò)程中更好的認(rèn)識(shí)自我,建立自信、我不失時(shí)機(jī)的對(duì)學(xué)生給予鼓勵(lì)和表?yè)P(yáng),使活動(dòng)更加深入,課堂充滿愉悅和溫馨、 知其然,更重要的是知其所以然、因此,我力求讓學(xué)生關(guān)注剪法的理性思考、 我設(shè)計(jì)了問(wèn)題:你是如何想到的?為的是剖析學(xué)生的思維過(guò)程:“折疊”就是為了得到“對(duì)稱軸”,“剪一刀”就是就得到了兩條“腰”,由“重合”保證了“等腰”、這樣就建立了“操作”與“證明”的中間橋梁、從實(shí)際操作中得到證明的方法,也為發(fā)現(xiàn)“三線合一”做了鋪墊、 提出問(wèn)題: 等腰三角形還有什么性質(zhì)?請(qǐng)?zhí)岢瞿愕腵猜想,驗(yàn)證你的猜想?并填寫在學(xué)案上、 合作小組活動(dòng)規(guī)則: 1、有主記錄員記錄小組的結(jié)論; 2、定出小組的主發(fā)言人(其它同學(xué)可作補(bǔ)充); 3、小組探究出的結(jié)論是什么? 4、說(shuō)明你們小組所獲得結(jié)論的理由、 等腰三角形的性質(zhì): 性質(zhì)一:等腰三角形的兩個(gè)底角相等(簡(jiǎn)稱“等邊對(duì)等角”)、 性質(zhì)二:等腰三角形頂角的平分線、底邊上的中線、底邊上的高重合(簡(jiǎn)稱“三線合一”)、 學(xué)情分析:這個(gè)環(huán)節(jié)是本節(jié)課的重點(diǎn),也是教學(xué)難點(diǎn)、盡管在教學(xué)過(guò)程中,因?yàn)閷W(xué)生的相異構(gòu)想,數(shù)學(xué)猜想的初始敘述不準(zhǔn)確,甚至不正確,但我不會(huì)立即去糾正他們,而是讓同學(xué)們不斷地質(zhì)疑﹑辨析、研討和歸納,逐漸完善結(jié)論、讓他們真正經(jīng)歷數(shù)學(xué)知識(shí)的形成過(guò)程,真正的體現(xiàn)以人為本的教學(xué)理念,努力創(chuàng)設(shè)和諧的教育教學(xué)的生態(tài)環(huán)境、 通過(guò)設(shè)置恰當(dāng)?shù)膭?dòng)手實(shí)踐活動(dòng),引導(dǎo)學(xué)生經(jīng)歷觀察、動(dòng)手實(shí)踐、猜想、驗(yàn)證等數(shù)學(xué)探究活動(dòng),這種探究的學(xué)習(xí)過(guò)程,恰恰是研究幾何圖形性質(zhì)的一般規(guī)律和方法、 (1)在此環(huán)節(jié)中,我的教學(xué)要充分把握好“四讓”:能讓學(xué)生觀察的,盡量讓學(xué)生觀察;能讓學(xué)生思考的,盡量讓學(xué)生思考;能讓學(xué)生表達(dá)的,盡量讓學(xué)生表達(dá);能讓學(xué)生作結(jié)論的,盡量讓學(xué)生作結(jié)論、 這種教學(xué)方式,把學(xué)習(xí)的過(guò)程真正還給學(xué)生,不怕學(xué)生說(shuō)不好,不怕學(xué)生出問(wèn)題,其實(shí)學(xué)生說(shuō)不好的地方、學(xué)生出問(wèn)題的地方都正是我們應(yīng)該教的地方,是教學(xué)的切入點(diǎn)、著眼點(diǎn)、增長(zhǎng)點(diǎn)、 (2)教師在這個(gè)過(guò)程中,充分聽(tīng)取和參與學(xué)生的小組討論,對(duì)有困難的學(xué)生,及時(shí)指導(dǎo)、 鞏固知識(shí) 1、等腰三角形頂角為70°,它的另外兩個(gè)內(nèi)角的度數(shù)分別為_(kāi)_______; 2、等腰三角形一個(gè)角為70°,它的另外兩個(gè)內(nèi)角的度數(shù)分別為_(kāi)____; 3、等腰三角形一個(gè)角為100°,它的另外兩個(gè)內(nèi)角的度數(shù)分別為_(kāi)____、 內(nèi)化知識(shí) 1、如圖1,在△ABC中,AB=AC,AD⊥BC,∠BAC=120°你能求出∠BAD的度數(shù)嗎? 知識(shí)遷移 等邊三角形有什么特殊的性質(zhì)?簡(jiǎn)單地?cái)⑹隼碛伞?/p> 等邊三角形的性質(zhì)定理: 等邊三角形的各角都相等,并且每一個(gè)角都等于60°、 拓展延伸 如圖2,在△ABC中,AB=AC,點(diǎn)D,E在BC上,AD=AE,你能說(shuō)明BD=EC? 由于學(xué)生之間存在知識(shí)基礎(chǔ)、經(jīng)驗(yàn)和能力的差異,我為學(xué)生提供了層次分明的反饋練習(xí)、將練習(xí)從易到難,從簡(jiǎn)到繁,以適應(yīng)不同階段、不同層次的學(xué)生的需要、讓學(xué)生拾階而上,逐步掌握知識(shí),使學(xué)困生達(dá)到簡(jiǎn)單運(yùn)用水平,中等生達(dá)到綜合運(yùn)用水平,優(yōu)等生達(dá)到創(chuàng)建水平、 暢談收獲 總結(jié)活動(dòng)情況,重在肯定與鼓勵(lì)、引導(dǎo)學(xué)生從本課學(xué)習(xí)中所得到的新知識(shí),運(yùn)用的數(shù)學(xué)思想方法,新舊知識(shí)的聯(lián)系等方面進(jìn)行反思,提高學(xué)生自主建構(gòu)知識(shí)網(wǎng)絡(luò)、分析解決問(wèn)題的能力、 幫助學(xué)生梳理知識(shí),回顧探究過(guò)程中所用到的從特殊到一般的數(shù)學(xué)方法,啟發(fā)學(xué)生更深層次的思考,為學(xué)生的下一步學(xué)習(xí)做好鋪墊、 反思過(guò)程不僅是學(xué)生學(xué)習(xí)過(guò)程的繼續(xù),更重要的是一種提高和發(fā)展自己的過(guò)程、 基礎(chǔ)性作業(yè):P65習(xí)題1、2、3、4 【八年級(jí)數(shù)學(xué)教案】相關(guān)文章: 有關(guān)八年級(jí)數(shù)學(xué)教案八年級(jí)數(shù)學(xué)教案全套10-03 八年級(jí)上冊(cè)數(shù)學(xué)教案01-13 八年級(jí)數(shù)學(xué)教案優(yōu)秀07-27 八年級(jí)數(shù)學(xué)教案【熱門】01-18八年級(jí)數(shù)學(xué)教案6
八年級(jí)數(shù)學(xué)教案7
八年級(jí)數(shù)學(xué)教案8
八年級(jí)數(shù)學(xué)教案9
八年級(jí)數(shù)學(xué)教案10
八年級(jí)數(shù)學(xué)教案11
八年級(jí)數(shù)學(xué)教案12
八年級(jí)數(shù)學(xué)教案13
八年級(jí)數(shù)學(xué)教案14
八年級(jí)數(shù)學(xué)教案15