【推薦】七年級數(shù)學教案
在教學工作者開展教學活動前,編寫教案是必不可少的,教案有助于順利而有效地開展教學活動。那么寫教案需要注意哪些問題呢?以下是小編精心整理的七年級數(shù)學教案,歡迎閱讀,希望大家能夠喜歡。
七年級數(shù)學教案1
教學目標:
1、知道有理數(shù)加法的意義和法則
2、會用有理數(shù)加法法則正確地進行有理數(shù)的加法運算
3、經(jīng)歷有理數(shù)加法法則的探究過程,體會分類和歸納的數(shù)學思想方法
教學重點:
有理數(shù)加法則的探索及運用
教學難點:
異號兩數(shù)相加的法則的理解及運用
教學過程:
一、創(chuàng)設情境
展示足球賽圖片,你知道足球賽中“凈勝球”是怎么回事嗎?
(學生口答,教師介紹凈勝球的算法:只要把各場比賽的結(jié)果相加就可以得到,由此揭示課題。)
二、探求新知
1、甲、乙兩隊進行足球比賽,
(1)、如果上半場贏了3球,下半場又贏了2球,那么全場累計凈勝幾球?
(2)、如果上半場贏了3球,下半場輸了2球,那么全場累計凈勝幾球?
足球比賽中贏球個數(shù)與輸球個數(shù)是一對相反意義的量.若規(guī)定贏球為正,輸球為負,例如贏3球記為“+3”,輸2球記為“-2”,你能把上述結(jié)果用加法算式表示出來嗎?
(學生根據(jù)生活經(jīng)驗得到兩種情況下的凈勝球數(shù),從而列出算式:(+3)+(+2)= +5;(+3)+(-2)= +1,教師板書。)
(3)、除了上面所說的“贏了再贏”,“先贏后輸”,你還能說出其它可能的幾種情況并用加算式表示嗎?
(引導學生聯(lián)系生活實際思考輸贏球其它可能的情況,盡可能完整地說出所有的可能,由此感受兩個有理數(shù)相加的各種情況,讓學生自由發(fā)言,相互補充,教師板書算式:(-3)+(+2)= -1,(-3)+(-2)= -5,(-3)+0= -3,0+(+2)=+2,教師還可根據(jù)學生回答情況補充:上半場贏了3球,下半場輸了3球;上半場打平,下半場也打平,最后的凈勝球情況,由學生說出結(jié)果并列出算式:(+3)+(-3)= 0,0+0=0 )
2、你能舉出一些運用有理數(shù)加法的實際例子嗎?
(學生列舉實例并根據(jù)具體意義寫出算式)
3、學生活動:
(1)、把筆尖放在數(shù)軸原點處,先向正方向移動3個單位長度,再向正方向移動2個單位長度,這時筆尖的位置表示什么數(shù)?你能用數(shù)軸和加法算式表示以上過程及結(jié)果嗎?
(2)、把筆尖放在數(shù)軸原點個單位長度,再向負方向移動2個單位長度,這時筆尖的位置表示什么數(shù)?你能用數(shù)軸和加法算式表示以上過程及結(jié)果嗎?
(3)、你還能再做一些類似的活動,并寫出相應的算式嗎?
(教師示范活動(1)的操作過程,學生列出算式并完成(2)(3),得到一組算式,教師板書。這一活動目的是讓學生從“形”的角度,直觀感受有理數(shù)的加法法則。)
4、歸納法則:
觀察上述算式,和小學學過的加法運算有什么區(qū)別?你能歸納出有理數(shù)的加法法則嗎?
(由前面所學的內(nèi)容學生已經(jīng)知道:有理數(shù)由符號和絕對值兩部分組成,所以兩個有理數(shù)的相加時,確定和時也需要分別確定和的符號和絕對值,教師可引導學生對照情境中輸贏球的情況分別探索和的符號和絕對值如何確定,學生相互交流,自由發(fā)言,不斷完善。通過探索有理數(shù)加法法則的`過程,學生體會分類和歸納的數(shù)學思想方法。)
5、例題精講:
例1 、計算
(1)、 (-5)+(-3) (2)、(-8)+(+2);; (3)、(+6)+(-4)
(4)、 5+(-5); (5)、 0+(-2); (學生口答計算結(jié)果,并對照法則說說是如何確定和的符號和絕對值的,教師板書解題過程,讓學生體會“運算有據(jù)”。)
解:(1)、(-5)+(-3)
= -(5+3) (同號兩數(shù)相加,取相同的符號,并把絕對值相減)
= -8
(2)、(-8)+(+2)
= -(8-2) (異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值。)
= -6
(4)、5+(-5);
=0 (互為相反的兩數(shù)之和為0)
6、訓練鞏固:
1、 p33練一練2
(學生利用撲克完成本題,通過游戲進一步鞏固有理數(shù)加法法則,體現(xiàn)“做中學”的新課程理念。)
7、延伸拓展:
(1)、一個數(shù)是2的相反數(shù),另一個數(shù)的絕對值是5,求這兩個數(shù)的和
(2)、在小學里,計算兩個數(shù)相加時,它們的和總是小于任何一個加數(shù),學了有理數(shù)的加法法則后,你認為這個結(jié)論還成立嗎?請你舉例說明
(這兩題都具有一定的挑戰(zhàn)性,第(1)題可讓學生進一步體會分類的數(shù)學思想方法。第(2)題具有開放性,可讓學生在探索的過程中進一步理解法則。)
三、課堂小結(jié):
學生回顧本節(jié)課所學內(nèi)容,談談自己對有理數(shù)加法法則的理解及如何進行有理數(shù)加法運算。
四、布置作業(yè):
1、課本p41第1題
2、列舉一些生活中運用有理數(shù)加法的實際例子,并相互交流。
七年級數(shù)學教案2
教學設計思路
“問題是思考的開始”,問題的提出是數(shù)學教學中重要的一環(huán),使學生明確學習內(nèi)容的必要性,才有可能調(diào)動學生解決問題的主動性,促進學生認識能力的提高與發(fā)展.而對于生產(chǎn)和生活中的實際問題,學生看得見,摸得著,有的還親身經(jīng)歷過,所以,當教師提出這些問題時,他們一定會躍躍欲試,想學以致用,這樣能起到充分調(diào)動學習積極性的作用.
教學目標
知識與技能:
1.經(jīng)歷同底數(shù)冪的除法運算性質(zhì)的獲得過程,掌握同底數(shù)冪的運算性質(zhì),會用同底數(shù)冪的運算性質(zhì)進行有關(guān)計算,提高學生的運算能力.
2.了解零指數(shù)冪和負整指數(shù)冪的意義,知道零指數(shù)冪和負整指數(shù)冪規(guī)定的合理性.
過程與方法:
經(jīng)歷探索同底數(shù)冪的除法的運算性質(zhì)的過程,進一步體會冪的意義,發(fā)展推理能力,提高語言表達能力.
情感態(tài)度價值觀:
感受數(shù)學公式的簡潔美、和諧美.
重點難點
重點:準確、熟練地運用法則進行計算.
難點:負指數(shù)冪的條件及法則的正確運用.
教學過程
1.創(chuàng)設情境,復習導入
前面我們學習了同底數(shù)冪的乘法,請同學們回答如下問題,看哪位同學回答得快而且準確.
。1)敘述同底數(shù)冪的乘法性質(zhì).
。2)計算:① ② ③
學生活動:學生回答上述問題.
(m,n都是正整數(shù))
教法說明:通過復習引起學生回憶,鞏固同底數(shù)冪的乘法性質(zhì),同時為本節(jié)的學習打下基礎.
2.提出問題,引出新知
我國研制的“銀河”巨型計算機的運算速度是108次/秒,光計算機(主要由光學運算器、光學存儲器和光學控制器組成)的運算速度是108次/秒.光計算機的運算速度是“銀河”計算機運算速度的多少倍?
怎樣計算 呢?
這就是我們這節(jié)課要學習的同底數(shù)冪的除法運算.
3.導向深入,得出性質(zhì)
做一做(鼓勵學生根據(jù)冪的意義和除法意義,獨立得出結(jié)果)
按乘方的意義和除法計算:
。1)
。2)
。3)
。4)
探究:(1)若a≠0,a15÷a5等于什么?
。2)通過上面的計算,對同底數(shù)冪的除法運算,你發(fā)現(xiàn)了什么規(guī)律?
學生思考,回答
師生共同總結(jié):
教師把結(jié)論寫在黑板上.
請同學們試著用文字概括這個性質(zhì):
【公式分析與說明】提出問題:在運算過程當中,除數(shù)能否為0?
學生回答:不能.(并說明理由)
由此得出:同底數(shù)冪相除,底數(shù) .教師指出在我們所學知識范圍內(nèi),公式中的m、n為正整數(shù),且m>n,最后綜合得出:
一般地,這就是說,同底數(shù)冪相除,底數(shù)不變,指數(shù)相減.
嘗試證明:
4.揭示規(guī)律
由此我們規(guī)定
規(guī)律一:任何不等于0的數(shù)的0次冪都等于1.
一般我們規(guī)定
規(guī)律二:任何不等于0的數(shù)的-p(p是正整數(shù))次冪等于這個數(shù)的p次冪的倒數(shù).
5.嘗試反饋,理解新知
。ㄑa充)例2 自從掃描隧道電子顯微鏡發(fā)明后,便誕生了一門新技術(shù)一納米技術(shù).納米是長度單位,1 nm (納米)等于 0.000 000 001 m .請用科學記數(shù)法表示 0.000 000 001.
分析:絕對值較小的數(shù)可以用一個有一位整數(shù)的數(shù)與 10 的負指數(shù)幕的乘積的形式來表示.
學生活動:學生在練習本上完成例l、例2,由2個學生板演完成之后,由學生判斷板演是否正確.
教師活動:統(tǒng)計做題正確的人數(shù),同時給予肯定或鼓勵.
6.反饋練習,鞏固知識
練習一
(1)填空:
、 ②
③ ④
。2)計算:
① ②
、 ④
學生活動:第(l)題由學生口答;第(2)題在練習本上完成,然后同桌互閱,教師抽查.
練習二
下面的計算對不對?如果不對,應怎樣改正?
。1) (2)
。3) (4)
學生活動:此練習以學生搶答方式完成,注意訓練學生的表述能力,以提高興趣.
總結(jié)、擴展
我們共同總結(jié)這節(jié)課的`學習內(nèi)容.
學生活動:①同底數(shù)冪相除,底數(shù) ,指數(shù) .
、谟蓪W生談本書內(nèi)容體會.
教法說明:強調(diào)“不變”、“相減”.學生談體會,不僅是對本節(jié)知識的再現(xiàn),同時也培養(yǎng)了學生的口頭表達能力和概括總結(jié)能力.
6.小結(jié)
本節(jié)主要學習內(nèi)容:
同底數(shù)冪的除法運算性質(zhì).
零指數(shù)與負整數(shù)指數(shù)的意義.
用科學記數(shù)法表示絕對值較小的數(shù)的方法.
冪的運算與指數(shù)運算的關(guān)系: (m,n都是正整數(shù)); (a≠0,m,n都是正整數(shù)),即在底數(shù)相同的條件下:冪相乘→指數(shù)相加,冪相除→指數(shù)相減.
注意的地方:
在同底數(shù)冪的除法性質(zhì)及零指數(shù)冪與負整數(shù)指數(shù)冪中,千萬不能忽略底數(shù)a≠0的條件.
7.布置作業(yè)
P78 A組3、4 B組2、3
8.板書設計
8.3同底數(shù)冪的除法
一、同底數(shù)冪的法則
二、例題 練習
例1 (補充)例2
七年級數(shù)學教案3
教學目標:
1,掌握數(shù)軸的概念,理解數(shù)軸上的點和有理數(shù)的對應關(guān)系;
2,會正確地畫出數(shù)軸,會用數(shù)軸上的點表示給定的有理數(shù),會根據(jù)數(shù)軸上的點讀出所表示的有理數(shù);
3,感受在特定的條件下數(shù)與形是可以相互轉(zhuǎn)化的,體驗生活中的數(shù)學。
教學難點:
數(shù)軸的概念和用數(shù)軸上的點表示有理數(shù)
知識重點
教學過程(師生活動) 設計理念
設置情境
引入課題
教師通過實例、課件演示得到溫度計讀數(shù).
問題1:溫度計是我們?nèi)粘I钪杏脕頊y量溫度的重要工具,你會讀溫度計嗎?請你嘗試讀出圖中三個溫度計所表示的溫度?
(多媒體出示3幅圖,三個溫度分別為零上、零度和零下)
問題2:在一條東西向的馬路上,有一個汽車站,汽車站東3 m和7.5m處分別有一棵柳樹和一棵楊樹,汽車站西3 m和4.8m處分別有一棵槐樹和一根電線桿,試畫圖表示這一情境.
(小組討論,交流合作,動手操作) 創(chuàng)設問題情境,激發(fā)學生的學習熱情,發(fā)現(xiàn)生活中的數(shù)學。
探究新知
教師:由上述兩問題我們得到什么啟發(fā)?你能用一條直線上的點表示有理數(shù)嗎?
讓學生在討論的基礎上動手操作,在操作的基礎上歸納出:可以表示有理數(shù)的直線必須滿足什么條件?
從而得出數(shù)軸的三要素:原點、正方向、單位長度 體驗數(shù)形結(jié)合思想;只描述數(shù)軸特征即可,不用特別強調(diào)數(shù)軸三要求。
從游戲中學數(shù)學 做游戲:教師準備一根繩子,請8個同學走上來,把位置調(diào)整為等距離,規(guī)定第4個同學為原點,由西向東為正方向,每個同學都有一個整數(shù)編號,請大家記住,現(xiàn)在請第一排的同學依次發(fā)出口令,口令為數(shù)字時,該數(shù)對應的同學要回答“到”;口令為該同學的名字時,該同學要報出他對應的“數(shù)字”,如果規(guī)定第3個同學為原點,游戲還能進行嗎? 學生游戲體驗,對數(shù)軸概念的理解
尋找規(guī)律
歸納結(jié)論
問題3:
1, 你能舉出一些在現(xiàn)實生活中用直線表示數(shù)的實際例子嗎?
2, 如果給你一些數(shù),你能相應地在數(shù)軸上找出它們的準確位置嗎?如果給你數(shù)軸上的.點,你能讀出它所表示的數(shù)嗎?
3, 哪些數(shù)在原點的左邊,哪些數(shù)在原點的右邊,由此你會發(fā)現(xiàn)什么規(guī)律?
4, 每個數(shù)到原點的距離是多少?由此你會發(fā)現(xiàn)了什么規(guī)律?
(小組討論,交流歸納)
歸納出一般結(jié)論,教科書第12的歸納。 這些問題是本節(jié)課要求學會的技能,教學中要以學生探究學習為主來完成,教師可結(jié)合教科書給學生適當指導。
鞏固練習
教科書第12頁練習
小結(jié)與作業(yè)
課堂小結(jié)
請學生總結(jié):
1, 數(shù)軸的三個要素;
2, 數(shù)軸的作以及數(shù)與點的轉(zhuǎn)化方法。
本課作業(yè)
1, 必做題:教科書第18頁習題1.2第2題
2,選做題:教師自行安排
本課教育評注(課堂設計理念,實際教學效果及改進設想)
1, 數(shù)軸是數(shù)形轉(zhuǎn)化、結(jié)合的重要媒介,情境設計的原型來源于生活實際,學生易于體驗和接受,讓學生通過觀察、思考和自己動手操作、經(jīng)歷和體驗數(shù)軸的形成過程,加深對數(shù)軸概念的理解,同時培養(yǎng)學生的抽象和概括能力,也體出了從感性認識,到理性認識,到抽象概括的認識規(guī)律。
2, 教學過程突出了情竟到抽象到概括的主線,教學方法體了特殊到一般,數(shù)形結(jié)合的數(shù)學思想方法。
3, 注意從學生的知識經(jīng)驗出發(fā),充分發(fā)揮學生的主體意識,讓學生主動參與學習活,并引導學生在課堂上感悟知識的生成,發(fā)展與變化,培養(yǎng)學生自主探索的學習方法。
七年級數(shù)學教案4
教學目標
1,整理前兩個學段學過的整數(shù)、分數(shù)(包括小數(shù))的知識,掌握正數(shù)和負數(shù)的概念;
2,能區(qū)分兩種不同意義的量,會用符號表示正數(shù)和負數(shù);
3,體驗數(shù)學發(fā)展的一個重要原因是生活實際的需要,激發(fā)學生學習數(shù)學的興趣。
教學難點正確區(qū)分兩種不同意義的量。
知識重點兩種相反意義的量
教學過程(師生活動)設計理念
設置情境
引入課題上課開始時,教師應通過具體的例子,簡要說明在前兩個學段我們已經(jīng)學過的數(shù),并由此請學生思考:生
活中僅有這些“以前學過的數(shù)”夠用了嗎?下面的例子
僅供參考.
師:今天我們已經(jīng)是七年級的學生了,我是你們的數(shù)學老師.下面我先向你們做一下自我介紹,我的名字是XX,身高1。73米,體重58。5千克,今年40歲.我們的班級是七(13)班,有60個同學,其中男同學有22個,占全班總?cè)藬?shù)的37%…
問題1:老師剛才的介紹中出現(xiàn)了幾個數(shù)?分別是什么?你能將這些數(shù)按以前學過的數(shù)的分類方法進行分類嗎?
學生活動:思考,交流
師:以前學過的數(shù),實際上主要有兩大類,分別是整數(shù)和分數(shù)(包括小數(shù)).
問題2:在生活中,僅有整數(shù)和分數(shù)夠用了嗎?
請同學們看書(觀察本節(jié)前面的幾幅圖中用到了什么數(shù),讓學生感受引入負數(shù)的`必要性)并思考討論,然后進行交流。
。ㄒ部梢猿鍪練庀箢A報中的氣溫圖,地圖中表示地形高低地形圖,工資卡中存取錢的記錄頁面等)
學生交流后,教師歸納:以前學過的數(shù)已經(jīng)不夠用了,有時候需要一種前面帶有“-”的新數(shù)。先回顧小學里學過的數(shù)的類型,歸納出我們已經(jīng)學了整數(shù)和分數(shù),然后,舉一些實際生活中共有相反意義的量,說明為了表示相反意義的量,我們需要引入負數(shù),這樣做強調(diào)了數(shù)學的嚴密性,但對于學生來說,更多地感到了數(shù)學的枯燥乏味為了既復習小學里學過的數(shù),又能激發(fā)學生的學習興趣,所以創(chuàng)設如下的問題情境,以盡量貼近學生的實際.
這個問題能激發(fā)學生探究的欲望,學生自己看書學習是培養(yǎng)學生自主學習的重要途徑,都應予以重視。
以上的情境和實例使學生體會生活中處處有數(shù)學,通過實例,使學生獲取大量的感性材料,為正確建立相反意義的量奠定基礎。
分析問題
探究新知問題3:前面帶有“一”號的新數(shù)我們應怎樣命名它呢?為什么要引人負數(shù)呢?通常在日常生活中我們用正數(shù)和負數(shù)分別表示怎樣的量呢?
這些問題都必須要求學生理解.
教師可以用多媒體出示這些問題,讓學生帶著這些問題看書自學,然后師生交流.
這階段主要是讓學生學會正數(shù)和負數(shù)的表示.
強調(diào):用正,負數(shù)表示實際問題中具有相反意義的量,而相反意義的量包含兩個要素:一是它們的意義相反,如向東與向西,收人與支出;二是它們都是數(shù)量,而且是同類的量.這些問題是這節(jié)課的主要知識,教師要清楚地向?qū)W生說明,并且要注意語言的準確與規(guī)范,要舍得花時間讓學充分發(fā)表想法。
舉一反三思維拓展經(jīng)過上面的討論交流,學生對為什么要引人負數(shù),對怎樣用正數(shù)和負數(shù)表示兩種相反意義的量有了初步的理解,教師可以要求學生舉出實際生活中類似的例子,以加深對正數(shù)和負數(shù)概念的理解,并開拓思維.
問題4:請同學們舉出用正數(shù)和負數(shù)表示的例子.
問題5:你是怎樣理解“正整數(shù)”“負整數(shù),,’’正分數(shù)”和“負分數(shù)”的呢?請舉例說明.
能否舉出例子是學生對知識掌握程度的體現(xiàn),也能進一步幫助學生理解引負數(shù)的必要性
課堂練習教科書第5頁練習
小結(jié)與作業(yè)
課堂小結(jié)圍繞下面兩點,以師生共同交流的方式進行:
1,0由于實際問題中存在著相反意義的量,所以要引人負數(shù),這樣數(shù)的范圍就擴大了;
2,正數(shù)就是以前學過的0以外的數(shù)(或在其前面加“+”),負數(shù)就是在以前學過的0以外的數(shù)前面加“-”。
本課作業(yè)教科書第7頁習題1。1第1,2,4,5(第3題作為下節(jié)課的思考題。
作業(yè)可設必做題和選做題,體現(xiàn)要求的層次性,以滿足不同學生的需要
本課教育評注(課堂設計理念,實際教學效果及改進設想)
密切聯(lián)系生活實際,創(chuàng)設學習情境.本課是有理數(shù)的第一節(jié)課時.引人負數(shù)是數(shù)的范圍的一次重要擴充,學生頭腦中關(guān)于數(shù)的結(jié)構(gòu)要做重大調(diào)整(其實是一次知識的順應過程),而負數(shù)相對于以前的數(shù),對學生來說顯得更抽象,因此,這個概念并不是一下就能建立的.為了接受這個新的數(shù),就必須對原有的數(shù)的結(jié)構(gòu)進行整理,引人幣的舉例就是這個目的.
負數(shù)的產(chǎn)生主要是因為原有的數(shù)不夠用了(不能正確簡潔地表示數(shù)量),書本的例子
或圖片中出現(xiàn)的負數(shù)就是讓學生去感受和體驗這一點.使學生接受生活生產(chǎn)實際中確實
存在著兩種相反意義的量是本課的教學難點,所以在教學中可以多舉幾個這方面的例
子,并且所舉的例子又應該符合學生的年齡和思維特點。當學生接受了這個事實后,引入負數(shù)(為了區(qū)分這兩種相反意義的量)就是順理成章的事了.
這個教學設計突出了數(shù)學與實際生活的緊密聯(lián)系,使學生體會到數(shù)學的應用價值,
體現(xiàn)了學生自主學習、合作交流的教學理念,書本中的圖片和例子都是生活生產(chǎn)中常見
的事實,學生容易接受,所以應該讓學生自己看書、學習,并且鼓勵學生討論交流,教師作適當引導就可以了。
七年級數(shù)學教案5
學生很容易解決,相互交流,自我評價,增強學生的主人翁意識。
3、電腦演示:
如下圖,第一行的圖形繞虛線旋轉(zhuǎn)一周,便能形成第二行的某個幾何體,用線連一連。
由平面圖形動成立體圖形,由靜態(tài)到動態(tài),讓學生感受到幾何圖形的奇妙無窮,更加激發(fā)他們的好奇心和探索欲望。
四、做一做(實踐)
1、用牙簽和橡皮泥制作球體和一些柱體和錐體,看哪些同學做得比較標準。
2、使出事先準備好的等邊三角形紙片,試將它折成一個正四面體。
五、試一試(探索)
課前,發(fā)給學生閱讀材料《晶體--自然界的多面體》,讓學生通過閱讀了解什么是正多面體,正多面體是柏拉圖約在公元400年獨立發(fā)現(xiàn)的,在這之前,埃及人已經(jīng)用于建筑(埃及金字塔),以此激勵學生探索的欲望。
教師出示實物模型:正四面體、正方體、正八面體、正十二面體、正二十面體
1、以正四面體為例,說出它的頂點數(shù)、棱數(shù)和面數(shù)。
2、再讓學生觀察、討論其它正多面體的頂點數(shù)、棱數(shù)和面數(shù)。將結(jié)果記入書上的P128的表格。引導學生發(fā)現(xiàn)結(jié)論。
3、(延伸):若隨意做一個多面體,看看是否還是那個結(jié)果。
學生在探索過程中,可能會遇到困難,師生可以共同參與,適當點撥,歸納出歐拉公式,并介紹歐拉這個人,進行科學探索精神教育,充分挖掘?qū)W生的'潛能,讓學生積極參與集體探討,建立良好的相互了解的師生關(guān)系。
六、小結(jié),布置課后作業(yè):
1、用六根火柴:①最多可以拼出幾個邊長相等的三角形?②最多可以拼出如圖所示的三角形幾個?
2、針對我校電腦室對全體學生開放的優(yōu)勢,教師告訴學生網(wǎng)址,讓學生從網(wǎng)上學習正多面體的制作。
讓學生去動手操作,根據(jù)自身的能力,充分發(fā)揮創(chuàng)造性思維,培養(yǎng)學生的創(chuàng)新精神,使每個學生都能得到充分發(fā)展。
七年級數(shù)學教案6
學習目標:
1.會用正.負數(shù)表示具有相反意義的量.
2.通過正.負數(shù)學習,培養(yǎng)學生應用數(shù)學知識的意識.
3.通過探究,滲透對立統(tǒng)一的辨證思想
學習重點:
用正.負數(shù)表示具有相反意義的量
學習難點:
實際問題中的數(shù)量關(guān)系
教學方法:
講練相結(jié)合
教學過程
一.學前準備
通過上節(jié)課的學習,我們知道在實際生產(chǎn)和生活中存在著兩種不同意義的量,為了區(qū)分它們,我們用正數(shù)和負數(shù)來分別表示它們.
問題1:“零”為什么即不是正數(shù)也不是負數(shù)呢?
引導學生思考討論,借助舉例說明.
參考例子:溫度表示中的零上,零下和零度.
二.探究理解解決問題
問題2:(教科書第4頁例題)
先引導學生分析,再讓學生獨立完成
例(1)一個月內(nèi),小明體重增加2kg,小華體重減少1kg,小強體重無變化,寫出他們這個月的體重增長值;
。2)20xx年下列國家的商品進出口總額比上一年的變化情況是:
美國減少6.4%,德國增長1.3%,
法國減少2.4%,英國減少3.5%,
意大利增長0.2%,中國增長7.5%.
寫出這些國家20xx年商品進出口總額的增長率.
解:(1)這個月小明體重增長2kg,小華體重增長—1kg,小強體重增長0kg.
。2)六個國家20xx年商品進出口總額的增長率:
美國—6.4%,德國1.3%,
法國—2.4%,英國—3.5%,
意大利0.2%,中國7.5%.
三.鞏固練習
從0表示一個也沒有,是正數(shù)和負數(shù)的分界的角度引導學生理解.
在學生的討論中簡單介紹分類的數(shù)學思想先不要給出有理數(shù)的概念.
在例題中,讓學生通過閱讀題中的含義,找出具有相反意義的量,決定哪個用正數(shù)表示,哪個用負數(shù)表示.
通過問題(2)提醒學生審題時要注意要求,題中求的是增長率,不是增長值.
四.閱讀思考1頁
。ń炭茣8頁)用正負數(shù)表示加工允許誤差.
問題:1.直徑為30.032mm和直徑為29.97的.零件是否合格?
2.你知道還有那些事件可以用正負數(shù)表示允許誤差嗎?請舉例.
五.小結(jié)
1.本節(jié)課你有那些收獲?
2.還有沒解決的問題嗎?
六.應用與拓展
1.必做題:
教科書5頁習題4.5.:6.7.8題
2.選做題
1).甲冷庫的溫度是—12°C,乙冷庫的溫度比甲冷酷低5°C,則乙冷庫的溫度是.
2.)一種零件的內(nèi)徑尺寸在圖紙上是9±0.05(單位:mm),表示這種零件的標準尺寸是9mm,加工要求最大不超過標準尺寸多少?最小不小于標準尺寸多少?
七年級數(shù)學教案7
【教學目標】
引導學生通過常規(guī)分析,得出解題思路,經(jīng)歷提出問題,自探問題,應用知識的過程,自主總結(jié)出解題辦法;
【教學難點】
找出題目中的可有可無的已知條件,說一說為什么可以這樣認為
【教學過程】
問:以前學過的有關(guān)路程,時間,和速度之間的關(guān)系是怎么樣的?你能寫出它們之間的關(guān)系嗎?
出示例題:甲、乙兩地公路全長352千米。汽車原來從甲地到乙地要11小時,建成高速公路后,汽車每小時速度是原來的2.5倍。現(xiàn)在汽車從甲地到乙地需要多少小時?
分析:要求現(xiàn)在汽車從甲地到乙地需要多少小時,那么先要求出汽車現(xiàn)在的速度,而汽車現(xiàn)在的'速度是原來的2.5倍,那么還得先求出汽車原來的速度。根據(jù)`甲乙兩地公路全長352千米。汽車原來從甲地到乙要11小時',可以求出汽車原來的速度。
學生寫出解答過程:汽車原來的速度:352÷1=32(千米); 汽車現(xiàn)在的速度:32×2.5=80(千米)
現(xiàn)在的時間:352÷80=4.4(小時)
問:用比例的思路該怎么樣理解這道題目呢?
分析:甲、乙兩地的公路長度一定,汽車的速度和所需的時間成反比例。因為現(xiàn)在的速度是原來的2.5倍,所以原來的時間是現(xiàn)在的
2.5倍。即:11÷2.5=4.4(小時)。
這樣解答使得`甲乙兩地公路全長352千米'成了多余條件,但是又不影響解答問題。
【我們來探索】
一批零件有240個,王師傅單獨做需要6小時,李師傅的工作效率是王師傅的1.5倍,那么如果讓李師傅單獨做這批零件,需要幾小時?
【總結(jié)】
在解答應用題時要善于應用不同的思路和技巧,巧解問題
【作業(yè)】
丁阿姨打一份稿件需4小時,王阿姨的速度是丁阿姨的,那么如果由王阿姨打這份稿件,需要幾小時?
丁阿姨打一份稿件需要4小時,王阿姨的速度與丁阿姨的速度比是4:5,那么如果由王阿姨打這份稿件,需要幾小時?
七年級數(shù)學教案8
一、素質(zhì)教育目標
(一)知識教學點
1.了解有理數(shù)除法的定義.
2.理解倒數(shù)的意義.
3.掌握有理數(shù)除法法則,會進行運算.
(二)能力訓練點
1.通過有理數(shù)除法法則的導出及運算,讓學生體會轉(zhuǎn)化思想.
2.培養(yǎng)學生運用數(shù)學思想指導思維活動的能力.
(三)德育滲透點
通過學習有理數(shù)除法運算、感知數(shù)學知識具有普遍聯(lián)系性、相互轉(zhuǎn)化性.
(四)美育滲透點
把小學算術(shù)里的乘法法則推廣到有理數(shù)范圍內(nèi),體現(xiàn)了知識體系的完整美.
二、學法引導
1.教學方法:遵循啟發(fā)式教學原則,注意創(chuàng)設問題情境,精心構(gòu)思啟發(fā)導語 并及時點撥,使學生主動發(fā)展思維和能力.
2.學生學法:通過練習探索新知→歸納除法法則→鞏固練習
三、重點、難點、疑點及解決辦法
1.重點:除法法則的靈活運用和倒數(shù)的概念.
2.難點:有理數(shù)除法確定商的符號后,怎樣根據(jù)不同的情況來取適當?shù)姆椒ㄇ笊痰慕^對值.
3.疑點:對零不能作除數(shù)與零沒有倒數(shù)的理解.
四、課時安排
1課時
五、教具學具準備
投影儀、自制膠片、彩粉筆.
六、師生互動活動設計
教師出示探索性練習,學生討論歸納除法法則,教師出示鞏固性練習,學生以多種形式完成.
七、教學步驟
(一)創(chuàng)設情境,復習導入
師:以上我們學習了有理數(shù)的乘法,這節(jié)我們應該學習,板書課題.
【教法說明】
同小學算術(shù)中除法一樣—除以一個數(shù)等于乘以這個數(shù)的倒數(shù),所以必須以學好求一個有理數(shù)的倒數(shù)為基礎學習.
(二)探索新知,講授新課
1.倒數(shù).
(出示投影1)
4×( )=1; ×( )=1; 0.5×( )=1;
0×( )=1; -4×( )=1; ×( )=1.
學生活動:口答以上題目.
【教法說明】
在有理數(shù)乘法的`基礎上,學生很容易地做出這幾個題目,在題目的選擇上,注意了數(shù)的全面性,即有正數(shù)、0、負數(shù),又有整數(shù)、分數(shù),在數(shù)的變化中,讓學生回憶、體會出求各種數(shù)的倒數(shù)的方法.
師問:兩個數(shù)乘積是1,這兩個數(shù)有什么關(guān)系?
學生活動:乘積是1的兩個數(shù)互為倒數(shù).(板書)
師問:0有倒數(shù)嗎?為什么?
學生活動:通過題目0×( )=1得出0乘以任何數(shù)都不得1,0沒有倒數(shù).
師:引入負數(shù)后,乘積是1的兩個負數(shù)也互為倒數(shù),如-4與,與互為倒數(shù),即的倒數(shù)是.
提出問題:根據(jù)以上題目,怎樣求整數(shù)、分數(shù)、小數(shù)的倒數(shù)?
【教法說明】
教師注意創(chuàng)設問題情境,讓學生參與思考,循序漸進地引出,對于有理數(shù)也有倒數(shù)是.對于怎樣求整數(shù)、分數(shù)、小數(shù)的倒數(shù),學生還很難總結(jié)出方法,提出這個問題是讓學生帶著問題來做下組練習.
(出示投影2)
求下列各數(shù)的倒數(shù):
(1); (2); (3);
(4); (5)-5; (6)1.
學生活動:通過思考口答這6小題,討論后得出,求整數(shù)的倒數(shù)是用1除以它,求分數(shù)的倒數(shù)是分子分母顛倒位置;求小數(shù)的倒數(shù)必須先化成分數(shù)再求.
2.計算:8÷(-4).
計算:8×()=? (-2)
8÷(-4)=8×().
再嘗試:-16÷(-2)=? -16×()=?
師:根據(jù)以上題目,你能說出怎樣計算嗎?能用含字母的式子表示嗎?
學生活動:同桌互相討論.(一個學生回答)
師強調(diào)后板書:
[板書]
【教法說明】
通過學生親自演算和教師的引導,對有理數(shù)除法法則及字母表示有了非常清楚的認識,教師放手讓學生總結(jié)法則,尤其是字母表示,訓練學生的歸納及口頭表達能力.
(三)嘗試反饋,鞏固練習
師在黑板上出示例題.
計算(1)(-36)÷9, (2)()÷().
學生嘗試做此題目.
(出示投影3)
1.計算:
(1)(-18)÷6; (2)(-63)÷(-7); (3)(-36)÷6;
(4)1÷(-9); (5)0÷(-8); (6)16÷(-3).
2.計算:
(1)()÷(); (2)(-6.5)÷0.13;
(3)()÷(); (4)÷(-1).
學生活動:
1題讓學生搶答,教師用復合膠片顯示結(jié)果.
2題在練習本上演示,兩個同學板演(教師訂正).
【教法說明】
此組練習中兩個題目都是對的直接應用.1題是整數(shù),利用口答形式訓練學生速算能力.2題是小數(shù)、分數(shù)略有難度,要求學生自行演算,加強運算的準確性,2題(2)小題必須把小數(shù)都化成分數(shù)再轉(zhuǎn)化成乘法來計算.
提出問題:(1)兩數(shù)相除,商的符號怎樣確定,商的絕對值呢?(2)0不能做除數(shù),0做被除數(shù)時商是多少?
學生活動:分組討論,1—2個同學回答.
[板書]
2.兩數(shù)相除,同號得正,異號得負,并把絕對值相除.
0除以任何不等于0的數(shù),都得0.
【教法說明】
通過上組練習的結(jié)果,不難看出與有理數(shù)乘法有類似的法則,這個法則的得出為計算有理數(shù)除法又添了一種方法,這時教師要及時指出,在做有理數(shù)除法的題目時,要根據(jù)具體情況,靈活運用這兩種方法.
(四)變式訓練,培養(yǎng)能力
回顧例1 計算:
(1)(-36)÷9; (2)()÷().
提出問題:每個題目你想采用哪種法則計算更簡單?
學生活動:(1)題采用兩數(shù)相除,異號得負并把絕對值相除的方法較簡單.
(2)題仍用除以一個數(shù)等于乘以這個數(shù)的倒數(shù)較簡單.
提出問題:-36:9=?;:()=?它們都屬于除法運算嗎?
學生活動:口答出答案.
(出示投影4)
例2 化簡下列分數(shù)
例3 計算
(1)()÷(-6);
(2)-3.5÷×();
(3)(-6)÷(-4)×().
學生活動:例2讓學生口答,例3全體同學獨立計算,三個學生板演.
【教法說明】
例2是檢查學生對有理數(shù)除法法則的靈活運用能力,并滲透了除法、分數(shù)、比可互相轉(zhuǎn)化,并且通過這種轉(zhuǎn)化,常?赡芎喕嬎.例3培養(yǎng)學生分析問題的能力,優(yōu)化學生思維品質(zhì):
如在(1)()÷(-6)中.
根據(jù)方法①()÷(-6)=×()=.
根據(jù)方法②()÷(-6)=(24+)×=4+=.
讓學生區(qū)分方法的差異,點明方法②非常簡便,肯定當除法轉(zhuǎn)化成乘法時,可以利用有理數(shù)乘法運算律簡化運算.(2)(3)小題也是如此.
(五)歸納小結(jié)
師:今天我們學習了及倒數(shù)的概念,回答問題:
1.的倒數(shù)是__________________();
學生活動:分組討論。
【教法說明】
對這節(jié)課全部知識點的回顧不是教師單純地總結(jié),而是讓學生在思考回答的過程中自己把整節(jié)內(nèi)容進行了梳理,并且上升到了用字母表示的數(shù)學式子,逐步培養(yǎng)學生用數(shù)學語言表達數(shù)學規(guī)律的能力.
八、隨堂練習
1.填空題
(1)的倒數(shù)為__________,相反數(shù)為____________,絕對值為___________
(2)(-18)÷(-9)=_____________;
(3)÷(-2.5)=_____________;
(4);
(5)若,是;
(6)若、互為倒數(shù),則;
(7)或、互為相反數(shù)且,則,;
(8)當時,有意義;
(9)當時,;
(10)若,,則,和符號是_________,___________.
2.計算
(1)-4.5÷()×;
(2)(-12)÷〔(-3)+(-15)〕÷(+5).
九、布置作業(yè)
(一)必做題:1.仿照例1、例2自編2道題,同桌交換解答.
2.計算:(1)()×()÷();
(2)-6÷(-0.25)×.
3.當,,時求的值.
(二)選做題:1.填空:用“>”“<”“=”號填空
(1)如果,則,;
(2)如果,則,;
(3)如果,則,;
(4)如果,則,;
2.判斷:正確的打“√”錯的打“×”
(1)( );
(2)( ).
3.(1)倒數(shù)等于它本身的數(shù)是______________.
(2)互為相反數(shù)的數(shù)(0除外)商是________________.
【教法說明】
必做題為本節(jié)的重點內(nèi)容,首先在這節(jié)課學習的基礎上讓同學仿照例題編題,學生也有這方面的能力,極大調(diào)動了學生積極性,提高了學生運用知識的能力.
選作題是對這節(jié)課重點內(nèi)容的進一步理解和運用,為學有余力的學生提供了展示自己的機會.
十、板書設計
七年級數(shù)學教案9
教學目標:
(1)透徹理解、掌握一元二次方程、一元二次不等式與二次函數(shù)的內(nèi)在聯(lián)系,會解一元二次不等式;
(2)培養(yǎng)學生數(shù)學的數(shù)形結(jié)合思想和轉(zhuǎn)化能力,學會主動探求問題和尋找解決問題的方法。
教學重點:一元二次不等式的解法(圖象法)
教學難點:
(1)一元二次方程、一元二次不等式與二次函數(shù)的關(guān)系;
(2)數(shù)形結(jié)合思想的滲透
教學方法與教學手段:
嘗試探索教學法、歸納概括。
教學過程:
一、復習引入
1.復習一元一次方程、一元一次不等式與一次函數(shù)的關(guān)系
[師]前面我們已經(jīng)學習了絕對值不等式的解法,今天開始研究一元二次不等式的解法。(板書課題)記得在初中我們已學習了一元一次不等式的解法,還記得是用什么方法解的嗎?
學生可能回答是代數(shù)方法,也可能說是利用直線圖象。
[師]初中學習了一次函數(shù)的圖象,使得我們對一元一次不等式的解法有了更深入的了解。首先請同學們畫出 y=2x-7
[師]請同學們畫出圖象,并回答問題。
一次函數(shù)y=2x-7的圖象如下:
填表:
當x 時,y = 0,即 2x-7 0;
當x 時,y < 0,即 2x-7 0;
當x 時,y > 0,即 2x-7 0;
注:(1)引導學生由圖象得出結(jié)論(數(shù)形結(jié)合)
(2)由學生填空(一邊演示y<0,y>0部分圖象)
從上例的特殊情形,你能得出什么結(jié)論?
注:教師引導下學生發(fā)現(xiàn)其結(jié)論,并由學生嘗試敘述:一元一次方程ax+b=0的根實質(zhì)上就是直線y=ax+b與x軸交點的橫坐標;一元一次不等式ax+b>0(或ax+b<0)的解集實質(zhì)上就是使得函數(shù)的圖象在x軸上方還是下方時x的取值范圍。
2.新課導入
[師]我們可以利用一次函數(shù)的'圖象快速準確地求出一元一次不等式的解集,那能否也可以借助二次函數(shù)的圖象來解一元二次不等式呢?
二、講解新課
1、一元二次不等式解法的探索
[師] 你知道二次函數(shù)的草圖是怎樣畫出的嗎?(用"特殊點法"而非課本上的"列表描點法")你能回答以下問題嗎?二次函數(shù) y=x2-4x+3的圖象如下:
填表:方程x2-4x+3=0(即y=0)的解是
不等式x2-4x+3>0(即y>0)的解集是
不等式x2-4x+3<0(即y<0)的解集是
注:學生類比前面的知識,能根據(jù)二次函數(shù)的圖象確定與x軸的交點,確定對應的一元二次方程的根,從而確定一元二次不等式的解集。(邊說邊畫y>0,y<0部分圖象)
[師]現(xiàn)在如果我變動這條拋物線,請大家觀察拋物線與x軸的交點有何變化?
注:引導學生發(fā)現(xiàn)一元二次方程的根有三種情況,其對應的二次函數(shù)圖象與x軸的位置關(guān)系也有三種情況,是由 >0, =0,<0來確定的。
2、講解例題
[師]接下來請同學們再來分析幾個具體例子
(板書)例:解下列各不等式
(1)2x2-3x-2>0;
(2) -3x2+6x>2;
(3)4x2-4x+1>0;
(4)-x2+2x-3>0.
注:跟學生共同詳細分析(1),強調(diào)解題規(guī)范性,其余(2)(3)(4)由學生完成,并小組討論。
解:(1)方程2x2-3x-2=0的兩根為x1=- 或 x2=2,(畫草圖,結(jié)合圖象)
所以原不等式的解集是{x| x<- x="">2 }
四、課后作業(yè):書P21/習題1.5/1.3.5.6
五、教學設計說明:
1、本節(jié)課教學設計力圖體現(xiàn)以學生發(fā)展為本,遵循學生的認知規(guī)律,體現(xiàn)循序漸進的教學原則,通過對原有知識的復習,引導學生類比探索新的知識,激發(fā)學生的求知欲望,調(diào)動學生的積極性。
2、本節(jié)課采用在教師引導下啟發(fā)學生探索發(fā)現(xiàn),體會解題過程中形結(jié)合思想方法,使之獲得內(nèi)心感受。
3、本節(jié)課的重點是利用圖象解一元二次不等式,讓學生明確一元二次方程、一元二次不等式與二次函數(shù)之間的聯(lián)系。在思維訓練方面,注重從特殊到一般,從具體到抽象思維的培養(yǎng)。歸納總結(jié)可以訓練學生的收斂思維,有助于完善學生的思維結(jié)構(gòu)。
4、本節(jié)課的例題及課堂練習是課本上的習題,其目的在于落實基礎,提高運算能力。
七年級數(shù)學教案10
教材分析:
本節(jié)課是新教材幾何教學的第一節(jié)課,通過學生身邊的現(xiàn)實生活中的實物,讓學生感覺圖形世界豐富多彩。經(jīng)歷從現(xiàn)實世界中抽象出幾何圖形的過程.激發(fā)學生學習幾何的熱情.。無需對具體定義的深刻理解,只要學生能用自己的語言描述它們的某些特征。
教學目標:
知識目標:
在具體情境中認識立方體、長方體、圓柱體、圓錐體、球體。并能用自己的語言描述它們的某些特征。進一步認識點、線、面、體,初步感受點、線、面、體之間的關(guān)系。
能力目標:
讓學生經(jīng)歷“幾何模形---圖形---文字”這個抽象過程,培養(yǎng)學生抽象、辨別能力。
情感目標:
感受圖形世界的豐富多彩,激發(fā)學習幾何的熱情。
教學重點:
經(jīng)歷從現(xiàn)實世界中抽象出幾何圖形的過程,感受點、線、面、體之間的關(guān)系。
教學難點:
抽象能力的培養(yǎng),學習熱情的激發(fā)。
教學方法:
引導發(fā)現(xiàn)、師生互動。
教學準備:
多媒體課件、學生身邊的實物等。
教學過程:
合作學習
問題1:
我們已學過的'或認得的存有哪些幾何體?
。▽W生討論、交流)
問題2:
你能舉出一些在日常生活中形狀與上述幾何體類似的物體嗎?
(學生討論、舉例)
課本中P162中的合作學習
(教師可多舉一些平面與曲面的實例讓學生感受、辨別)
特別指出:
數(shù)學中的平面是可以無限伸展的
議一論
P163課內(nèi)練習1
P163課內(nèi)練習2
師生討論指出:
線與線相交成點,面與面相交成線。
想一想:
觀察下圖,你發(fā)現(xiàn)什么?
師生討論
議一議:
日常生活中的哪些事物給人以點、線的形象。
指出:
日常生活中點與面只是相對的一個感念。如:
在中國的地圖上,北京是一個點;而在北京市地圖上,北京是一個面。
活動探究:
P164課內(nèi)練習3
應用拓展:
請以給定的圖形“〇〇、△△、═”(兩個圓、兩個三角形、兩條平行線)為構(gòu)件,盡可能多地構(gòu)思獨特且有意義的圖形,并寫上一句貼切、詼諧的解說詞。如圖就是符合要求的一個圖形。你還能構(gòu)思出其他的圖形嗎?比一比,看誰想得多。
議一議:
本節(jié)課有什么收獲?
布置作業(yè)
七年級數(shù)學教案11
學習目標:
理解多項式乘法法則,會利用法則進行簡單的多項式乘法運算。
學習重點:
多項式乘法法則及其應用。
學習難點:
理解運算法則及其探索過程。
一、課前訓練:
(1)-3a2b+2b2+3a2b-14b2 = ,(2)- = ;
(3)3a2b2 ab3 = , (4) = ;
(5)- = ,(6) = 。
二、探索練習:
(1)如圖1大長方形,其面積用四個小長方形面積
表示為: ;
(2)大長方形的長為 ,寬為 ,要
計算其面積就是 ,其中包含的
運算為 。
由上面的問題可發(fā)現(xiàn):( )( )=
多項式乘以多項式法則:多項式與多項式相乘,先用一個多項式的 以另一個多項式的每一項,再把所得的`積 。
三.運用法則規(guī)范解題。
四.鞏固練習:
3.計算:① ,
4.計算:
五.提高拓展練習:
5.若 求m,n的值.
6.已知 的結(jié)果中不含 項和 項,求m,n的值.
7.計算(a+b+c)(c+d+e),你有什么發(fā)現(xiàn)?
六.晚間訓練:
七年級數(shù)學教案12
教學目標
1.使學生正確理解數(shù)軸的意義,掌握數(shù)軸的三要素;
2.使學生學會由數(shù)軸上的已知點說出它所表示的數(shù),能將有理數(shù)用數(shù)軸上的點表示出來;
3.使學生初步理解數(shù)形結(jié)合的思想方法.
教學重點和難點
重點:初步理解數(shù)形結(jié)合的思想方法,正確掌握數(shù)軸畫法和用數(shù)軸上的點表示有理數(shù).
難點:正確理解有理數(shù)與數(shù)軸上點的對應關(guān)系.
課堂教學過程設計
一、從學生原有認知結(jié)構(gòu)提出問題
1.小學里曾用“射線”上的點來表示數(shù),你能在射線上表示出1和2嗎?
2.用“射線”能不能表示有理數(shù)?為什么?
3.你認為把“射線”做怎樣的改動,才能用來表示有理數(shù)呢?
待學生回答后,教師指出,這就是我們本節(jié)課所要學習的內(nèi)容——數(shù)軸.
二、講授新課
讓學生觀察掛圖——放大的溫度計,同時教師給予語言指導:利用溫度計可以測量溫度,在溫度計上有刻度,刻度上標有讀數(shù),根據(jù)溫度計的液面的不同位置就可以讀出不同的數(shù),從而得到所測的溫度.在0上10個刻度,表示10℃;在0下5個刻度,表示-5℃.
與溫度計類似,我們也可以在一條直線上畫出刻度,標上讀數(shù),用直線上的.點表示正數(shù)、負數(shù)和零.具體方法如下(邊說邊畫):
1.畫一條水平的直線,在這條直線上任取一點作為原點(通常取適中的位置,如果所需的都是正數(shù),也可偏向左邊)用這點表示0(相當于溫度計上的0℃);
2.規(guī)定直線上從原點向右為正方向(箭頭所指的方向),那么從原點向左為負方向(相當于溫度計上0℃以上為正,0℃以下為負);
3.選取適當?shù)拈L度作為單位長度,在直線上,從原點向右,每隔一個長度單位取一點,依次表示為1,2,3,…從原點向左,每隔一個長度單位取一點,依次表示為-1,-2,-3,…
提問:我們能不能用這條直線表示任何有理數(shù)?(可列舉幾個數(shù))
在此基礎上,給出數(shù)軸的定義,即規(guī)定了原點、正方向和單位長度的直線叫做數(shù)軸.
進而提問學生:在數(shù)軸上,已知一點P表示數(shù)-5,如果數(shù)軸上的原點不選在原來位置,而改選在另一位置,那么P對應的數(shù)是否還是-5?如果單位長度改變呢?如果直線的正方向改變呢?
通過上述提問,向?qū)W生指出:數(shù)軸的三要素——原點、正方向和單位長度,缺一不可.
三、運用舉例變式練習
例1畫一個數(shù)軸,并在數(shù)軸上畫出表示下列各數(shù)的點:
例2指出數(shù)軸上A,B,C,D,E各點分別表示什么數(shù).
課堂練習
示出來.
2.說出下面數(shù)軸上A,B,C,D,O,M各點表示什么數(shù)?
最后引導學生得出結(jié)論:正有理數(shù)可用原點右邊的點表示,負有理數(shù)可用原點左邊的點表示,零用原點表示.
四、小結(jié)
指導學生閱讀教材后指出:數(shù)軸是非常重要的數(shù)學工具,它使數(shù)和直線上的點建立了對應關(guān)系,它揭示了數(shù)和形之間的內(nèi)在聯(lián)系,為我們研究問題提供了新的方法.
本節(jié)課要求同學們能掌握數(shù)軸的三要素,正確地畫出數(shù)軸,在此還要提醒同學們,所有的有理數(shù)都可用數(shù)軸上的點來表示,但是反過來不成立,即數(shù)軸上的點并不是都表示有理數(shù),至于數(shù)軸上的哪些點不能表示有理數(shù),這個問題以后再研究.
五、作業(yè)
1.在下面數(shù)軸上:
(1)分別指出表示-2,3,-4,0,1各數(shù)的點.
(2)A,H,D,E,O各點分別表示什么數(shù)?
2.在下面數(shù)軸上,A,B,C,D各點分別表示什么數(shù)?
3.下列各小題先分別畫出數(shù)軸,然后在數(shù)軸上畫出表示大括號內(nèi)的一組數(shù)的點:
(1){-5,2,-1,-3,0}; (2){-4,2.5,-1.5,3.5};
七年級數(shù)學教案13
教學目的:
(一)知識點目標:
1.了解正數(shù)和負數(shù)是怎樣產(chǎn)生的。
2.知道什么是正數(shù)和負數(shù)。
3.理解數(shù)0表示的量的意義。
(二)能力訓練目標:
1.體會數(shù)學符號與對應的思想,用正、負數(shù)表示具有相反意義的量的符號化方法。
2.會用正、負數(shù)表示具有相反意義的量。
(三)情感與價值觀要求:
通過師生合作,聯(lián)系實際,激發(fā)學生學好數(shù)學的熱情。
教學重點:
知道什么是正數(shù)和負數(shù),理解數(shù)0表示的量的意義。
教學難點:
理解負數(shù),數(shù)0表示的量的意義。
教學方法:
師生互動與教師講解相結(jié)合。
教具準備:
地圖冊(中國地形圖)。
教學過程:
引入新課:
1.活動:由兩組各派兩名同學進行如下活動:一名按老師的指令表演,另一名在黑板上速記,看哪一組記得最快、?
內(nèi)容:老師說出指令:
向前兩步,向后兩步;
向前一步,向后三步;
向前兩步,向后一步;
向前四步,向后兩步。
如果學生不能引入符號表示,教師可和一個小組合作,用符號表示出+2、-2、+1、-3、+2、-1、+4、-2等。
[師]其實,在我們的生活中,運用這樣的符號的.地方很多,這節(jié)課,我們就來學習這種帶有特殊符號、表示具有實際意義的數(shù)-----正數(shù)和負數(shù)。
講授新課:
1.自然數(shù)的產(chǎn)生、分數(shù)的產(chǎn)生。
2.章頭圖。問題見教材。讓學生思考-3~3℃、凈勝球數(shù)與排名順序、±0.5、-9的意義。
3、正數(shù)、負數(shù)的定義:我們把以前學過的0以外的數(shù)叫做正數(shù),在這些數(shù)的前面帶有“一”時叫做負數(shù)。根據(jù)需要有時在正數(shù)前面也加上“十”(正號)表示正數(shù)。
舉例說明:3、2、0.5、等是正數(shù)(也可加上“十”)
-3、-2、-0.5、-等是負數(shù)。
4、數(shù)0既不是正,也不是負數(shù),0是正數(shù)和負數(shù)的分界。
0℃是一個確定的溫度,海拔為0的高度是海平面的平均高度,0的意義已不僅表示“沒有”。
5、讓學生舉例說明正、負數(shù)在實際中的應用。展示圖片(又見教材P5圖1.1-2-3)讓學生觀察地形圖上的標注和記錄支出、存入信息的本地X銀行的存折,說出你知道的信息。
鞏固提高:練習:課本P5練習
課時小結(jié):這節(jié)課我們學習了哪些知識?你能說一說嗎?
課后作業(yè):課本P7習題1.1的第1、2、4、5題。
活動與探究:在一次數(shù)學測驗中,X班的平均分為85分,把高于平均分的高出部分記為正數(shù)。
(1)美美得95分,應記為多少?
(2)多多被記作一12分,他實際得分是多少?
七年級數(shù)學教案14
教學目標
1,通過對數(shù)“零”的意義的探討,進一步理解正數(shù)和負數(shù)的概念;
2,利用正負數(shù)正確表示相反意義的量(規(guī)定了指定方向變化的量)
3,進一步體驗正負數(shù)在生產(chǎn)生活實際中的廣泛應用,提高解決實際問題的能力,激發(fā)學習數(shù)學的興趣。
教學難點
深化對正負數(shù)概念的理解
知識重點
正確理解和表示向指定方向變化的量
教學過程(師生活動)
設計理念
知識回顧與深化
回顧:上一節(jié)課我們知道了在實際生產(chǎn)和生活中存在著兩種不同意義的量,為了區(qū)分這兩種量,我們用正數(shù)表示其中一種意義的量,那么另一種意義的量就用負數(shù)來表示.這就是說:數(shù)的范圍擴大了(數(shù)有正數(shù)和負數(shù)之分).那么,有沒有一種既不是正數(shù)又不是負數(shù)的數(shù)呢?
問題1:有沒有一種既不是正數(shù)又不是負數(shù)的數(shù)呢?學生思考并討論.(數(shù)0既不是正數(shù)又不是負數(shù),是正數(shù)和負數(shù)的分界,是基準.這個道理學生并不容易理解,可視學生的討論情況作些啟發(fā)和引導,下面的例子供參考)
例如:在溫度的表示中,零上溫度和零下溫度是兩種不同意義的量,通常規(guī)定零上溫度用正數(shù)來表示,零下溫度用負數(shù)來表示。那么某一天某地的溫度是零上7℃,最低溫度是零下5℃時,就應該表示為+7℃和-5℃,這里+7℃和-5℃就分別稱為正數(shù)和負數(shù).那么當溫度是零度時,我們應該怎樣表示呢?(表示為0℃),它是正數(shù)還是負數(shù)呢?由于零度既不是零上溫度也不是零下溫度,所以,0既不是正數(shù)也不是負數(shù)?
問題2:引入負數(shù)后,數(shù)按照“兩種相反意義的量”來分,可以分成幾類? “數(shù)0耽不是正數(shù),也不是負數(shù)”也應看作是負數(shù)定義的一部分.在引入負數(shù)后,0除了表示一個也沒有以外,還是正數(shù)和負數(shù)的分界.了解。的這一層意義,也有助于對正負數(shù)的理解;且對數(shù)的順利擴張和有理毅概念的建立都有幫助。所舉的例子,要考慮學生的可接受性.“數(shù)0既不是正數(shù),也不是負數(shù)”應從相反意義的.1這個角度來說明.這個問題只要初步認識即可,不必深究.
問題3:教科書第6頁例題
說明:這是一個用正負數(shù)描述向指定方向變化情況的例子,通常向指定方向變化用正數(shù)表示;向指定方向的相反方向變化用負數(shù)表示。這種描述在實際生活中有廣泛的應用,應予以重視。教學中,應讓學生體驗“增長”和“減少”是兩種相反意義的量,要求寫出“體重的增長值”和“進出口額的增長率”,就暗示著用正數(shù)來表示增長的量。
歸納:在同一個問題中,分別用正數(shù)和負數(shù)表示的量具有相反的意義(教科書第6頁).
類似的例子很多,如:水位上升-3m,實際表示什么意思呢?收人增加-10%,實際表示什么意思呢?等等。可視教學中的實際情況進行補充.
這種用正負數(shù)描述向指定方向變化情況的例子,在實際生活中有廣泛的應用,按題意找準哪種意義的量應該用正數(shù)表示是解題的關(guān)健.這種描述具有相反數(shù)的影子,例如第(1)題中小明的體重可說成是減少-2kg,但現(xiàn)在不必向?qū)W生提出.
鞏固練習教科書第6頁練習
閱讀思考
教科書第8頁閱讀與思考是正負數(shù)應用的很好例子,要花時間讓學生討論交流
小結(jié)與作業(yè)
課堂小結(jié)以問題的形式,要求學生思考交流:
1,引人負數(shù)后,你是怎樣認識數(shù)0的,數(shù)0的意義有哪些變化?
2,怎樣用正負數(shù)表示具有相反意義的量?(用正數(shù)表示其中一種意義的量,另一種量用負數(shù)表示;特別地,在用正負數(shù)表示向指定方向變化的量時,通常把向指定方向變化的量規(guī)定為正數(shù),而把向指定方向的相反方向變化的量規(guī)定為負數(shù).)
本課作業(yè)1,必做題:教科書第7頁習題1.1第3,6,7,8題
3,選做題:教師自行安排
本課教育評注(課堂設計理念,實際教學效果及改進設想)
1,本課主要目的是加深對正負數(shù)概念的理解和用正負數(shù)表示實際生產(chǎn)生活中的向指
定方向變化的量。
2,“數(shù)0既不是正數(shù),也不是負數(shù),’(要從0不屬于兩種相反意義的量中的任何一種上來理解)也應看作是負數(shù)定義的一部分.在引人負數(shù)后,除了表示一個也沒有以外,還是正數(shù)和負數(shù)的分界。了解0的這一層意義,也有助于對正負數(shù)的理解,且對數(shù)的順利擴張和有理數(shù)概念的建立都有幫助.由于上節(jié)課的重點是建立兩種相反意義量的概念,考慮到學生的可接受性,所以作為知識的回顧和深化而放到本課.
3,教科書的例子是用正負數(shù)表示(向指定方向變化的)量的實際應用,用這種方式描述的例子很多,要盡量使學生理解.
4,本設計體現(xiàn)了學生自主學習、交流討論的教學理念,教學中要讓學生體驗數(shù)學知識在實際中的合理應用,在體驗中感悟和深化知識.通過實際例子的學習激發(fā)學生學習數(shù)學的興趣.
七年級數(shù)學教案15
學習目標
1.經(jīng)歷觀察、操作、想像、推理、交流等活動,進一步發(fā)展空間觀念,推理能力和有條理表達能力.
2.分析題意說理過程,能靈活地選用直線平行的方法進行說理.
學習重點:
直線平行的條件的應用.
學習難點:
選取適當判定直線平行的方法進行說理是重點也是難點.
一、學習過程
平行線的判定方法有幾種?分別是什么?
二.鞏固練習:
1.如圖2,若∠2=∠6,則______∥_______,如果∠3+∠4+∠5+∠6=180°,那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.
(第1題)(第2題)
2.如圖,一個合格的變形管道ABCD需要AB邊與CD邊平行,若一個拐角∠ABC=72°,則另一個拐角∠BCD=_______時,這個管道符合要求.
二、選擇題.
1.如圖,下列判斷不正確的是()
A.因為∠1=∠4,所以DE∥AB
B.因為∠2=∠3,所以AB∥EC
C.因為∠5=∠A,所以AB∥DE
D.因為∠ADE+∠BED=180°,所以AD∥BE
2.如圖,直線AB、CD被直線EF所截,使∠1=∠2≠90°,則()
A.∠2=∠4B.∠1=∠4C.∠2=∠3D.∠3=∠4
三、解答題.
1.你能用一張不規(guī)則的.紙(比如,如圖1所示的四邊形的紙)折出兩條平行的直線嗎?與同伴說說你的折法.
2.已知,如圖2,點B在AC上,BD⊥BE,∠1+∠C=90°,問射線CF與BD平行嗎?試用兩種方法說明理由.
【七年級數(shù)學教案】相關(guān)文章:
七年級數(shù)學教案12-17
初中七年級的數(shù)學教案02-02
七年級上數(shù)學教案02-07
七年級數(shù)學教案10-11
七年級初中數(shù)學教案12-02
人教版七年級數(shù)學教案10-05
初中七年級數(shù)學教案12-30
七年級上冊數(shù)學教案01-16
人教版七年級上數(shù)學教案02-16
【熱】七年級數(shù)學教案02-13