七年級數(shù)學教案【精】
作為一位優(yōu)秀的人民教師,就有可能用到教案,教案有利于教學水平的提高,有助于教研活動的開展。那么什么樣的教案才是好的呢?下面是小編整理的七年級數(shù)學教案,僅供參考,希望能夠幫助到大家。
七年級數(shù)學教案1
本節(jié)課的主要任務是引導學生完成由立體圖形到視圖,再由視圖想到立體圖形的復雜過程。這對于剛剛接觸幾何的初一學生而言,無疑是一次較大的挑戰(zhàn),順利地完成教學,對今后學習興趣、信心的培養(yǎng)都是至關重要的,因此,我針對學生的心理特點及接受能力對教材做如下設計:
首先我用蘇軾的《題西林壁》巧妙地喚起學生的生活感受,讓他們認識到視圖的知識在生活中我們早有親身體驗,只是還沒有形成概念,然后我再用“粉筆”這一簡單的教具,讓學生再次體會,加深認識,這樣,教學與生活緊密相連,既有自然地導入課題,又消除學生對新知識的恐懼,同時還激發(fā)了學生濃厚的學習興趣。
然后,我不適時地出示“三視圖”這一概念,通過實驗,讓學生認識到視圖就是由立體圖形轉化成的平面圖形,并不斷地訓練、討論、總結,得出畫三視圖的正確方法。這時教師要巧妙點撥,學生如何從正面、上面、側面三個角度來觀察,既體現(xiàn)了學生的主體地位,又突出了教師的主導作用,鍛煉了學生的動手操能力。
由視圖到立體圖形與上面的過程恰恰相反,需要學生根據(jù)視圖進行想象,在大腦中構建一個立體形象。我引導學生利用直觀形象與生活中的實物進行聯(lián)系,通過歸納、總結、對比的方法,有效的突破這一難點。為了進一步地激發(fā)學生的學習興趣,培養(yǎng)學生的想象能力和思維能力,可以讓學生用一些小立方體隨意擺出幾種組合并描繪出它的視圖,再由視圖到立體圖形的課堂訓練。最后,讓學生歸納所學知識,進一步鍛煉學生的概括能力,使知識系統(tǒng)化。以上設計如有不妥之處,望老師們不吝賜教,我不勝感激。
評課記錄
開發(fā)區(qū)李玉:于坤老師這節(jié)課有幾個突出特點:
1、給學生創(chuàng)設了生動的問題情境。
本節(jié)課用宋朝文學家蘇軾的一首的詩《題西林壁》!皺M看成嶺側成峰,遠近高低各不同……”來引入課題,從橫、側、遠、近、高、低等不同角度來觀察廬山,引出如何觀察生活中的立體圖形,這個切入點非常好,一下子就能抓住學生的心,吸引學生的注意力。在平日的教學中,我們也應該多找這樣的例子。如在教七年級《代數(shù)式》時,有的老師這樣引入“童年是美好而幸福的,大家還記得那首“唱不完的兒歌吧”,然后同學們一起念“一只青蛙一張嘴,兩只眼睛四條腿,撲騰一聲跳下水;兩只青蛙兩張嘴,四只眼睛八條腿,撲騰兩聲跳下水;三只青蛙三張嘴,六只眼睛12條腿,撲騰三聲跳下水……”,然后問:你能不能用一句話來唱完這首兒歌?引發(fā)學生思考的興趣,有的學生通過思考得出:n只青蛙n張嘴,2n只眼睛4n條腿,撲騰n聲跳下水,將字母表示數(shù)的優(yōu)點一下子表現(xiàn)出來,令學生頓覺耳目一新。
2、注重過程教學和學法指導
在教學畫圓柱體、長方體、球體和圓錐體的三視圖時,老師不是直接給學生講解它們的三視圖是什么,然后讓學生記憶、變式練習,而是引導學生通過看書、觀察老師手中的教具、學生自己的學具或學生自制的模型,再找學生回答、小組討論,然后教師和學生一起確定答案。這種教學模式:提出問題,創(chuàng)設問題情境———觀察實物或學生看書、計算、畫圖、獨立思考、猜想———小組討論交流———讓一個小組代表發(fā)言,其它小組補充說明———師生交流總結———拓展應用的模式,比較符合學生的認知規(guī)律,能讓學生經歷探索知識的發(fā)生發(fā)展過程及在合作學習中學會與他人交流,不僅學會了知識,而且能鍛煉學生的各種能力。
3、體現(xiàn)學生主體地位,注重學法指導
教師在本節(jié)課上處處關注學生學習的主觀能動性,學生自始至終處于被肯定、被激勵之中,時時感受到自己是學習的'主人,教師給學生留有較大的學習的空間:如觀察、討論、動手擺放學具等,提出問題后讓學生充分思考并給予適時的點撥。教科院李洪光老師:
1、周六研究課的定位:本學期的周六研究課不再是一節(jié)公開課,而是為解決我們在平日教學中存在的問題而開設的研究、研討課。
2、在平日的教學中,不少學校和老師存在這樣的現(xiàn)象:課堂上老師講的多,學生學的少;學生聽明白的多,學會的少。究其原因,是我們只注重了終端的結果,而忽視了學習知識的過程。因此在今后的課堂教學中,我們應該讓學生掌握知識的發(fā)生、發(fā)展的過程,讓教師和學生充分暴露思維的過程,另外讓學生學會學習數(shù)學的方法,這也是我們的任務之一。這兩節(jié)課在這些方面都做了有益的探索。如王長山老師給學生提供了豐富的材料讓學生思考、探索,在教學過程中滲透數(shù)學思想和方法。于坤老師抓住本節(jié)課的核心問題,處處讓學生參與到學習探究活動中,教學生觀察事物的方法,尋找數(shù)學與生活的聯(lián)系等作法,就很好地體現(xiàn)了新課改的理念。當然并不是所有的課型都讓學生探究、討論,如果講解能引發(fā)學生思維的就用講解法,討論交流能引發(fā)思維的就用討論法,總之,在教學中要充分調動學生思維的積極主動性。另外一定要突出數(shù)學自身的特點,在我們的老師的課上,多數(shù)老師在一節(jié)課的結尾都讓學生談談本節(jié)課學會了哪些知識、方法,有什么體會,對本節(jié)的內容進行概括性總結,這樣做就讓學生對本節(jié)課有了整體認識。另外不少老師強調嚴密的邏輯思維、嚴格的解題步驟等作法都值得發(fā)揚。
七年級數(shù)學教案2
1.教學重點、難點
重點:列代數(shù)式。
難點:弄清楚語句中各數(shù)量的意義及相互關系。
2.本節(jié)知識結構:
本小節(jié)是在前面代數(shù)式概念引出之后,具體講述如何把實際問題中的數(shù)量關系用代數(shù)式表示出來。課文先進一步說明代數(shù)式的概念,然后通過由易到難的三組例子介紹列代數(shù)式的方法。
3.重點、難點分析:
列代數(shù)式實質是實現(xiàn)從基本數(shù)量關系的語言表述到代數(shù)式的一種轉化。列代數(shù)式首先要弄清語句中各種數(shù)量的意義及其相互關系,然后把各種數(shù)量用適當?shù)淖帜竵肀硎,最后再把?shù)及字母用適當?shù)倪\算符號連接起來,從而列出代數(shù)式。
如:用代數(shù)式表示:比 的2倍大2的數(shù)。
分析 本題屬于“…比…多(大)…或…比…少(。钡念愋,首先要抓住這幾個關鍵詞。然后從中找出誰是大數(shù),誰是小數(shù),誰是差。比的2倍大2的數(shù)換個方式敘述為所求的數(shù)比的2倍大2。大和比前邊的量,即所求的數(shù)為大數(shù),那么比和大之間量,即 的`2倍則為小數(shù),大后邊的量2即為差。所以本小題是已知小數(shù)和差求大數(shù)。因為大數(shù)=小數(shù)+差,所以所求的數(shù)為:2 +2.
4.列代數(shù)式應注意的問題:
。1)要分清語言敘述中關鍵詞語的意義,理清它們之間的數(shù)量關系。如要注意題中的“大”,“小”,“增加”,“減少”,“倍”,“倒數(shù)”,“幾分之幾”等詞語與代數(shù)式中的加,減,乘,除的運算間的關系。
(2)弄清運算順序和括號的使用。一般按“先讀先寫”的原則列代數(shù)式。
。3)數(shù)字與字母相乘時數(shù)字寫在前面,乘號省略不寫,字母與字母相乘時乘號省略不寫。
(4)在代數(shù)式中出現(xiàn)除法時,用分數(shù)線表示。
5.教法建議:
列代數(shù)式是本章教學的一個難點,學生不容易掌握,這樣老師在上課時,首先要讓學生理解代數(shù)式的本質,弄清語句中各種數(shù)量的意義及其相互關系,然后設計一定數(shù)量的練習題,由易到難,螺旋式上升,使學生能夠正確列出代數(shù)式。
七年級數(shù)學教案3
一、素質教育目標
。ㄒ唬┲R教學點
1.使學生理解近似數(shù)和有效數(shù)字的意義
2.給一個近似數(shù),能說出它精確到哪一痊,它有幾個有效數(shù)字
3.使學生了解近似數(shù)和有效數(shù)字是在實踐中產生的.
。ǘ┠芰τ柧汓c
通過說出一個近似數(shù)的精確度和有效數(shù)字,培養(yǎng)學生把握關鍵字詞,準確理解概念的能力.
。ㄈ┑掠凉B透點
通過近似數(shù)的學習,向學生滲透具體問題具體分析的辯證唯物主義思想
(四)美育滲透點
由于實際生活中有時要把結果搞得準確是辦不到的或沒有必要,所以近似數(shù)應運而生,近似數(shù)和準確數(shù)給人以美的享受.
二、學法引導
1.教學方法:從實際問題出發(fā),啟發(fā)引導,充分體現(xiàn)學生為主全,注重學生參與意識
2.學生學法,從身邊找出應用近似數(shù),準確數(shù)的例子→近似數(shù)概念→鞏固練習
三、重點、難點、疑點及解決辦法
1.重點:理解近似數(shù)的精確度和有效數(shù)字.
2.難點:正確把握一個近似數(shù)的精確度及它的有效數(shù)字的個數(shù).
3.疑點:用科學記數(shù)法表示的近似數(shù)的精確度和有效數(shù)字的個數(shù).
四、課時安排
1課時
五、教具學具準備
投影儀,自制膠片
六、師生互動活動設計
教者提出生活中應用準確數(shù)和近似數(shù)的例子,學生討論回答,學生自己找出類似的例子,教者提出精確度和有效數(shù)字的概念,教者提出近似數(shù)的有關問題,學生討論解決.
七、教學步驟
。ㄒ唬┨岢鰡栴},創(chuàng)設情境
師:有10千克蘋果,平均分給3個人,應該怎樣分?
生:平均每人千克
師:給你一架天平,你能準確地稱出每人所得蘋果的千克數(shù)嗎?
生:不能
師:哪怎么分
生:取近似值
師:板書課題
【教法說明】通過提出實際問題,使學生認識到研究近似數(shù)是必須的,是自然的,從而提高學生近似數(shù)的積極性
。ǘ┨剿餍轮,講授新課
師出示投影1
下列實際問題中出現(xiàn)的數(shù),哪些是精確數(shù),哪些是近似數(shù).
。1)初一(1)有55名同學
。2)地球的半徑約為6370千米
。3)中華人民共和國現(xiàn)在有31個省級行政單位
。4)小明的身高接近1.6米
學生活動:回答上述問題后,自己找出生活中應用準確數(shù)和近似數(shù)的例子.
師:我們在解決實際問題時,有許多時候只能用近似數(shù)你知道為什么嗎?
啟發(fā)學生得出兩方面原因:1.搞得完全準確有時是辦不到的`,2.往往也沒有必要搞得完全準確.
以開始提出的問題為例,揭示近似數(shù)的有關概念
板書:
1.精確度
2.有效數(shù)字:一般地,一個近似數(shù),四舍五入到哪一位,就說這個數(shù)精確到哪一位,這時,從左邊第一個不是0的數(shù)字起,到精確的數(shù)位止,所有的數(shù)字,都叫做這個數(shù)的有效數(shù)字.
例如:3.3有二個有效數(shù)字
3.33有三個有效數(shù)字
討論:近似數(shù)0.038有幾個有效數(shù)字,0.03080呢?
【教法說明】通過討論學生明確近似數(shù)的有效數(shù)字需注意的兩點:一是從左邊第一個不是零的數(shù)起;二是從左邊第一個不是零的數(shù)起,到精確的位數(shù)止,所有的數(shù)字,教者在有效數(shù)字概念對應的文字底下畫上波浪線,標上①、②
例1.(出示投影2)
下列由四舍五入吸到近似數(shù),各精確到哪一位,各有哪幾個有效數(shù)字?
(1)43.8(2).03086(3)2.4萬
學生口述解題過程,教者板書.
對于近似數(shù)2.4萬學生又能認為是精確到十分位,這時可組織學生討論近似數(shù)與5.4和近似數(shù)5.4萬中的兩個4的數(shù)位有什么不同,從而得出正確的答案.
【教法說明】對于疑點問題,通過啟發(fā)討論,適時點撥,遠比教者直接告訴正確答案,理解深刻得多.
鞏固練習見課本122頁練習2、3頁
例2(出示投影3)
下列由四舍五入得來的近似數(shù),各精確到哪一位,各有幾個有效數(shù)字?
七年級數(shù)學教案4
一、教學目標
1、知識目標:掌握數(shù)軸三要素,會畫數(shù)軸。
2、能力目標:能將已知數(shù)在數(shù)軸上表示,能說出數(shù)軸上的點表示的數(shù),知道有理數(shù)都可以用數(shù)軸上的點表示;
3、情感目標:向學生滲透數(shù)形結合的思想。
二、教學重難點
教學重點:數(shù)軸的三要素和用數(shù)軸上的點表示有理數(shù)。
教學難點:有理數(shù)與數(shù)軸上點的對應關系。
三、教法
主要采用啟發(fā)式教學,引導學生自主探索去觀察、比較、交流。
四、教學過程
(一)創(chuàng)設情境激活思維
1.學生觀看鐘祥二中相關背景視頻
意圖:吸引學生注意力,激發(fā)學生自豪感。
2.聯(lián)系實際,提出問題。
問題1:鐘祥二中學校大門南75米是鐘祥市統(tǒng)計局,100米是中國建設銀行,在她北75米是海韻藝術學校,200米處是中百倉儲,請同學們畫圖表示這一情景。
師生活動:學生思考解決問題的方法,學生代表畫圖演示。
學生畫圖后提問:
1.馬路用什么幾何圖形代表?(直線)
2.文中相關地點用什么代表?(直線上的點)
3.學校大門起什么作用?(基準點、參照物)
4.你是如何確定問題中各地點的位置的?(方向和距離)
設計意圖:“三要素”為定向,用直線、點、方向、距離等幾何符號表示實際問題,這是實際問題的第一次數(shù)學抽象。
問題2:上面的問題中,“南”和“北”具有相反意義。我們知道,正數(shù)和負數(shù)可以表示兩種具有相反意義的量,我們能不能直接用數(shù)來表示這些地理位置和學校大門的相對位置關系呢?
師生活動:
學生思考后回答解決方法,學生代表畫圖。
學生畫圖后提問:
1.0代表什么?
2.數(shù)的符號的實際意義是什么?
3.-75表示什么?100表示什么?
設計意圖:繼續(xù)以三要素為定向,將點用數(shù)表示,實現(xiàn)第二次抽象,為定義數(shù)軸概念提供直觀基礎。
問題3:生活中常見的溫度計,你能描述一下它的結構嗎?
設計意圖:借助生活中的常用工具,說明正數(shù)和負數(shù)的作用,引導學生用三要素表達,為定義數(shù)軸的概念提供直觀基礎。
問題4:你能說說上述2個實例的共同點嗎?
設計意圖:進一步明確“三要素”的意義,體會“用點表示數(shù)”和“用數(shù)表示點的思想方法,為定義數(shù)軸概念提供又一個直觀基礎。
(二)自主學習探究新知
學生活動:帶著以下問題自學課本第8頁:
1.什么樣的直線叫數(shù)軸?它具備什么條件。
2.如何畫數(shù)軸?
3.根據(jù)上述實例的經驗,“原點”起什么作用?
4.你是怎么理解“選取適當?shù)拈L度為單位長度”的?
師生活動:
學生自學完后,請代表上黑板畫一條數(shù)軸,講解畫數(shù)軸的一般步驟。
設計意圖:明確畫數(shù)軸的步驟,使數(shù)軸的三要素在同學們的頭腦中留下更深刻的印象,同時得到數(shù)軸的`定義。
至此,學生已會畫數(shù)軸,師生共同歸納總結(板書)
、贁(shù)軸的定義。
、跀(shù)軸三要素。
練習:(媒體展示)
1.判斷下列圖形是否是數(shù)軸。
2.口答:數(shù)軸上各點表示的數(shù)。
3.在數(shù)軸上描出下列各點:1.5,-2,-2.5,2,2.5,0,-1.5。
(三)小組合作交流展示
問題:觀察數(shù)軸上的點,你有什么發(fā)現(xiàn)?
數(shù)軸上表示3的點在原點的哪一側?與原點的距離是多少個單位長度?表示-2的點在原點的哪一側?與原點的距離是多少個單位長度?設a是一個正數(shù),對表示a的點和-a的點進行同樣的討論。
設計意圖:通過從特殊到一般的方法歸納出數(shù)軸上不同位置點的特點,培養(yǎng)學生的抽象概括能力。
(四)歸納總結反思提高
師生共同回顧本節(jié)課所學主要內容,回答以下問題:
1.什么是數(shù)軸?
2.數(shù)軸的“三要素”各指什么?
3.數(shù)軸的畫法。
設計意圖:梳理本節(jié)課內容,掌握本節(jié)課的核心――數(shù)軸“三要素”。
(五)目標檢測設計
1.下列命題正確的是()
A.數(shù)軸上的點都表示整數(shù)。
B.數(shù)軸上表示4與-4的點分別在原點的兩側,并且到原點的距離都等于4個單位長度。
C.數(shù)軸包括原點與正方向兩個要素。
D.數(shù)軸上的點只能表示正數(shù)和零。
2.畫數(shù)軸,在數(shù)軸上標出-5和+5之間的所有整數(shù),列舉到原點的距離小于3的所有整數(shù)。
3.畫數(shù)軸,表示下列有理數(shù)數(shù)的點中,觀察數(shù)軸,在原點左邊的點有_______個。4.在數(shù)軸上點A表示-4,如果把原點O向負方向移動1.5個單位,那么在新數(shù)軸上點A表示的數(shù)是_______。
五、板書
1.數(shù)軸的定義。
2.數(shù)軸的三要素(圖)。
3.數(shù)軸的畫法。
4.性質。
六、課后反思
附:活動單
活動一:畫一畫
鐘祥二中學校大門南75米是鐘祥市統(tǒng)計局,100米是中國建設銀行,在她北75米是海韻藝術學校,200米處是中百倉儲,請同學們畫圖表示這一情景。
思考:如何簡明地用數(shù)表示這些地理位置與學校大門的相對位置關系?
活動二:讀一讀
帶著以下問題閱讀教科書P8頁:
1.什么樣的直線叫數(shù)軸?
定義:規(guī)定了_______、_______、_______的直線叫數(shù)軸。
數(shù)軸的三要素:_______、_______、_______。
2.畫數(shù)軸的步驟是什么?
3.“原點”起什么作用?_______
4.你是怎么理解“選取適當?shù)拈L度為單位長度”的?
練習:
1.畫一條數(shù)軸
2.在你畫好的數(shù)軸上表示下列有理數(shù):1.5,-2,-2.5,2,2.5,0,-1.5
活動三:議一議
小組討論:觀察你所畫的數(shù)軸上的點,你有什么發(fā)現(xiàn)?
歸納:一般地,設a是一個正數(shù),則數(shù)軸上表示數(shù)a在原點的_______邊,與原點的距離是_______個單位長度;表示數(shù)-a的點在原點的_______邊,與原點的距離是_______個單位長度.
練習:
1.數(shù)軸上表示-3的點在原點的_______側,距原點的距離是_______;表示6的點在原點的_______側,距原點的距離是_______;兩點之間的距離為_______個單位長度。
2.距離原點距離為5個單位的點表示的數(shù)是_______。
3.在數(shù)軸上,把表示3的點沿著數(shù)軸負方向移動5個單位長度,到達點B,則點B表示的數(shù)是_______。
附:目標檢測
1.下列命題正確的是( )
A.數(shù)軸上的點都表示整數(shù)。
B.數(shù)軸上表示4與-4的點分別在原點的兩側,并且到原點的距離都等于4個單位長度。
C.數(shù)軸包括原點與正方向兩個要素。
D.數(shù)軸上的點只能表示正數(shù)和零。
2.畫數(shù)軸,在數(shù)軸上標出-5和+5之間的所有整數(shù).列舉到原點的距離小于3的所有整數(shù)。
3.畫數(shù)軸,觀察數(shù)軸,在原點左邊的點有_______個。
4.在數(shù)軸上點A表示-4,如果把原點O向負方向移動1.5個單位,那么在新數(shù)軸上點A表示的數(shù)是_______。
七年級數(shù)學教案5
教學設計思路
以小組討論的形式在教師的指導下通過回顧與反思前三章所學內容,領悟新舊知識之間的內在聯(lián)系,總結知識結構及主要知識點,側重對重點知識內容、數(shù)學思想和方法、思維策略的總結與反思,再通過練習鞏固這些知識點。
教學目標
知識與技能
對前三章所學知識作一次系統(tǒng)整理,系統(tǒng)地把握這三章的`知識要點;
通過回顧與反思這三章所學內容,領悟新舊知識之間的內在聯(lián)系;
通過練習,對所學知識的認識深化一步,以有利于掌握;
發(fā)展觀察問題、分析問題、解決問題的能力;
提高對所學知識的概括整理能力;
進一步發(fā)展有條理地思考和表達的能力。
過程與方法
在老師的引導下逐張復習每張的知識要點,通過練習來鞏固這些知識點。
情感態(tài)度價值觀
進一步體會知識點之間的聯(lián)系;
進一步感受數(shù)形結合的思想。
教學重點和難點
重點是這三章的重點內容;
難點是能靈活利用這三章的知識來解決問題。
教學方法
引導、小組討論
課時安排
3課時
教具學具準備
多媒體
教學過程設計
通過每一章的知識結構及一些相關問題引導學生總結出每一章的知識點。
七年級數(shù)學教案6
【教學目標】
引導學生通過常規(guī)分析,得出解題思路,經歷提出問題,自探問題,應用知識的過程,自主總結出解題辦法;
【教學難點】
找出題目中的可有可無的已知條件,說一說為什么可以這樣認為
【教學過程】
問:以前學過的有關路程,時間,和速度之間的關系是怎么樣的?你能寫出它們之間的關系嗎?
出示例題:甲、乙兩地公路全長352千米。汽車原來從甲地到乙地要11小時,建成高速公路后,汽車每小時速度是原來的2.5倍。現(xiàn)在汽車從甲地到乙地需要多少小時?
分析:要求現(xiàn)在汽車從甲地到乙地需要多少小時,那么先要求出汽車現(xiàn)在的速度,而汽車現(xiàn)在的速度是原來的2.5倍,那么還得先求出汽車原來的速度。根據(jù)`甲乙兩地公路全長352千米。汽車原來從甲地到乙要11小時',可以求出汽車原來的速度。
學生寫出解答過程:汽車原來的速度:352÷1=32(千米); 汽車現(xiàn)在的速度:32×2.5=80(千米)
現(xiàn)在的時間:352÷80=4.4(小時)
問:用比例的思路該怎么樣理解這道題目呢?
分析:甲、乙兩地的公路長度一定,汽車的速度和所需的時間成反比例。因為現(xiàn)在的速度是原來的.2.5倍,所以原來的時間是現(xiàn)在的
2.5倍。即:11÷2.5=4.4(小時)。
這樣解答使得`甲乙兩地公路全長352千米'成了多余條件,但是又不影響解答問題。
【我們來探索】
一批零件有240個,王師傅單獨做需要6小時,李師傅的工作效率是王師傅的1.5倍,那么如果讓李師傅單獨做這批零件,需要幾小時?
【總結】
在解答應用題時要善于應用不同的思路和技巧,巧解問題
【作業(yè)】
丁阿姨打一份稿件需4小時,王阿姨的速度是丁阿姨的,那么如果由王阿姨打這份稿件,需要幾小時?
丁阿姨打一份稿件需要4小時,王阿姨的速度與丁阿姨的速度比是4:5,那么如果由王阿姨打這份稿件,需要幾小時?
七年級數(shù)學教案7
教學目標
1,通過對數(shù)“零”的意義的探討,進一步理解正數(shù)和負數(shù)的概念;
2,利用正負數(shù)正確表示相反意義的量(規(guī)定了指定方向變化的量)
3,進一步體驗正負數(shù)在生產生活實際中的廣泛應用,提高解決實際問題的能力,激發(fā)學習數(shù)學的興趣。
教學難點
深化對正負數(shù)概念的理解
知識重點
正確理解和表示向指定方向變化的量
教學過程(師生活動)
設計理念
知識回顧與深化
回顧:上一節(jié)課我們知道了在實際生產和生活中存在著兩種不同意義的量,為了區(qū)分這兩種量,我們用正數(shù)表示其中一種意義的量,那么另一種意義的量就用負數(shù)來表示.這就是說:數(shù)的范圍擴大了(數(shù)有正數(shù)和負數(shù)之分).那么,有沒有一種既不是正數(shù)又不是負數(shù)的數(shù)呢?
問題1:有沒有一種既不是正數(shù)又不是負數(shù)的數(shù)呢?學生思考并討論.(數(shù)0既不是正數(shù)又不是負數(shù),是正數(shù)和負數(shù)的分界,是基準.這個道理學生并不容易理解,可視學生的討論情況作些啟發(fā)和引導,下面的例子供參考)
例如:在溫度的表示中,零上溫度和零下溫度是兩種不同意義的量,通常規(guī)定零上溫度用正數(shù)來表示,零下溫度用負數(shù)來表示。那么某一天某地的溫度是零上7℃,最低溫度是零下5℃時,就應該表示為+7℃和-5℃,這里+7℃和-5℃就分別稱為正數(shù)和負數(shù).那么當溫度是零度時,我們應該怎樣表示呢?(表示為0℃),它是正數(shù)還是負數(shù)呢?由于零度既不是零上溫度也不是零下溫度,所以,0既不是正數(shù)也不是負數(shù)?
問題2:引入負數(shù)后,數(shù)按照“兩種相反意義的量”來分,可以分成幾類? “數(shù)0耽不是正數(shù),也不是負數(shù)”也應看作是負數(shù)定義的一部分.在引入負數(shù)后,0除了表示一個也沒有以外,還是正數(shù)和負數(shù)的分界.了解。的這一層意義,也有助于對正負數(shù)的理解;且對數(shù)的順利擴張和有理毅概念的建立都有幫助。所舉的例子,要考慮學生的可接受性.“數(shù)0既不是正數(shù),也不是負數(shù)”應從相反意義的1這個角度來說明.這個問題只要初步認識即可,不必深究.
問題3:教科書第6頁例題
說明:這是一個用正負數(shù)描述向指定方向變化情況的例子,通常向指定方向變化用正數(shù)表示;向指定方向的相反方向變化用負數(shù)表示。這種描述在實際生活中有廣泛的應用,應予以重視。教學中,應讓學生體驗“增長”和“減少”是兩種相反意義的量,要求寫出“體重的增長值”和“進出口額的增長率”,就暗示著用正數(shù)來表示增長的量。
歸納:在同一個問題中,分別用正數(shù)和負數(shù)表示的量具有相反的意義(教科書第6頁).
類似的例子很多,如:水位上升-3m,實際表示什么意思呢?收人增加-10%,實際表示什么意思呢?等等?梢暯虒W中的實際情況進行補充.
這種用正負數(shù)描述向指定方向變化情況的例子,在實際生活中有廣泛的.應用,按題意找準哪種意義的量應該用正數(shù)表示是解題的關健.這種描述具有相反數(shù)的影子,例如第(1)題中小明的體重可說成是減少-2kg,但現(xiàn)在不必向學生提出.
鞏固練習教科書第6頁練習
閱讀思考
教科書第8頁閱讀與思考是正負數(shù)應用的很好例子,要花時間讓學生討論交流
小結與作業(yè)
課堂小結以問題的形式,要求學生思考交流:
1,引人負數(shù)后,你是怎樣認識數(shù)0的,數(shù)0的意義有哪些變化?
2,怎樣用正負數(shù)表示具有相反意義的量?(用正數(shù)表示其中一種意義的量,另一種量用負數(shù)表示;特別地,在用正負數(shù)表示向指定方向變化的量時,通常把向指定方向變化的量規(guī)定為正數(shù),而把向指定方向的相反方向變化的量規(guī)定為負數(shù).)
本課作業(yè)1,必做題:教科書第7頁習題1.1第3,6,7,8題
3,選做題:教師自行安排
本課教育評注(課堂設計理念,實際教學效果及改進設想)
1,本課主要目的是加深對正負數(shù)概念的理解和用正負數(shù)表示實際生產生活中的向指
定方向變化的量。
2,“數(shù)0既不是正數(shù),也不是負數(shù),’(要從0不屬于兩種相反意義的量中的任何一種上來理解)也應看作是負數(shù)定義的一部分.在引人負數(shù)后,除了表示一個也沒有以外,還是正數(shù)和負數(shù)的分界。了解0的這一層意義,也有助于對正負數(shù)的理解,且對數(shù)的順利擴張和有理數(shù)概念的建立都有幫助.由于上節(jié)課的重點是建立兩種相反意義量的概念,考慮到學生的可接受性,所以作為知識的回顧和深化而放到本課.
3,教科書的例子是用正負數(shù)表示(向指定方向變化的)量的實際應用,用這種方式描述的例子很多,要盡量使學生理解.
4,本設計體現(xiàn)了學生自主學習、交流討論的教學理念,教學中要讓學生體驗數(shù)學知識在實際中的合理應用,在體驗中感悟和深化知識.通過實際例子的學習激發(fā)學生學習數(shù)學的興趣.
七年級數(shù)學教案8
教學目標
(一)教學知識點
1.經歷探索二次函數(shù)與一元二次方程的關系的過程,體會方程與函數(shù)之間的聯(lián)系.
2.理解二次函數(shù)與x軸交點的個數(shù)與一元二次方程的根的個數(shù)之間的關系,理解何時方程有兩個不等的實根、兩個相等的實數(shù)和沒有實根.
3.理解一元二次方程的根就是二次函數(shù)與y=h(h是實數(shù))交點的橫坐標.
(二)能力訓練要求
1.經歷探索二次函數(shù)與一元二次方程的關系的過程,培養(yǎng)學生的探索能力和創(chuàng)新精神.
2.通過觀察二次函數(shù)圖象與x軸的交點個數(shù),討論一元二次方程的根的情況,進一步培養(yǎng)學生的數(shù)形結合思想.
3.通過學生共同觀察和討論,培養(yǎng)大家的合作交流意識.
(三)情感與價值觀要求
1.經歷探索二次函數(shù)與一元二次方程的關系的過程,體驗數(shù)學活動充滿著探索與創(chuàng)造,感受數(shù)學的嚴謹性以及數(shù)學結論的確定性.
2.具有初步的創(chuàng)新精神和實踐能力.
教學重點
1.體會方程與函數(shù)之間的聯(lián)系.
2.理解何時方程有兩個不等的實根,兩個相等的實數(shù)和沒有實根.
3.理解一元二次方程的根就是二次函數(shù)與y=h(h是實數(shù))交點的橫坐標.
教學難點
1.探索方程與函數(shù)之間的聯(lián)系的過程.
2.理解二次函數(shù)與x軸交點的個數(shù)與一元二次方程的根的個數(shù)之間的關系.
教學方法
討論探索法.
教具準備
投影片二張
第一張:(記作§2.8.1A)
第二張:(記作§2.8.1B)
教學過程
、.創(chuàng)設問題情境,引入新課
師我們學習了一元一次方程kx+b=0(k≠0)和一次函數(shù)y=kx+b(k≠0)后,討論了它們之間的關系.當一次函數(shù)中的函數(shù)值y=0時,一次函數(shù)y=kx+b就轉化成了一元一次方程kx+b=0,且一次函數(shù)y=kx+b(k≠0)的'圖象與x軸交點的橫坐標即為一元一次方程kx+b=0的解.
現(xiàn)在我們學習了一元二次方程ax2+bx+c=0(a≠0)和二次函數(shù)y=ax2+bx+c(a≠0),它們之間是否也存在一定的關系呢?本節(jié)課我們將探索有關問題。
通過學生的討論,使學生更清楚以下事實:
(1)分解因式與整式的乘法是一種互逆關系;
(2)分解因式的結果要以積的形式表示;
(3)每個因式必須是整式,且每個因式的次數(shù)都必須低于原來的多項式的次數(shù);
(4)必須分解到每個多項式不能再分解為止。
活動5:應用新知
例題學習:
P166例1、例2(略)
在教師的引導下,學生應用提公因式法共同完成例題。
讓學生進一步理解提公因式法進行因式分解。
活動6:課堂練習
1.P167練習;
2.看誰連得準
x2-y2 (x+1)2
9-25 x 2 y(x -y)
x 2+2x+1 (3-5 x)(3+5 x)
xy-y2 (x+y)(x-y)
3.下列哪些變形是因式分解,為什么?
(1)(a+3)(a -3)= a 2-9
(2)a 2-4=( a +2)( a -2)
(3)a 2-b2+1=( a +b)( a -b)+1
(4)2πR+2πr=2π(R+r)
學生自主完成練習。
通過學生的反饋練習,使教師能全面了解學生對因式分解意義的理解是否到位,以便教師能及時地進行查缺補漏。
活動7:課堂小結
從今天的課程中,你學到了哪些知識?掌握了哪些方法?明白了哪些道理?
學生發(fā)言。
通過學生的回顧與反思,強化學生對因式分解意義的理解,進一步清楚地了解分解因式與整式的乘法的互逆關系,加深對類比的數(shù)學思想的理解。
活動8:課后作業(yè)
課本P170習題的第1、4大題。
學生自主完成
通過作業(yè)的鞏固對因式分解,特別是提公因式法理解并學會應用。
板書設計(需要一直留在黑板上主板書)
15.4.1提公因式法例題
1.因式分解的定義
2.提公因式法
七年級數(shù)學教案9
教學目標:1.能夠在實際情境中,抽象概括出所要研究的數(shù)學問題,增強學生的數(shù)感符號感。
2.在已有的對冪的知識的了解基礎之上,通過與同伴合作,經歷探索同底數(shù)冪乘法運算性質
過程,進一步體會冪的意義,發(fā)展合作交流能力、推理能力和有條理的表達能力。
3.了解同底數(shù)冪乘法的運算性質,并能解決一些實際問題,感受數(shù)學與現(xiàn)實生活的密切聯(lián)系,
增強學生的數(shù)學應用意識,訓練他們養(yǎng)成學會分析問題、解決問題的良好習慣。
教學重點:同底數(shù)冪乘法的運算性質,并能解決一些實際問題。
教學過程:
一、復習回顧
活動內容:復習七年級上冊數(shù)學課本中介紹的有關乘方運算知識:
二、情境引入
活動內容:以課本上有趣的天文知識為引例,讓學生從中抽象出簡單的數(shù)學模型,實際在列式計算時遇到了同底數(shù)冪相乘的形式,給出問題,啟發(fā)學生進行獨立思考,也可采用小組合作交流的形式,結合學生現(xiàn)有的有關冪的意義的知識,進行推導嘗試,力爭獨立得出結論。
三、講授新課
1.利用乘方的意義,提問學生,引出法則:計算103×102.
解:103×102=(10×10×10)×(10×10)(冪的意義)
=10×10×10×10×10(乘法的結合律)=105.
2.引導學生建立冪的運算法則:
將上題中的底數(shù)改為a,則有a3·a2=(aaa)·(aa)=aaaaa=a5,即a3·a2=a5=a3+2.
用字母m,n表示正整數(shù),則有即am·an=am+n.
3.引導學生剖析法則
(1)等號左邊是什么運算?(2)等號兩邊的底數(shù)有什么關系?
(3)等號兩邊的.指數(shù)有什么關系?(4)公式中的底數(shù)a可以表示什么
(5)當三個以上同底數(shù)冪相乘時,上述法則是否成立?
要求學生敘述這個法則,并強調冪的底數(shù)必須相同,相乘時指數(shù)才能相加.
三、應用提高
活動內容:1.完成課本“想一想”:a?a?a等于什么?
2.通過一組判斷,區(qū)分“同底數(shù)冪的乘法”與“合并同類項”的不同之處。
3.獨立處理例2,從實際情境中學會處理問題的方法。
4.處理隨堂練習(可采用小組評分競爭的方式,如時間緊,放于課下完成)。mnp
四、拓展延伸
活動內容:計算:(1)-a2·a6(2)(-x)·(-x)3(3)ym·ym+1(4)??7?8?73
。5)??6??63(6)??5??53???5?.(7)?a?b???a?b?7542
2(8)?b?a???a?b?(9)x5·x6·x3(10)-b3·b3
(11)-a·(-a)3(12)(-a)2·(-a)3·(-a)
五、課堂小結
活動內容:師生互相交流總結本節(jié)課上應該掌握的同底數(shù)冪的乘法的特征,教師對課堂上學生掌握不夠牢固的知識進行強調與補充,學生也可談一談個人的學習感受。
六、布置作業(yè)
1.請你根據(jù)本節(jié)課學習,把感受最深、收獲最大的方面寫成體會,用于小組交流。
2.完成課本習題1.4中所有習題。
1.2冪的乘方與積的乘方(一)
七年級數(shù)學教案10
教學目標
1,掌握數(shù)軸的概念,理解數(shù)軸上的點和有理數(shù)的對應關系;
2,會正確地畫出數(shù)軸,會用數(shù)軸上的點表示給定的有理數(shù),會根據(jù)數(shù)軸上的點讀出所表示的有理數(shù);
3,感受在特定的條件下數(shù)與形是可以相互轉化的,體驗生活中的數(shù)學。
教學難點 數(shù)軸的概念和用數(shù)軸上的點表示有理數(shù)
知識重點
教學過程(師生活動) 設計理念
設置情境
引入課題 教師通過實例、課件演示得到溫度計讀數(shù).
問題1:溫度計是我們日常生活中用來測量溫度的重要工具,你會讀溫度計嗎?請你嘗試讀出圖中三個溫度計所表示的溫度?
。ǘ嗝襟w出示3幅圖,三個溫度分別為零上、零度和零下)
問題2:在一條東西向的馬路上,有一個汽車站,汽車站東3 m和7.5m處分別有一棵柳樹和一棵楊樹,汽車站西3 m和4.8m處分別有一棵槐樹和一根電線桿,試畫圖表示這一情境.
(小組討論,交流合作,動手操作) 創(chuàng)設問題情境,激發(fā)學生的學習熱情,發(fā)現(xiàn)生活中的數(shù)學
點表示數(shù)的感性認識。
點表示數(shù)的理性認識。
合作交流
探究新知 教師:由上述兩問題我們得到什么啟發(fā)?你能用一條直線上的點表示有理數(shù)嗎?
讓學生在討論的基礎上動手操作,在操作的基礎上歸納出:可以表示有理數(shù)的直線必須滿足什么條件?
從而得出數(shù)軸的三要素:原點、正方向、單位長度 體驗數(shù)形結合思想;只描述數(shù)軸特征即可,不用特別強調數(shù)軸三要求。
從游戲中學數(shù)學 做游戲:教師準備一根繩子,請8個同學走上來,把位置調整為等距離,規(guī)定第4個同學為原點,由西向東為正方向,每個同學都有一個整數(shù)編號,請大家記住,現(xiàn)在請第一排的同學依次發(fā)出口令,口令為數(shù)字時,該數(shù)對應的同學要回答“到”;口令為該同學的名字時,該同學要報出他對應的“數(shù)字”,如果規(guī)定第3個同學為原點,游戲還能進行嗎? 學生游戲體驗,對數(shù)軸概念的理解
尋找規(guī)律
歸納結論 問題3:
1, 你能舉出一些在現(xiàn)實生活中用直線表示數(shù)的實際例子嗎?
2, 如果給你一些數(shù),你能相應地在數(shù)軸上找出它們的準確位置嗎?如果給你數(shù)軸上的點,你能讀出它所表示的數(shù)嗎?
3, 哪些數(shù)在原點的左邊,哪些數(shù)在原點的右邊,由此你會發(fā)現(xiàn)什么規(guī)律?
4, 每個數(shù)到原點的距離是多少?由此你會發(fā)現(xiàn)了什么規(guī)律?
。ㄐ〗M討論,交流歸納)
歸納出一般結論,教科書第12的歸納。 這些問題是本節(jié)課要求學會的技能,教學中要以學生探究學習為主來完成,教師可結合教科書給學生適當指導。
鞏固練習
教科書第12頁練習
小結與作業(yè)
課堂小結 請學生總結:
1, 數(shù)軸的三個要素;
2, 數(shù)軸的.作以及數(shù)與點的轉化方法。
本課作業(yè) 1, 必做題:教科書第18頁習題1.2第2題
2,選做題:教師自行安排
本課教育評注(課堂設計理念,實際教學效果及改進設想)
1, 數(shù)軸是數(shù)形轉化、結合的重要媒介,情境設計的原型來源于生活實際,學生易于體驗和接受,讓學生通過觀察、思考和自己動手操作、經歷和體驗數(shù)軸的形成過程,加深對數(shù)軸概念的理解,同時培養(yǎng)學生的抽象和概括能力,也體出了從感性認識,到理性認識,到抽象概括的認識規(guī)律。
2, 教學過程突出了情竟到抽象到概括的主線,教學方法體了特殊到一般,數(shù)形結合的數(shù)學思想方法。
3, 注意從學生的知識經驗出發(fā),充分發(fā)揮學生的主體意識,讓學生主動參與學習活,并引導學生在課堂上感悟知識的生成,發(fā)展與變化,培養(yǎng)學生自主探索的學習方法。
七年級數(shù)學教案11
一、素質教育目標
(一)知識教學點
1.了解有理數(shù)除法的定義.
2.理解倒數(shù)的意義.
3.掌握有理數(shù)除法法則,會進行運算.
(二)能力訓練點
1.通過有理數(shù)除法法則的導出及運算,讓學生體會轉化思想.
2.培養(yǎng)學生運用數(shù)學思想指導思維活動的能力.
(三)德育滲透點
通過學習有理數(shù)除法運算、感知數(shù)學知識具有普遍聯(lián)系性、相互轉化性.
(四)美育滲透點
把小學算術里的乘法法則推廣到有理數(shù)范圍內,體現(xiàn)了知識體系的完整美.
二、學法引導
1.教學方法:遵循啟發(fā)式教學原則,注意創(chuàng)設問題情境,精心構思啟發(fā)導語 并及時點撥,使學生主動發(fā)展思維和能力.
2.學生學法:通過練習探索新知→歸納除法法則→鞏固練習
三、重點、難點、疑點及解決辦法
1.重點:除法法則的靈活運用和倒數(shù)的概念.
2.難點:有理數(shù)除法確定商的符號后,怎樣根據(jù)不同的情況來取適當?shù)姆椒ㄇ笊痰慕^對值.
3.疑點:對零不能作除數(shù)與零沒有倒數(shù)的理解.
四、課時安排
1課時
五、教具學具準備
投影儀、自制膠片、彩粉筆.
六、師生互動活動設計
教師出示探索性練習,學生討論歸納除法法則,教師出示鞏固性練習,學生以多種形式完成.
七、教學步驟
(一)創(chuàng)設情境,復習導入
師:以上我們學習了有理數(shù)的乘法,這節(jié)我們應該學習,板書課題.
【教法說明】
同小學算術中除法一樣—除以一個數(shù)等于乘以這個數(shù)的倒數(shù),所以必須以學好求一個有理數(shù)的倒數(shù)為基礎學習.
(二)探索新知,講授新課
1.倒數(shù).
(出示投影1)
4×( )=1; ×( )=1; 0.5×( )=1;
0×( )=1; -4×( )=1; ×( )=1.
學生活動:口答以上題目.
【教法說明】
在有理數(shù)乘法的基礎上,學生很容易地做出這幾個題目,在題目的選擇上,注意了數(shù)的全面性,即有正數(shù)、0、負數(shù),又有整數(shù)、分數(shù),在數(shù)的變化中,讓學生回憶、體會出求各種數(shù)的倒數(shù)的方法.
師問:兩個數(shù)乘積是1,這兩個數(shù)有什么關系?
學生活動:乘積是1的兩個數(shù)互為倒數(shù).(板書)
師問:0有倒數(shù)嗎?為什么?
學生活動:通過題目0×( )=1得出0乘以任何數(shù)都不得1,0沒有倒數(shù).
師:引入負數(shù)后,乘積是1的兩個負數(shù)也互為倒數(shù),如-4與,與互為倒數(shù),即的倒數(shù)是.
提出問題:根據(jù)以上題目,怎樣求整數(shù)、分數(shù)、小數(shù)的倒數(shù)?
【教法說明】
教師注意創(chuàng)設問題情境,讓學生參與思考,循序漸進地引出,對于有理數(shù)也有倒數(shù)是.對于怎樣求整數(shù)、分數(shù)、小數(shù)的倒數(shù),學生還很難總結出方法,提出這個問題是讓學生帶著問題來做下組練習.
(出示投影2)
求下列各數(shù)的倒數(shù):
(1); (2); (3);
(4); (5)-5; (6)1.
學生活動:通過思考口答這6小題,討論后得出,求整數(shù)的倒數(shù)是用1除以它,求分數(shù)的倒數(shù)是分子分母顛倒位置;求小數(shù)的倒數(shù)必須先化成分數(shù)再求.
2.計算:8÷(-4).
計算:8×()=? (-2)
8÷(-4)=8×().
再嘗試:-16÷(-2)=? -16×()=?
師:根據(jù)以上題目,你能說出怎樣計算嗎?能用含字母的式子表示嗎?
學生活動:同桌互相討論.(一個學生回答)
師強調后板書:
[板書]
【教法說明】
通過學生親自演算和教師的引導,對有理數(shù)除法法則及字母表示有了非常清楚的認識,教師放手讓學生總結法則,尤其是字母表示,訓練學生的歸納及口頭表達能力.
(三)嘗試反饋,鞏固練習
師在黑板上出示例題.
計算(1)(-36)÷9, (2)()÷().
學生嘗試做此題目.
(出示投影3)
1.計算:
(1)(-18)÷6; (2)(-63)÷(-7); (3)(-36)÷6;
(4)1÷(-9); (5)0÷(-8); (6)16÷(-3).
2.計算:
(1)()÷(); (2)(-6.5)÷0.13;
(3)()÷(); (4)÷(-1).
學生活動:
1題讓學生搶答,教師用復合膠片顯示結果.
2題在練習本上演示,兩個同學板演(教師訂正).
【教法說明】
此組練習中兩個題目都是對的直接應用.1題是整數(shù),利用口答形式訓練學生速算能力.2題是小數(shù)、分數(shù)略有難度,要求學生自行演算,加強運算的準確性,2題(2)小題必須把小數(shù)都化成分數(shù)再轉化成乘法來計算.
提出問題:(1)兩數(shù)相除,商的符號怎樣確定,商的絕對值呢?(2)0不能做除數(shù),0做被除數(shù)時商是多少?
學生活動:分組討論,1—2個同學回答.
[板書]
2.兩數(shù)相除,同號得正,異號得負,并把絕對值相除.
0除以任何不等于0的.數(shù),都得0.
【教法說明】
通過上組練習的結果,不難看出與有理數(shù)乘法有類似的法則,這個法則的得出為計算有理數(shù)除法又添了一種方法,這時教師要及時指出,在做有理數(shù)除法的題目時,要根據(jù)具體情況,靈活運用這兩種方法.
(四)變式訓練,培養(yǎng)能力
回顧例1 計算:
(1)(-36)÷9; (2)()÷().
提出問題:每個題目你想采用哪種法則計算更簡單?
學生活動:(1)題采用兩數(shù)相除,異號得負并把絕對值相除的方法較簡單.
(2)題仍用除以一個數(shù)等于乘以這個數(shù)的倒數(shù)較簡單.
提出問題:-36:9=?;:()=?它們都屬于除法運算嗎?
學生活動:口答出答案.
(出示投影4)
例2 化簡下列分數(shù)
例3 計算
(1)()÷(-6);
(2)-3.5÷×();
(3)(-6)÷(-4)×().
學生活動:例2讓學生口答,例3全體同學獨立計算,三個學生板演.
【教法說明】
例2是檢查學生對有理數(shù)除法法則的靈活運用能力,并滲透了除法、分數(shù)、比可互相轉化,并且通過這種轉化,常?赡芎喕嬎.例3培養(yǎng)學生分析問題的能力,優(yōu)化學生思維品質:
如在(1)()÷(-6)中.
根據(jù)方法①()÷(-6)=×()=.
根據(jù)方法②()÷(-6)=(24+)×=4+=.
讓學生區(qū)分方法的差異,點明方法②非常簡便,肯定當除法轉化成乘法時,可以利用有理數(shù)乘法運算律簡化運算.(2)(3)小題也是如此.
(五)歸納小結
師:今天我們學習了及倒數(shù)的概念,回答問題:
1.的倒數(shù)是__________________();
學生活動:分組討論。
【教法說明】
對這節(jié)課全部知識點的回顧不是教師單純地總結,而是讓學生在思考回答的過程中自己把整節(jié)內容進行了梳理,并且上升到了用字母表示的數(shù)學式子,逐步培養(yǎng)學生用數(shù)學語言表達數(shù)學規(guī)律的能力.
八、隨堂練習
1.填空題
(1)的倒數(shù)為__________,相反數(shù)為____________,絕對值為___________
(2)(-18)÷(-9)=_____________;
(3)÷(-2.5)=_____________;
(4);
(5)若,是;
(6)若、互為倒數(shù),則;
(7)或、互為相反數(shù)且,則,;
(8)當時,有意義;
(9)當時,;
(10)若,,則,和符號是_________,___________.
2.計算
(1)-4.5÷()×;
(2)(-12)÷〔(-3)+(-15)〕÷(+5).
九、布置作業(yè)
(一)必做題:1.仿照例1、例2自編2道題,同桌交換解答.
2.計算:(1)()×()÷();
(2)-6÷(-0.25)×.
3.當,,時求的值.
(二)選做題:1.填空:用“>”“<”“=”號填空
(1)如果,則,;
(2)如果,則,;
(3)如果,則,;
(4)如果,則,;
2.判斷:正確的打“√”錯的打“×”
(1)( );
(2)( ).
3.(1)倒數(shù)等于它本身的數(shù)是______________.
(2)互為相反數(shù)的數(shù)(0除外)商是________________.
【教法說明】
必做題為本節(jié)的重點內容,首先在這節(jié)課學習的基礎上讓同學仿照例題編題,學生也有這方面的能力,極大調動了學生積極性,提高了學生運用知識的能力.
選作題是對這節(jié)課重點內容的進一步理解和運用,為學有余力的學生提供了展示自己的機會.
十、板書設計
七年級數(shù)學教案12
【教學目標】
知識與技能:了解并掌握數(shù)據(jù)收集的基本方法。
過程與方法:在調查的過程中,要有認真的態(tài)度,積極參與。
情感、態(tài)度與價值觀:體會統(tǒng)計調查在解決實際問題中的作用,逐步養(yǎng)成用數(shù)據(jù)說話的良好習慣。
【教學重難點】
重點:掌握統(tǒng)計調查的基本方法。
難點:能根據(jù)實際情況合理地選擇調查方法。
【教學過程】
講授新課
像前面提到的收集數(shù)據(jù)的活動中,全班同學是我們要考察的對象,我們采用問卷對全體同學作了逐一調查,像這樣對全體對象進行的調查叫做全面調查。
調查、試驗如采用普查可以收集到較全面、準確的數(shù)據(jù),但普查的工作量比較大,有時受客觀條件(人力、財力等)的.限制難以進行,有時由于調查具有破壞性,不允許采用。在這些情況下,常常采用抽樣調查,即從被考察的全體對象中抽出一部分對象進行考察的調查方式。
在一個統(tǒng)計問題中,我們把所要考察對象的全體叫做總體,其中的每一個考察對象叫做個體,從總體中所抽取的一部分個體叫做總體的一個樣本(sample),樣本中個體的數(shù)目叫做樣本容量。
例如,在通過試驗考察500只新工藝生產的燈泡的使用壽命時,從中抽取50只進行試驗。這500只燈泡的使用壽命的全體是總體,其中每只燈泡的使用壽命是個體,抽取的50只燈泡的使用壽命是一個樣本,50是這個樣本的樣本容量。
為了使抽取的50只燈泡能很好地反映500只燈泡的情況,抽取時要使每只燈泡逐一進行編號,再把編號寫在小紙片上,將小紙片揉成團,放在一個不透明的容器內,充分攪拌后,從中一個個地抽取50個號簽。
上面抽取樣本的過程中,總體中的各個個體都有相等的機會被抽到,像這樣的抽樣方法是一種簡單隨機抽樣。
師:以“你知道父母的生日嗎?”為題在班級進行調查,請設計一張問卷調查表。
學生小組合作、討論,學生代表展示結果。
教師指導、評論。
師:除了問卷調查外,我們還有哪些方法收集到數(shù)據(jù)呢?
學生小組討論、交流,學生代表回答。
師:收集數(shù)據(jù)的直接方法有訪問、調查、觀察、測量、試驗等,間接方法有查閱資料、上網查詢等。就以下統(tǒng)計的數(shù)據(jù),你認為選擇何種方法去收集比較合適?
(1)你班中的同學是如何安排周末時間的?
。2)我國瀕臨滅絕的植物數(shù)量;
(3)某種玉米種子的發(fā)芽率;
(4)學校門口十字路口每天7:00~7:10時的車流量。
七年級數(shù)學教案13
【學習目標】:
1、掌握正數(shù)和負數(shù)概念;
2、會區(qū)分兩種不同意義的量,會用符號表示正數(shù)和負數(shù);
3、體驗數(shù)學發(fā)展是生活實際的需要,激發(fā)學生學習數(shù)學的興趣。
【重點難點】:正數(shù)和負數(shù)概念
【教學過程】:
一、知識鏈接:
1、小學里學過哪些數(shù)請寫出來:
2、閱讀課本P2三幅圖(重點是三個例子,邊閱讀邊思考)回答下面提出的問題:
3、在生活中,僅有整數(shù)和分數(shù)夠用了嗎?有沒有比0小的數(shù)?如果有,那叫做什么數(shù)?
二、自主學習
1、正數(shù)與負數(shù)的產生
。1)、生活中具有相反意義的量
如:運進5噸與運出3噸;上升7米與下降8米;向東50米與向西47米等都是生活中遇到的具有相反意義的量。請你也舉一個具有相反意義量的例子: 。
。2)負數(shù)的產生同樣是生活和生產的需要
2、正數(shù)和負數(shù)的表示方法
。1)一般地,我們把上升、運進、零上、收入、前進、高出等規(guī)定為正的,而與它相反的量,如:下降、運出、零下、支出、后退、低于等規(guī)定為負的。正的量就用小學里學過的數(shù)表示,有時也在它前面放上一個“+”(讀作正)號,如前面的5、7、50;負的量用小學學過的數(shù)前面放上“—”(讀作負)號來表示,如上面的—3、—8、—47。
(2)活動: 兩個同學為一組,一同學任意說意義相反的兩個量,另一個同學用正負數(shù)表示.
。3)閱讀P2的內容
3、正數(shù)、負數(shù)的概念
1)大于0的數(shù)叫做 ,小于0的數(shù)叫做 。
2)正數(shù)是大于0的數(shù),負數(shù)是 的數(shù),0既不是正數(shù)也不是負數(shù)。
【課堂練習】:
1. P3第1,2題(直接做在課本上)。
2.小明的`姐姐在銀行工作,她把存入3萬元記作+3萬元,那么支取2萬元應記作_______,-4萬元表示________________。
3.已知下列各數(shù):?13,?2,3.14,+3065,0,-239; 54
則正數(shù)有_____________________;負數(shù)有____________________。
4.下列結論中正確的是 ????????????????( )
A.0既是正數(shù),又是負數(shù)
C.0是最大的負數(shù)
【要點歸納】:
正數(shù)、負數(shù)的概念:
(1)大于0的數(shù)叫做 ,小于0的數(shù)叫做 。
。2)正數(shù)是大于0的數(shù),負數(shù)是 的數(shù),0既不是正數(shù)也不是負數(shù)。
【拓展訓練】:
1.零下15℃,表示為_________,比O℃低4℃的溫度是_________。
2.地圖上標有甲地海拔高度30米,乙地海拔高度為20米,丙地海拔高度為-5米,
其中最高處為_______地,最低處為_______地.
3.“甲比乙大-3歲”表示的意義是______________________。
4.如果海平面的高度為0米,一潛水艇在海水下40米處航行,一條鯊魚在潛水艇上方10米處游動,試用正負數(shù)分別表示潛水艇和鯊魚的高度。
【課后作業(yè)】P5第1、2題
七年級數(shù)學教案14
一、素質教育目標
。ㄒ唬┲R教學點
能按照有理數(shù)的運算順序,正確熟練地進行有理數(shù)的加、減、乘、除、乘方的混合運算.
。ǘ┠芰τ柧汓c
培養(yǎng)學生的觀察能力和運算能力.
(三)德育滲透點
培養(yǎng)學生在計算前認真審題,確定運算順序,計算中按步驟審慎進行,最后要驗算的好的習慣.
。ㄋ模┟烙凉B透點
通過本節(jié)課的學習,學生會認識到小學算術里的四則混合運算順序同樣適用于有理數(shù)系,學生會感受到知識的普適性美.
二、學法引導
1.教學方法:嘗試指導法,以學生為主體,以訓練為主線.
2.學生學法:
三、重點、難點、疑點及解決辦法
重點和難點是如何按有理數(shù)的運算順序,正確而合理地進行有理數(shù)混合計算.
四、課時安排
1課時
五、教具學具準備
投影儀、自制膠片.
六、師生互動活動設計
教師用投影出示練習題,學生用多種形式完成.
七、教學步驟
(一)復習提問
。ǔ鍪就队1)
1.有理數(shù)的運算順序是什么?
2.計算:(口答)
① , ② , ③ , ④ ,
、 , ⑥ .
【教法說明】2題都是學生運算中容易出錯的題目,學生口答后,如果答對,追問為什么?如果不對,先讓他自己找錯誤原因,若找不出來,讓其他同學糾正,使學生真正明白發(fā)生錯誤的原因,從而達到培養(yǎng)運算能力的目的.
。ǘ┲v授新課
1.例2 計算
師生共同分析:觀察題目中有乘法、除法、減法運算,還有小括號.
思考:首先計算小括號里的減法,然后再按照從左到右的順序進行乘除運算,這樣運算的步驟基本清楚了.帶分數(shù)進行乘除運算時,必須化成假分數(shù).
動筆:按思考的.步驟進行計算,在計算時不要“跳步”太多,最后再檢查這個計算結果是否正確.
一個學生板演,其他學生做在練習本上,教師巡回指導,然后師生共同訂正.
【教法說明】通過此題的分析,引導學生在進行有理數(shù)混合運算時,遵循“觀察—思考—動筆—檢查”的程序進行計算,有助于培養(yǎng)學生嚴謹?shù)膶W風和良好的學習習慣.
2.嘗試反饋,鞏固練習(出示投影2)
計算:
、 ;
、 .
【教法說明】讓學生仿照例題的形式,自己動腦進行分析,然后做在練習本上,兩個學生板演.由于此兩題涉及負數(shù)較多,應提醒學生注意符號問題.教師根據(jù)學生練習情況,作適當評價,并對學生普遍出現(xiàn)的錯誤,及時進行變式訓練.
3.例3 計算: .
教師引導學生分析:觀察題目中有乘方、乘法、除法、加法、減法運算.
思考:容易看到 , 是彼此獨立的,可以首先分別計算,然后再進行加減運算.
動筆:按思考的步驟進行計算,在計算時強調不要“跳步”太多.
檢查計算結果是否正確.
一個學生口述解題過程,教師予以指正并板書做示范,強調解題的規(guī)范性.
4.嘗試反饋,鞏固練習(出示投影3)
計算:① ;
、 ;
③ ;
、 .
首先要求學生觀察思考上述題目考查的知識點有哪些?然后再動筆完成解題過程.四個學生板演,其他同學做在練習本上.
說明:1小題主要考查乘方、除法、減法運算法則及運算順序等知識,學生容易出現(xiàn) 的錯誤.通過此題讓學生注意運算順序.3題主要考查:相反數(shù)、負數(shù)的奇次冪、偶次冪運算法則及運算順序等知識點.讓學生搞清 與 的區(qū)別; , .計算此題要特別注意符號問題;4題主要考查相反數(shù)運算法則及運算順序等知識.本題要特別注意運算順序.
【教法說明】習題的設計分層次,由易到難,循序漸進,符合學生的認知規(guī)律.注重培養(yǎng)學生的觀察分析能力和運算能力.通過變式訓練,也培養(yǎng)學生的思維能力.學生做練習時,教師巡回指導,及時獲得反饋信息,對學生出現(xiàn)錯誤較多的問題,教師要進行回授講解,然后再出一些變式訓練進行鞏固.
。ㄈw納小結
師:今天我們學習了,要求大家做題時必須遵循“觀察—分析—動筆—檢查”的程序進行計算.
【教法說明】小結起到“畫龍點睛”的作用,教給學生運算的方法、步驟,培養(yǎng)學生良好的學習習慣,提高運算的準確率.
。ㄋ模┓答仚z測(出示投影4)
。1)計算① ; ②
、 ; ④ ;
、 .
。2)已知 , 時,求下列列代數(shù)式的值
① ; ② .
以小組為單位計分,積分最高的組為優(yōu)勝組.
七年級數(shù)學教案15
學習目標:
1、引導學生正確區(qū)分“線段、射線、直線”,掌握其表示方法,理解并能運用相關性質、公理。
2、了解線段中點的概念,能借助刻度尺、圓規(guī)等畫圖工具畫一條線段等于已知線段。
3、引領學生在感受美妙多變的圖形世界中,培養(yǎng)他們的觀察、分析、比較、探究等能力。
重點與難點:了解線段中點的概念,能畫一條線段等于已知線段。發(fā)展學生有條理的思考,并能正確地表述。
學習過程:
一、課前預習導學
1、如圖,點a、b、c、d在直線ab上,則圖中能用字母表示的共有條線段,有條射線,有條直線。
2、從a到b地有①、②、③三條路可以走,每條路長分別為:,則第條路最短,另兩條路的長短關系是。
第1題
第2題
3、如圖,若是中點,是中點,
。1)若,_________;
。2)若,_________。
二、課堂學習1、議一議:
。1)、在平面內畫一個點,過這個點畫直線,能畫多少條?
(2)、要在墻上釘牢一根木條,至少要用幾個釘子?為什么?
。3)、如果平面內有兩個點,過這兩個點畫直線,又能畫多少條?
總結:“過兩點有______,并且____ ”
思考:過平面上三點中的每兩點畫直線,可畫多少條?
2、做一做:已知兩點a、b
。1)畫線段ab(連接ab)
(2)延長線段ab到點c,使bc=ab
注意:我們把上圖中的點b叫做線段ac的。
3、想一想:(1)如果點b是線段ac的中點,那么線段ab、bc、ac之間有怎樣的數(shù)量關系?與同學交流。
。2)如何用符號語言表述中點的概念?
總結:如果點b是線段ac的中點,那么;
如果,那么b是線段ac的中點。
4、知識運用:
例1、如圖,線段ab=8cm,c是ab的中點,點d在cb上,db=1.5cm.求線段cd的長度。
練習:1、如圖ab=8cm,點c是ab的中點,
點d是cb的中點,則ad=____cm
2、如圖,下列說法,不能判斷點c是線段ab的中點的`是( )
a、ac=cb b、ab=2ac c、ac+cb=ab d、cb=0.5ab
3、已知線段ab=8cm,點c是線段ab上任意一點,點m,n分別是線段ac與線段bc的中點,求線段mn的長。
三、課堂檢測1.下列說法中,正確的是()
a.射線oa和射線ao表示同一條射線;b.延長直線ab;
c.經過兩點有一條直線,并且只有一條直線;d.如果ac=bc,那么點c是線段ab的中點.
2.如果要在墻上固定一根木條,你認為至少要釘子()
a.1根b.2根c.3根d.4根
3.如圖,若是中點,是中點,
。1)若,,_________;(2)若,_________。
4.如圖在平面內有a、b、c、d四點,按要求畫圖。
(1)畫直線ab、射線bc、線段bd
。2)連結ac交bd于點o
(3)畫射線cd并反向延長射線cd,
。4)連結ad并延長至點e,使ad=de。
四、課后作業(yè)
1、下列說法中正確的是()
a、連結兩點的線段叫做兩點之間的距離b、直線沒有端點,射線至少有一個端點
c、經過平面內兩點有且只有一條直線d、運動場上的300m賽跑,表示起點和終點之間的距離是300米
2、如圖,b是線段ad上一點,c是線段bd的中點,ad=10,bc=3,求線段cd、ab的長度
3、如圖,線段ad=8,ab=cd=3,e、f分別是ab、cd的中點,求線段ef的長。
4、已知線段mn=7,點p在直線mn上,且mp=3,則np= 。
5、一條直線上有a,b,c三點,其中ab=4cm,bc=3cm,若o是線段ac的中點,求線段ob的長度。
【七年級數(shù)學教案】相關文章:
七年級上數(shù)學教案02-07
初中七年級的數(shù)學教案02-02
七年級數(shù)學教案10-11
七年級數(shù)學教案12-17
七年級初中數(shù)學教案12-02
七年級下冊數(shù)學教案07-21
人教版七年級數(shù)學教案09-02
初中七年級數(shù)學教案12-30
七年級上冊數(shù)學教案01-16