一级毛片免费不卡在线视频,国产日批视频免费在线观看,菠萝菠萝蜜在线视频免费视频,欧美日韩亚洲无线码在线观看,久久精品这里精品,国产成人综合手机在线播放,色噜噜狠狠狠综合曰曰曰,琪琪视频

八年級(jí)數(shù)學(xué)教案

時(shí)間:2024-06-21 12:21:58 數(shù)學(xué)教案 我要投稿

(集合)八年級(jí)數(shù)學(xué)教案15篇

  作為一名教職工,編寫教案是必不可少的,教案是實(shí)施教學(xué)的主要依據(jù),有著至關(guān)重要的作用。怎樣寫教案才更能起到其作用呢?以下是小編整理的八年級(jí)數(shù)學(xué)教案,歡迎大家分享。

(集合)八年級(jí)數(shù)學(xué)教案15篇

八年級(jí)數(shù)學(xué)教案1

  教學(xué)目標(biāo):

  1. 掌握三角形內(nèi)角和定理及其推論;

  2. 弄清三角形按角的分類, 會(huì)按角的大小對(duì)三角形進(jìn)行分類;

  3.通過(guò)對(duì)三角形分類的學(xué)習(xí),使學(xué)生了解數(shù)學(xué)分類的基本思想,并會(huì)用方程思想去解決一些圖形中求角的問(wèn)題。

  4.通過(guò)三角形內(nèi)角和定理的證明,提高學(xué)生的邏輯思維能力,同時(shí)培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)

  5. 通過(guò)對(duì)定理及推論的分析與討論,發(fā)展學(xué)生的求同和求異的思維能力,培養(yǎng)學(xué)生聯(lián)系與轉(zhuǎn)化的辯證思想。

  教學(xué)重點(diǎn):

  三角形內(nèi)角和定理及其推論。

  教學(xué)難點(diǎn):

  三角形內(nèi)角和定理的證明

  教學(xué)用具:

  直尺、微機(jī)

  教學(xué)方法:

  互動(dòng)式,談話法

  教學(xué)過(guò)程:

  1、創(chuàng)設(shè)情境,自然引入

  把問(wèn)題作為教學(xué)的出發(fā)點(diǎn),創(chuàng)設(shè)問(wèn)題情境,激發(fā)學(xué)生學(xué)習(xí)興趣和求知欲,為發(fā)現(xiàn)新知識(shí)創(chuàng)造一個(gè)最佳的心理和認(rèn)知環(huán)境。

  問(wèn)題1 三角形三條邊的關(guān)系我們已經(jīng)明確了,而且利用上述關(guān)系解決了一些幾何問(wèn)題,那么三角形的三個(gè)內(nèi)角有何關(guān)系呢?

  問(wèn)題2 你能用幾何推理來(lái)論證得到的關(guān)系嗎?

  對(duì)于問(wèn)題1絕大多數(shù)學(xué)生都能回答出來(lái)(小學(xué)學(xué)過(guò)的),問(wèn)題2學(xué)生會(huì)感到困難,因?yàn)檫@個(gè)證明需添加輔助線,這是同學(xué)們第一次接觸的新知識(shí)―――“輔助線 ”。教師可以趁機(jī)告訴學(xué)生這節(jié)課將要學(xué)習(xí)的一個(gè)重要內(nèi)容(板書課題)

  新課引入的好壞在某種程度上關(guān)系到課堂教學(xué)的成敗,本節(jié)課從舊知識(shí)切入,特別是從知識(shí)體系考慮引入,“學(xué)習(xí)了三角形邊的關(guān)系,自然想到三角形角的關(guān)系怎樣呢?”使學(xué)生感覺本節(jié)課學(xué)習(xí)的內(nèi)容自然合理。

  2、設(shè)問(wèn)質(zhì)疑,探究嘗試

  (1)求證:三角形三個(gè)內(nèi)角的和等于

  讓學(xué)生剪一個(gè)三角形,并把它的三個(gè)內(nèi)角分別剪下來(lái),再拼成一個(gè)平面圖形。這里教師設(shè)計(jì)了電腦動(dòng)畫顯示具體情景。然后,圍繞問(wèn)題設(shè)計(jì)以下幾個(gè)問(wèn)題讓學(xué)生思考,教師進(jìn)行學(xué)法指導(dǎo)。

  問(wèn)題1 觀察:三個(gè)內(nèi)角拼成了一個(gè)

  什么角?問(wèn)題2 此實(shí)驗(yàn)給我們一個(gè)什么啟示?

  (把三角形的三個(gè)內(nèi)角之和轉(zhuǎn)化為一個(gè)平角)

  問(wèn)題3 由圖中AB與CD的關(guān)系,啟發(fā)我們畫一條什么樣的線,作為解決問(wèn)題的橋梁?

  其中問(wèn)題2是解決本題的關(guān)鍵,教師可引導(dǎo)學(xué)生分析。對(duì)于問(wèn)題3學(xué)生經(jīng)過(guò)思考會(huì)畫出此線的。這里教師要重點(diǎn)講解“輔助線”的有關(guān)知識(shí)。比如:為什么要畫這條線?畫這條線有什么作用?要讓學(xué)生知道“輔助線”是以后解決幾何問(wèn)題有力的工具。它的作用在于充分利用條件;恰當(dāng)轉(zhuǎn)化條件;恰當(dāng)轉(zhuǎn)化結(jié)論;充分提示題目中各元素間的一些不明顯的關(guān)系,達(dá)到化難為易解決問(wèn)題的目的。

  (2)通過(guò)類比“三角形按邊分類”,三角形按角怎樣分類呢?

  學(xué)生回答后,電腦顯示圖表。

  (3)三角形中三個(gè)內(nèi)角之和為定值

  ,那么對(duì)三角形的'其它角還有哪些特殊的關(guān)系呢?問(wèn)題1 直角三角形中,直角與其它兩個(gè)銳角有何關(guān)系?

  問(wèn)題2 三角形一個(gè)外角與它不相鄰的兩個(gè)內(nèi)角有何關(guān)系?

  問(wèn)題3 三角形一個(gè)外角與其中的一個(gè)不相鄰內(nèi)角有何關(guān)系?

  其中問(wèn)題1學(xué)生很容易得出,提出問(wèn)題2之后,先給出三角形外角的定義,然后讓學(xué)生經(jīng)過(guò)分析討論,得出結(jié)論并書寫證明過(guò)程。

  這樣安排的目的有三點(diǎn):第一,理解定理之后的延伸――推論,培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣。第二,模仿定理的證明書寫格式,加強(qiáng)學(xué)生書寫能力。第三,提高學(xué)生靈活運(yùn)用所學(xué)知識(shí)的能力。

  3、三角形三個(gè)內(nèi)角關(guān)系的定理及推論

  引導(dǎo)學(xué)生分析并嚴(yán)格書寫解題過(guò)程

八年級(jí)數(shù)學(xué)教案2

  一、學(xué)習(xí)目標(biāo)

  1.使學(xué)生了解運(yùn)用公式法分解因式的意義;

  2.使學(xué)生掌握用平方差公式分解因式

  二、重點(diǎn)難點(diǎn)

  重點(diǎn):掌握運(yùn)用平方差公式分解因式。

  難點(diǎn):將單項(xiàng)式化為平方形式,再用平方差公式分解因式。

  學(xué)習(xí)方法:歸納、概括、總結(jié)。

  三、合作學(xué)習(xí)

  創(chuàng)設(shè)問(wèn)題情境,引入新課

  在前兩學(xué)時(shí)中我們學(xué)習(xí)了因式分解的定義,即把一個(gè)多項(xiàng)式分解成幾個(gè)整式的積的形式,還學(xué)習(xí)了提公因式法分解因式,即在一個(gè)多項(xiàng)式中,若各項(xiàng)都含有相同的'因式,即公因式,就可以把這個(gè)公因式提出來(lái),從而將多項(xiàng)式化成幾個(gè)因式乘積的形式。

  如果一個(gè)多項(xiàng)式的各項(xiàng),不具備相同的因式,是否就不能分解因式了呢?當(dāng)然不是,只要我們記住因式分解是多項(xiàng)式乘法的相反過(guò)程,就能利用這種關(guān)系找到新的因式分解的方法,本學(xué)時(shí)我們就來(lái)學(xué)習(xí)另外的一種因式分解的方法——公式法。

  1.請(qǐng)看乘法公式

  左邊是整式乘法,右邊是一個(gè)多項(xiàng)式,把這個(gè)等式反過(guò)來(lái)就是左邊是一個(gè)多項(xiàng)式,右邊是整式的乘積。大家判斷一下,第二個(gè)式子從左邊到右邊是否是因式分解?

  利用平方差公式進(jìn)行的因式分解,第(2)個(gè)等式可以看作是因式分解中的平方差公式。

  a2—b2=(a+b)(a—b)

  2.公式講解

  如x2—16

  =(x)2—42

  =(x+4)(x—4)。

  9m2—4n2

  =(3m)2—(2n)2

  =(3m+2n)(3m—2n)。

  四、精講精練

  例1、把下列各式分解因式:

 。1)25—16x2;(2)9a2—b2。

  例2、把下列各式分解因式:

 。1)9(m+n)2—(m—n)2;(2)2x3—8x。

  補(bǔ)充例題:判斷下列分解因式是否正確。

  (1)(a+b)2—c2=a2+2ab+b2—c2。

  (2)a4—1=(a2)2—1=(a2+1)?(a2—1)。

  五、課堂練習(xí)

  教科書練習(xí)。

  六、作業(yè)

  1、教科書習(xí)題。

  2、分解因式:x4—16x3—4x4x2—(y—z)2。

  3、若x2—y2=30,x—y=—5求x+y。

八年級(jí)數(shù)學(xué)教案3

  一、學(xué)習(xí)目標(biāo)

  1.多項(xiàng)式除以單項(xiàng)式的運(yùn)算法則及其應(yīng)用。

  2.多項(xiàng)式除以單項(xiàng)式的運(yùn)算算理。

  二、重點(diǎn)難點(diǎn)

  重點(diǎn):多項(xiàng)式除以單項(xiàng)式的運(yùn)算法則及其應(yīng)用。

  難點(diǎn):探索多項(xiàng)式與單項(xiàng)式相除的運(yùn)算法則的過(guò)程。

  三、合作學(xué)習(xí)

  (一)回顧單項(xiàng)式除以單項(xiàng)式法則

 。ǘ⿲W(xué)生動(dòng)手,探究新課

  1.計(jì)算下列各式:

 。1)(am+bm)÷m;

 。2)(a2+ab)÷a;

 。3)(4x2y+2xy2)÷2xy。

  2.提問(wèn):

 、僬f(shuō)說(shuō)你是怎樣計(jì)算的;

 、谶有什么發(fā)現(xiàn)嗎?

 。ㄈ┛偨Y(jié)法則

  1.多項(xiàng)式除以單項(xiàng)式:先把這個(gè)多項(xiàng)式的每一項(xiàng)除以XXXXXXXXXXX,再把所得的商XXXXXX

  2.本質(zhì):把多項(xiàng)式除以單項(xiàng)式轉(zhuǎn)化成XXXXXXXXXXXXXX

  四、精講精練

  例:(1)(12a3—6a2+3a)÷3a;

 。2)(21x4y3—35x3y2+7x2y2)÷(—7x2y);

 。3)[(x+y)2—y(2x+y)—8x]÷2x;

  (4)(—6a3b3+8a2b4+10a2b3+2ab2)÷(—2ab2)。

  隨堂練習(xí):教科書練習(xí)。

  五、小結(jié)

  1、單項(xiàng)式的除法法則

  2、應(yīng)用單項(xiàng)式除法法則應(yīng)注意:

  A、系數(shù)先相除,把所得的結(jié)果作為商的系數(shù),運(yùn)算過(guò)程中注意單項(xiàng)式的系數(shù)飽含它前面的符號(hào);

  B、把同底數(shù)冪相除,所得結(jié)果作為商的因式,由于目前只研究整除的情況,所以被除式中某一字母的指數(shù)不小于除式中同一字母的`指數(shù);

  C、被除式單獨(dú)有的字母及其指數(shù),作為商的一個(gè)因式,不要遺漏;

  D、要注意運(yùn)算順序,有乘方要先做乘方,有括號(hào)先算括號(hào)里的,同級(jí)運(yùn)算從左到右的順序進(jìn)行;

  E、多項(xiàng)式除以單項(xiàng)式法則。

八年級(jí)數(shù)學(xué)教案4

  教學(xué)目標(biāo):

  1、知識(shí)目標(biāo):了解圖案最常見的構(gòu)圖方式:軸對(duì)稱、平移、旋轉(zhuǎn)……,理解簡(jiǎn)單圖案設(shè)計(jì)的意圖。認(rèn)識(shí)和欣賞平移,旋轉(zhuǎn)在現(xiàn)實(shí)生活中的應(yīng)用,能夠靈活運(yùn)用軸對(duì)稱、平移、旋轉(zhuǎn)的組合,設(shè)計(jì)出簡(jiǎn)單的圖案。

  2、能力目標(biāo):經(jīng)歷收集、欣賞、分析、操作和設(shè)計(jì)的過(guò)程,培養(yǎng)學(xué)生收集和整理信息的能力,分析和解決問(wèn)題的能力,合作和交流的能力以及創(chuàng)新能力。

  3、情感體驗(yàn)點(diǎn):經(jīng)歷對(duì)典型圖案設(shè)計(jì)意圖的分析,進(jìn)一步發(fā)展學(xué)生的空間觀念,增強(qiáng)審美意識(shí),培養(yǎng)學(xué)生積極進(jìn)取的生活態(tài)度。

  重點(diǎn)與難點(diǎn):

  重點(diǎn):靈活運(yùn)用軸對(duì)稱、平移、旋轉(zhuǎn)……等方法及它們的組合進(jìn)行的圖案設(shè)計(jì)。

  難點(diǎn):分析典型圖案的設(shè)計(jì)意圖。

  疑點(diǎn):在設(shè)計(jì)的圖案中清晰地表現(xiàn)自己的設(shè)計(jì)意圖

  教具學(xué)具準(zhǔn)備:

  提前一周布置學(xué)生以小組為單位,通過(guò)各種渠道收集到的圖案、圖標(biāo)的剪貼、臨摹以及。多種常見的圖案及其形成過(guò)程的'動(dòng)畫演示。

  教學(xué)過(guò)程設(shè)計(jì):

  1、情境導(dǎo)入:在優(yōu)美的音樂中,逐個(gè)展示生活中常見的典型圖案,并讓學(xué)生試著說(shuō)一說(shuō)每種圖案標(biāo)志的對(duì)象。(展示課本圖3—23)

  明確在欣賞了圖案后,簡(jiǎn)單地復(fù)習(xí)平移、旋轉(zhuǎn)的概念,為下面圖案的設(shè)計(jì)作好理論準(zhǔn)備。對(duì)教材給出的六個(gè)圖案通過(guò)觀察、分析進(jìn)行議論交流,讓學(xué)生初步了解圖案的設(shè)計(jì)中常常運(yùn)用圖形變換的思想方法,為學(xué)生自己設(shè)計(jì)圖案指明方向。其中圖(1)、(2)、(3)、(4)、(5)、(6)都可以通過(guò)旋轉(zhuǎn)適合角度形成(可以讓學(xué)生自己說(shuō)說(shuō)每個(gè)旋轉(zhuǎn)的角度和旋轉(zhuǎn)的次數(shù)及旋轉(zhuǎn)中心的位置),另外圖(2)、(3)、(5)也可以通過(guò)軸對(duì)稱變換形成(可以讓學(xué)生指出對(duì)軸對(duì)稱及對(duì)稱軸的條數(shù)),而圖(2)可以通過(guò)平移形成。

  2、課本

  1 欣賞課本75頁(yè)圖3—24的圖案,并分析這個(gè)圖案形成過(guò)程。

  評(píng)注:圖案是密鋪圖案的代表,旨在通過(guò)對(duì)典型圖案的分析欣賞,使學(xué)生逐步能夠進(jìn)行圖案設(shè)計(jì),同時(shí)了解軸對(duì)稱、平移、旋轉(zhuǎn)變換是圖案制作的基本手段。例題解答的關(guān)鍵是確定“基本圖案”,然后再運(yùn)用平移、旋轉(zhuǎn)關(guān)系加以說(shuō)明,注意旋轉(zhuǎn)中心可以為圖形上某一特征的點(diǎn)。

  評(píng)注:可以取其中的任何一個(gè)為基本圖案,然后通過(guò)變換得到。而且變化方式也可以是:左下角的圖案通過(guò)軸對(duì)稱變換得到左上圖和右下圖。

  (二)課內(nèi)練習(xí)

  (1) 以小組為單位,由每組指定一個(gè)同學(xué)展示該組搜集得到的圖案,并在全班交流。

  (2) 利用下面提供的基本圖形,用平移、旋轉(zhuǎn)、軸對(duì)稱、中心對(duì)稱等方法進(jìn)行圖案設(shè)計(jì),并簡(jiǎn)要說(shuō)明自己的設(shè)計(jì)意圖。

  (三)議一議

  生活中還有那些圖案用到了平移或旋轉(zhuǎn)?分析其中的一個(gè),并與同伴進(jìn)行交流。

  (四)課時(shí)小結(jié)

  本課時(shí)的重點(diǎn)是了解平移、旋轉(zhuǎn)和軸對(duì)稱變換是圖案設(shè)計(jì)的基本方法,并能運(yùn)用這些變換設(shè)計(jì)出一些簡(jiǎn)單的圖案。

  通過(guò)今天的學(xué)習(xí),你對(duì)圖案的設(shè)計(jì)又增加了哪些新的認(rèn)識(shí)?(可以利用平移、旋轉(zhuǎn)、軸對(duì)稱等多種方法來(lái)設(shè)計(jì),而且設(shè)計(jì)的圖案要能表達(dá)自己的創(chuàng)作意圖,再就是圖案的設(shè)計(jì)一定要新穎,獨(dú)特,這樣才能使人過(guò)目不忘,達(dá)到標(biāo)志的效果。)

  八年級(jí)數(shù)學(xué)上冊(cè)教案(五)延伸拓展

  進(jìn)一步搜集身邊的各種標(biāo)志性圖案,嘗試著重新設(shè)計(jì)它,并結(jié)合實(shí)際背景分析它的設(shè)計(jì)意圖。

八年級(jí)數(shù)學(xué)教案5

  一、教學(xué)目標(biāo)

  1.使學(xué)生理解并掌握分式的概念,了解有理式的概念;

  2.使學(xué)生能夠求出分式有意義的條件;

  3.通過(guò)類比分?jǐn)?shù)研究分式的教學(xué),培養(yǎng)學(xué)生運(yùn)用類比轉(zhuǎn)化的思想方法解決問(wèn)題的能力;

  4.通過(guò)類比方法的教學(xué),培養(yǎng)學(xué)生對(duì)事物之間是普遍聯(lián)系又是變化發(fā)展的辨證觀點(diǎn)的再認(rèn)識(shí).

  二、重點(diǎn)、難點(diǎn)、疑點(diǎn)及解決辦法

  1.教學(xué)重點(diǎn)和難點(diǎn) 明確分式的分母不為零.

  2.疑點(diǎn)及解決辦法 通過(guò)類比分?jǐn)?shù)的意義,加強(qiáng)對(duì)分式意義的理解.

  三、教學(xué)過(guò)程

  【新課引入】

  前面所研究的因式分解問(wèn)題是把整式分解成若干個(gè)因式的積的問(wèn)題,但若有如下問(wèn)題:某同學(xué)分鐘做了60個(gè)仰臥起坐,每分鐘做多少個(gè)?可表示為,問(wèn),這是不是整式?請(qǐng)一位同學(xué)給它試命名,并說(shuō)一說(shuō)怎樣想到的?(學(xué)生有過(guò)分?jǐn)?shù)的經(jīng)驗(yàn),可猜想到分式)

  【新課】

  1.分式的`定義

  (1)由學(xué)生分組討論分式的定義,對(duì)于“兩個(gè)整式相除叫做分式”等錯(cuò)誤,由學(xué)生舉反例一一加以糾正,得到結(jié)論:

  用、表示兩個(gè)整式,就可以表示成的形式.如果中含有字母,式子就叫做分式.其中叫做分式的分子,叫做分式的分母.

  (2)由學(xué)生舉幾個(gè)分式的例子.

  (3)學(xué)生小結(jié)分式的概念中應(yīng)注意的問(wèn)題.

  ①分母中含有字母.

 、谌缤?jǐn)?shù)一樣,分式的分母不能為零.

  (4)問(wèn):何時(shí)分式的值為零?[以(2)中學(xué)生舉出的分式為例進(jìn)行討論]

  2.有理式的分類

  請(qǐng)學(xué)生類比有理數(shù)的分類為有理式分類:

  例1 當(dāng)取何值時(shí),下列分式有意義?

  (1);

  解:由分母得.

  ∴當(dāng)時(shí),原分式有意義.

  (2);

  解:由分母得.

  ∴當(dāng)時(shí),原分式有意義.

  (3);

  解:∵恒成立,

  ∴取一切實(shí)數(shù)時(shí),原分式都有意義.

  (4).

  解:由分母得.

  ∴當(dāng)且時(shí),原分式有意義.

  思考:若把題目要求改為:“當(dāng)取何值時(shí)下列分式無(wú)意義?”該怎樣做?

  例2 當(dāng)取何值時(shí),下列分式的值為零?

  (1);

  解:由分子得.

  而當(dāng)時(shí),分母.

  ∴當(dāng)時(shí),原分式值為零.

  小結(jié):若使分式的值為零,需滿足兩個(gè)條件:①分子值等于零;②分母值不等于零.

  (2);

  解:由分子得.

  而當(dāng)時(shí),分母,分式無(wú)意義.

  當(dāng)時(shí),分母.

  ∴當(dāng)時(shí),原分式值為零.

  (3);

  解:由分子得.

  而當(dāng)時(shí),分母.

  當(dāng)時(shí),分母.

  ∴當(dāng)或時(shí),原分式值都為零.

  (4).

  解:由分子得.

  而當(dāng)時(shí),,分式無(wú)意義.

  ∴沒有使原分式的值為零的的值,即原分式值不可能為零.

  (四)總結(jié)、擴(kuò)展

  1.分式與分?jǐn)?shù)的區(qū)別.

  2.分式何時(shí)有意義?

  3.分式何時(shí)值為零?

  (五)隨堂練習(xí)

  1.填空題:

  (1)當(dāng)時(shí),分式的值為零

  (2)當(dāng)時(shí),分式的值為零

  (3)當(dāng)時(shí),分式的值為零

  2.教材P55中1、2、3.

  八、布置作業(yè)

  教材P56中A組3、4;B組(1)、(2)、(3).

  九、板書設(shè)計(jì)

  課題 例1

  1.定義例2

  2.有理式分類

八年級(jí)數(shù)學(xué)教案6

  一、教材分析

  1、特點(diǎn)與地位:重點(diǎn)中的重點(diǎn)。

  本課是教材求兩結(jié)點(diǎn)之間的最短路徑問(wèn)題是圖最常見的應(yīng)用的之一,在交通運(yùn)輸、通訊網(wǎng)絡(luò)等方面具有一定的實(shí)用意義。

  2、重點(diǎn)與難點(diǎn):結(jié)合學(xué)生現(xiàn)有抽象思維能力水平,已掌握基本概念等學(xué)情,以及求解最短路徑問(wèn)題的自身特點(diǎn),確立本課的重點(diǎn)和難點(diǎn)如下:

 。1)重點(diǎn):如何將現(xiàn)實(shí)問(wèn)題抽象成求解最短路徑問(wèn)題,以及該問(wèn)題的解決方案。

 。2)難點(diǎn):求解最短路徑算法的程序?qū)崿F(xiàn)。

  3、教學(xué)安排:最短路徑問(wèn)題包含兩種情況:一種是求從某個(gè)源點(diǎn)到其他各結(jié)點(diǎn)的最短路徑,另一種是求每一對(duì)結(jié)點(diǎn)之間的最短路徑。根據(jù)教學(xué)大綱安排,重點(diǎn)講解第一種情況問(wèn)題的解決。安排一個(gè)課時(shí)講授。教材直接分析算法,考慮實(shí)際應(yīng)用需要,補(bǔ)充旅游景點(diǎn)線路選擇的實(shí)例,實(shí)例中問(wèn)題解決與算法分析相結(jié)合,逐步推動(dòng)教學(xué)過(guò)程。

  二、教學(xué)目標(biāo)分析

  1、知識(shí)目標(biāo):掌握最短路徑概念、能夠求解最短路徑。

  2、能力目標(biāo):

 。1)通過(guò)將旅游景點(diǎn)線路選擇問(wèn)題抽象成求最短路徑問(wèn)題,培養(yǎng)學(xué)生的數(shù)據(jù)抽象能力。

 。2)通過(guò)旅游景點(diǎn)線路選擇問(wèn)題的解決,培養(yǎng)學(xué)生的獨(dú)立思考、分析問(wèn)題、解決問(wèn)題的能力。

  3、素質(zhì)目標(biāo):培養(yǎng)學(xué)生講究工作方法、與他人合作,提高效率。

  三、教法分析

  課前充分準(zhǔn)備,研讀教材,查閱相關(guān)資料,制作多媒體課件。教學(xué)過(guò)程中除了使用傳統(tǒng)的“講授法”以外,主要采用“案例教學(xué)法”,同時(shí)輔以多媒體課件,以啟發(fā)的方式展開教學(xué)。由于本節(jié)課的內(nèi)容屬于圖這一章的難點(diǎn),考慮學(xué)生的接受能力,注意與學(xué)生溝通,根據(jù)學(xué)生的反應(yīng)控制好教學(xué)進(jìn)度是本節(jié)課成功的關(guān)鍵。

  四、學(xué)法指導(dǎo)

  1、課前上次課結(jié)課時(shí)給學(xué)生布置任務(wù),使其有針對(duì)性的預(yù)習(xí)。

  2、課中指導(dǎo)學(xué)生討論任務(wù)解決方法,引導(dǎo)學(xué)生分析本節(jié)課知識(shí)點(diǎn)。

  3、課后給學(xué)生布置同類型任務(wù),加強(qiáng)練習(xí)。

  五、教學(xué)過(guò)程分析

  (一)課前復(fù)習(xí)(3~5分鐘)回顧“路徑”的概念,為引出“最短路徑”做鋪墊。

  教學(xué)方法及注意事項(xiàng):

 。1)采用提問(wèn)方式,注意及時(shí)小結(jié),提問(wèn)的目的是幫助學(xué)生回憶概念。

 。2)提示學(xué)生“溫故而知新”,養(yǎng)成良好的學(xué)習(xí)習(xí)慣。

 。ǘ⿲(dǎo)入新課(3~5分鐘)以城市公路網(wǎng)為例,基于求兩個(gè)點(diǎn)間最短距離的實(shí)際需要,引出本課教學(xué)內(nèi)容“求最短路徑問(wèn)題”。教學(xué)方法及注意事項(xiàng):

  (1)先講實(shí)例,再指出概念,既可以吸引學(xué)生注意力,激發(fā)學(xué)習(xí)興趣,又可以實(shí)現(xiàn)教學(xué)內(nèi)容的自然過(guò)渡。

  (2)此處使用案例教學(xué)法,不在于問(wèn)題的求解過(guò)程,只是為了說(shuō)明問(wèn)題的存在,所以這里的例子只需要概述,能夠說(shuō)明問(wèn)題即可。

 。ㄈ┲v授新課(25~30分鐘)

  1、求某一結(jié)點(diǎn)到其他各結(jié)點(diǎn)的最短路徑(重點(diǎn))主要采用案例教學(xué)法,提出旅游景點(diǎn)選擇的例子,解決如何選擇代價(jià)小、景點(diǎn)多的路線。

  (1)將實(shí)際問(wèn)題抽象成圖中求任一結(jié)點(diǎn)到其他結(jié)點(diǎn)最短路徑問(wèn)題。(3~5分鐘)教學(xué)方法及注意事項(xiàng):

 、僦饕捎弥v授法,將實(shí)際問(wèn)題用圖形表示出來(lái)。語(yǔ)言描述轉(zhuǎn)換的方法(用圓圈加標(biāo)號(hào)表示某一景點(diǎn),用箭頭表示從某景點(diǎn)到其他景點(diǎn)是否存在旅游線路,并且將旅途費(fèi)用寫在箭頭的'旁邊。)一邊用語(yǔ)言描述,一邊在黑上畫圖。

 、谧⒁馐痉懂媹D只進(jìn)行一部分,讓學(xué)生獨(dú)立思考、自主完成余下部分的轉(zhuǎn)化。

 、奂皶r(shí)總結(jié),原型抽象(景點(diǎn)作為圖的結(jié)點(diǎn),景點(diǎn)間的線路作為圖的邊,旅途費(fèi)用作為邊的權(quán)值),將案例求解問(wèn)題抽象成求圖中某一結(jié)點(diǎn)到其他各結(jié)點(diǎn)的最短路徑問(wèn)題。

  ④利用多媒體課件,向?qū)W生展示一張帶權(quán)有向圖,并略作解釋,為后續(xù)教學(xué)做準(zhǔn)備。

  教學(xué)方法及注意事項(xiàng):

 、賳l(fā)式教學(xué),如何實(shí)現(xiàn)按路徑長(zhǎng)度遞增產(chǎn)生最短路徑?

  ②結(jié)合案例分析求解最短路徑過(guò)程中(重點(diǎn))注意此處借助黑板,按照算法思想的步驟。同樣,也是只示范一部分,余下部分由學(xué)生獨(dú)立思考完成。

 。ㄋ模┱n堂小結(jié)(3~5分鐘)

  1、明確本節(jié)課重點(diǎn)

  2、提示學(xué)生,這種方式形成的圖又可以解決哪類實(shí)際問(wèn)題呢?

 。ㄎ澹┎贾米鳂I(yè)

  1、書面作業(yè):復(fù)習(xí)本次課內(nèi)容,準(zhǔn)備一道備用習(xí)題,靈活把握時(shí)間安排。

  六、教學(xué)特色

  以旅游路線選擇為主線,靈活采用案例教學(xué)、示范教學(xué)、多媒體課件等多種手段輔助教學(xué),使枯燥的理論講解生動(dòng)起來(lái)。在順利開展教學(xué)的同時(shí),體現(xiàn)所講內(nèi)容的實(shí)用性,提高學(xué)生的學(xué)習(xí)興趣。

八年級(jí)數(shù)學(xué)教案7

  教學(xué)目標(biāo):

  1、了解算術(shù)平方根的概念,會(huì)用根號(hào)表示正數(shù)的算術(shù)平方根,并了解算術(shù)平方根的非負(fù)性。

  2、了解開方與乘方互為逆運(yùn)算,會(huì)用平方運(yùn)算求某些非負(fù)數(shù)的算術(shù)平方根。

  教學(xué)重點(diǎn):

  算術(shù)平方根的概念。

  教學(xué)難點(diǎn):

  根據(jù)算術(shù)平方根的概念正確求出非負(fù)數(shù)的算術(shù)平方根。

  教學(xué)過(guò)程

  一、情境導(dǎo)入

  請(qǐng)同學(xué)們欣賞本節(jié)導(dǎo)圖,并回答問(wèn)題,學(xué)校要舉行金秋美術(shù)作品比賽,小歐很高興,他想裁出一塊面積為25的正方形畫布,畫上自己的得意之作參加比賽,這塊正方形畫布的邊長(zhǎng)應(yīng)取多少?如果這塊畫布的面積是?這個(gè)問(wèn)題實(shí)際上是已知一個(gè)正數(shù)的平方,求這個(gè)正數(shù)的問(wèn)題?

  這就要用到平方根的概念,也就是本章的主要學(xué)習(xí)內(nèi)容。這節(jié)課我們先學(xué)習(xí)有關(guān)算術(shù)平方根的概念。

  二、導(dǎo)入新課:

  1、提出問(wèn)題:(書P68頁(yè)的問(wèn)題)

  你是怎樣算出畫框的邊長(zhǎng)等于5dm的呢?(學(xué)生思考并交流解法)

  這個(gè)問(wèn)題相當(dāng)于在等式擴(kuò)=25中求出正數(shù)x的值。

  一般地,如果一個(gè)正數(shù)x的平方等于a,即=a,那么這個(gè)正數(shù)x叫做a的算術(shù)平方根。a的.算術(shù)平方根記為,讀作根號(hào)a,a叫做被開方數(shù)。規(guī)定:0的算術(shù)平方根是0。

  也就是,在等式=a(x0)中,規(guī)定x = 。

  2、試一試:你能根據(jù)等式:=144說(shuō)出144的算術(shù)平方根是多少嗎?并用等式表示出來(lái)。

  3、想一想:下列式子表示什么意思?你能求出它們的值嗎?

  建議:求值時(shí),要按照算術(shù)平方根的意義,寫出應(yīng)該滿足的關(guān)系式,然后按照算術(shù)平方根的記法寫出對(duì)應(yīng)的值。例如表示25的算術(shù)平方根。

  4、例1求下列各數(shù)的算術(shù)平方根:

  (1)100;(2)1;(3);(4)0。0001

  三、練習(xí)

  P69練習(xí)1、2

  四、探究:(課本第69頁(yè))

  怎樣用兩個(gè)面積為1的小正方形拼成一個(gè)面積為2的大正方形?

  方法1:課本中的方法,略;

  方法2:

  可還有其他方法,鼓勵(lì)學(xué)生探究。

  問(wèn)題:這個(gè)大正方形的邊長(zhǎng)應(yīng)該是多少呢?

  大正方形的邊長(zhǎng)是,表示2的算術(shù)平方根,它到底是個(gè)多大的數(shù)?你能求出它的值嗎?

  建議學(xué)生觀察圖形感受的大小。小正方形的對(duì)角線的長(zhǎng)是多少呢?(用刻度尺測(cè)量它與大正方形的邊長(zhǎng)的大。┧慕浦滴覀儗⒃谙鹿(jié)課探究。

  五、小結(jié):

  1、這節(jié)課學(xué)習(xí)了什么呢?

  2、算術(shù)平方根的具體意義是怎么樣的?

  3、怎樣求一個(gè)正數(shù)的算術(shù)平方根

  六、課外作業(yè):

  P75習(xí)題13.1活動(dòng)第1、2、3題

八年級(jí)數(shù)學(xué)教案8

  ●教學(xué)目標(biāo)

  (一)教學(xué)知識(shí)點(diǎn)

  1.掌握相似 三角形的定義、表示法,并能根據(jù)定義判斷兩個(gè)三角形是否相似.

  2.能根據(jù)相似比進(jìn)行計(jì) 算.

  (二)能力訓(xùn)練要求

  1.能根據(jù)定義判斷兩個(gè)三角形是否相似,訓(xùn)練 學(xué)生的判斷能力.

  2.能根據(jù)相似比求長(zhǎng)度和角度,培養(yǎng)學(xué)生的運(yùn)用能力.

  (三)情感與價(jià)值觀要求

  通過(guò)與相似多邊形有關(guān)概念的類比,滲透類比的教學(xué)思想,并領(lǐng)會(huì)特殊與一般的關(guān)系.

  ●教學(xué)重點(diǎn) 相似三角形的`定義及運(yùn)用.

  ●教學(xué)難點(diǎn) 根據(jù)定義求線段長(zhǎng)或角的度數(shù).

  ●教學(xué)過(guò)程

 、.創(chuàng)設(shè)問(wèn)題情境,引入新課

  今天, 我們就來(lái)研究相似三角形.

 、.新課講解

  1.相似三角形的定義及記法

  三角對(duì)應(yīng)相等,三邊 對(duì)應(yīng)成比例的兩個(gè)三角形叫做相 似三角形。如△ABC與△DEF相似,記作△ABC∽△DEF

  其中對(duì)應(yīng)頂點(diǎn)要寫在對(duì)應(yīng)位置,如A與D,B與E,C與F相對(duì)應(yīng).AB∶DE等于相似比.

  2.想一想

  如果△ABC∽△DEF,那么哪些角是對(duì)應(yīng)角?哪些邊是對(duì)應(yīng)邊?對(duì)應(yīng) 角 有什么關(guān)系?對(duì)應(yīng)邊呢?

  所以 D、E、F. .

  3.議一議,學(xué)生討論

  (1)兩個(gè)全等三角形一定相似嗎?為什么?

  (2)兩個(gè)直角三角 形一 定相似嗎?兩個(gè)等腰直角三角形呢?為 什么?

  (3)兩個(gè)等腰三角形一定相似嗎?兩個(gè)等邊三角形呢?為什么?

  結(jié)論:兩 個(gè)全等三角形一定相似.

  兩個(gè) 等腰直角三角形一定相似.兩個(gè)等邊三角形一定相似.兩個(gè)直角三角形和兩個(gè)等腰三角形不一定相似.

  4.例題

  例1、有一塊呈三角形形狀 的草坪,其中一邊的長(zhǎng)是20 m,在這個(gè)草坪的圖紙上,這條邊長(zhǎng)5 cm,其他兩邊的 長(zhǎng)都是3.5 cm,求該草坪其他兩邊的實(shí)際長(zhǎng)度.

  例2.已 知△ABC∽△ADE,AE=50 cm,EC=30 cm,BC =70 cm,BAC=45,

  ACB=40,求(1)AED和ADE的度數(shù)。(2)DE的長(zhǎng).

  5.想一想

  在例2的條件下,圖中有哪些線段成比例?

  Ⅲ.課堂練習(xí) P129

 、.課時(shí)小結(jié)

  相似三角形的 判定方法定義法.

  Ⅴ.課后作業(yè)

八年級(jí)數(shù)學(xué)教案9

  【教學(xué)目標(biāo)】

  1、了解三角形的中位線的概念

  2、了解三角形的中位線的性質(zhì)

  3、探索三角形的中位線的性質(zhì)的一些簡(jiǎn)單的應(yīng)用

  【教學(xué)重點(diǎn)、難點(diǎn)】

  重點(diǎn):三角形的中位線定理。

  難點(diǎn):三角形的中位線定理的證明中添加輔助線的思想方法。

  【教學(xué)過(guò)程】

  (一)創(chuàng)設(shè)情景,引入新課

  1、如圖,為了測(cè)量一個(gè)池塘的寬BC,在池塘一側(cè)的平地上選一點(diǎn)A,再分別找出線段AB、AC的中點(diǎn)D、E,若測(cè)出DE的長(zhǎng),就可以求出池塘的寬BC,你知道這是為什么嗎?

  2、動(dòng)手操作:剪一刀,將一張三角形紙片剪成一張三角形紙片和一張?zhí)菪渭埰?/p>

 。1)如果要求剪得的兩張紙片能拼成平行的四邊形,剪痕的位置有什么要求?

  (2)要把所剪得的兩個(gè)圖形拼成一個(gè)平行四邊形,可將其中的三角形做怎樣的圖形變換?

  3、引導(dǎo)學(xué)生概括出中位線的概念。

  問(wèn)題:(1)三角形有幾條中位線?(2)三角形的中位線與中線有什么區(qū)別?

  啟發(fā)學(xué)生得出:三角形的.中位線的兩端點(diǎn)都是三角形邊的中點(diǎn),而三角形中線只有一個(gè)端點(diǎn)是邊中點(diǎn),另一端點(diǎn)上三角形的一個(gè)頂點(diǎn)。

  4、猜想:DE與BC的關(guān)系?(位置關(guān)系與數(shù)量關(guān)系)

  (二)、師生互動(dòng),探究新知

  1、證明你的猜想

  引導(dǎo)學(xué)生寫出已知,求證,并啟發(fā)分析。

 。ㄒ阎酣SABC中,D、E分別是AB、AC的中點(diǎn),求證:DE∥BC,DE=1/2BC)

  啟發(fā)1:證明直線平行的方法有哪些?(由角的相等或互補(bǔ)得出平行,由平行四邊形得出平行等)

  啟發(fā)2:證明線段的倍分的方法有哪些?(截長(zhǎng)或補(bǔ)短)

  學(xué)生分小組討論,教師巡回指導(dǎo),經(jīng)過(guò)分析后,師生共同完成推理過(guò)程,板書證明過(guò)程,強(qiáng)調(diào)有其他證法。

  證明:如圖,以點(diǎn)E為旋轉(zhuǎn)中心,把⊿ADE繞點(diǎn)E,按順時(shí)針方向旋轉(zhuǎn)180゜,得到⊿CFE,則D,E,F(xiàn)同在一直線上,DE=EF,且⊿ADE≌⊿CFE。

  ∴∠ADE=∠F,AD=CF,

  ∴AB∥CF。

  又∵BD=AD=CF,

  ∴四邊形BCFD是平行四邊形(一組對(duì)邊平行且相等的四邊形是平行四邊形),

  ∴DF∥BC(根據(jù)什么?),

  ∴DE 1/2BC

  2、啟發(fā)學(xué)生歸納定理,并用文字語(yǔ)言表達(dá):三角形中位線平行于第三邊且等于第三邊的一半。

  (三)學(xué)以致用、落實(shí)新知

  1、練一練:已知三角形邊長(zhǎng)分別為6、8、10,順次連結(jié)各邊中點(diǎn)所得的三角形周長(zhǎng)是多少?

  2、想一想:如果⊿ABC的三邊長(zhǎng)分別為a、b、c,AB、BC、AC各邊中點(diǎn)分別為D、E、F,則⊿DEF的周長(zhǎng)是多少?

  3、例題:已知:如圖,在四邊形ABCD中,E,F(xiàn),G,H分別是AB,BC,CD,DA的中點(diǎn)。

  求證:四邊形EFGH是平行四邊形。

  啟發(fā)1:由E,F(xiàn)分別是AB,BC的中點(diǎn),你會(huì)聯(lián)想到什么圖形?

  啟發(fā)2:要使EF成為三角的中位線,應(yīng)如何添加輔助線?應(yīng)用三角形的中位線定理,能得到什么?你能得出EF∥GH嗎?為什么?

  證明:如圖,連接AC。

  ∵EF是⊿ABC的中位線,

  ∴EF 1/2AC(三角形的中位線平行于第三邊,并且等于第三邊的一半)。

  同理,HG 1/2AC。

  ∴EF HG。

  ∴四邊形EFGH是平行四邊形(一組對(duì)邊平行并且相等的四邊形是平行四邊形)

  挑戰(zhàn):順次連結(jié)上題中,所得到的四邊形EFGH四邊中點(diǎn)得到一個(gè)四邊形,繼續(xù)作下去。。。你能得出什么結(jié)論?

 。ㄋ模⿲W(xué)生練習(xí),鞏固新知

  1、請(qǐng)回答引例中的問(wèn)題(1)

  2、如圖,在四邊形ABCD中,AB=CD,M,N,P分別是AD,BC, BD的中點(diǎn)。求證:∠PNM=∠PMN

 。ㄎ澹┬〗Y(jié)回顧,反思提高

  今天你學(xué)到了什么?還有什么困惑?

八年級(jí)數(shù)學(xué)教案10

  教學(xué)目標(biāo):

  1.在探索平行四邊形的判別條件中,理解并掌握用邊、對(duì)角線來(lái)判定平行四邊形的方法.

  2.會(huì)綜合運(yùn)用平行四邊形的判定方法和性質(zhì)來(lái)解決問(wèn)題.

  3.培養(yǎng)用類比、逆向聯(lián)想及運(yùn)動(dòng)的思維方法來(lái)研究問(wèn)題.

  重點(diǎn)、難點(diǎn)

  1.重點(diǎn):平行四邊形的判定方法及應(yīng)用.

  2.難點(diǎn):平行四邊形的判定定理與性質(zhì)定理的靈活應(yīng)用.

  3.難點(diǎn)的突破方法:

  平行四邊形的判別方法是本節(jié)課的核心內(nèi)容.同時(shí)它又是后面進(jìn)一步研究矩形、菱形、正方形判別的基礎(chǔ),更是發(fā)展學(xué)生合情推理及說(shuō)理的良好素材.本節(jié)課的教學(xué)重點(diǎn)為平行四邊形的判別方法.在本課中,可以探索活動(dòng)為載體,并將論證作為探索活動(dòng)的自然延續(xù)與必要發(fā)展,從而將直觀操作與簡(jiǎn)單推理有機(jī)融合,達(dá)到突出重點(diǎn)、分散難點(diǎn)的目的.

 。1)平行四邊形的判定方法1、2都是平行四邊形性質(zhì)的逆命題,它們的證明都可利用定義或前一個(gè)方法來(lái)證明.

  (2)平行四邊形有四種判定方法,與性質(zhì)類似,可從邊、對(duì)角線兩方面進(jìn)行記憶.要注意:

 、俦窘滩臎]有把用角來(lái)作為判定的方法,教學(xué)中可以根據(jù)學(xué)生的情況作為補(bǔ)充;

 、诒竟(jié)課只介紹前兩個(gè)判定方法.

 。3)教學(xué)中,我們可創(chuàng)設(shè)貼近學(xué)生生活、生動(dòng)有趣的問(wèn)題情境,開展有效的數(shù)學(xué)活動(dòng),如通過(guò)欣賞圖片及識(shí)別圖片中的平行四邊形,使學(xué)生建立對(duì)平行四邊形的直覺認(rèn)識(shí).并復(fù)習(xí)平行四邊形的定義,建立新舊知識(shí)間的相互聯(lián)系.接著提出問(wèn)題:小明的父親手中有一些木條,他想通過(guò)適當(dāng)?shù)臏y(cè)量、割剪,釘制一個(gè)平行四邊形框架,你能幫他想出一些辦法來(lái)嗎?從而組織學(xué)生主動(dòng)參與、勤于動(dòng)手、積極思考,使他們?cè)谧灾魈骄颗c合作交流的過(guò)程中,從整體上把握“平行四邊形的判別”的方法.

  然后利用學(xué)生手中的學(xué)具——硬紙板條,通過(guò)觀察、測(cè)量、猜想、驗(yàn)證、探索構(gòu)成平行四邊形的條件.

  在學(xué)生拼圖的活動(dòng)中,教師可以以問(wèn)題串的形式展開對(duì)平行四邊形判別方法的探討,讓學(xué)生在問(wèn)題解決中,實(shí)現(xiàn)對(duì)平行四邊形各種判別方法的掌握,并發(fā)展了學(xué)生說(shuō)理及簡(jiǎn)單推理的能力.

 。4)從本節(jié)開始,就應(yīng)讓學(xué)生直接運(yùn)用平行四邊形的性質(zhì)和判定去解決問(wèn)題,凡是可以用平行四邊形知識(shí)證明的問(wèn)題,不要再回到用三角形全等證明.應(yīng)該對(duì)學(xué)生提出這個(gè)要求.

  (5)平行四邊形知識(shí)的運(yùn)用包括三個(gè)方面:一是直接運(yùn)用平行四邊形的性質(zhì)去解決某些問(wèn)題.例如,求角的度數(shù),線段的長(zhǎng)度,證明角相等或線段相等;二是判定一個(gè)四邊形是平行四邊形,從而判定直線平行等;三是先判定一個(gè)四邊形是平行四邊形,然后再眼再用平行四邊形的性質(zhì)去解決某些問(wèn)題.

 。6)平行四邊形的概念、性質(zhì)、判定都是非常重要的基礎(chǔ)知識(shí),這些知識(shí)是本章的重點(diǎn)內(nèi)容,要使學(xué)生熟練地掌握這些知識(shí).

  例題的意圖分析

  本節(jié)課安排了3個(gè)例題,例1是教材P96的例3,它是平行四邊形的性質(zhì)與判定的綜合運(yùn)用,此題最好先讓學(xué)生說(shuō)出證明的思路,然后老師總結(jié)并指出其最佳方法.例2與例3都是補(bǔ)充的題目,其目的就是讓學(xué)生能靈活和綜合地運(yùn)用平行四邊形的判定方法和性質(zhì)來(lái)解決問(wèn)題.例3是一道拼圖題,教學(xué)時(shí),可以讓學(xué)生動(dòng)起來(lái),邊拼圖邊說(shuō)明道理,即可以提高學(xué)生的動(dòng)手能力和學(xué)生的思維能力,又可以提高學(xué)生的學(xué)習(xí)興趣.如讓學(xué)生再用四個(gè)不等邊三角形拼一個(gè)如圖的大三角形,讓學(xué)生指出圖中所有的平行四邊形,并說(shuō)明理由.

  課堂引入

  1.欣賞圖片、提出問(wèn)題.

  展示圖片,提出問(wèn)題,在剛才演示的圖片中,有哪些是平行四邊形?你是怎樣判斷的'?

  2.【探究】:小明的父親手中有一些木條,他想通過(guò)適當(dāng)?shù)臏y(cè)量、割剪,釘制一個(gè)平行四邊形框架,你能幫他想出一些辦法來(lái)嗎?

  讓學(xué)生利用手中的學(xué)具——硬紙板條,通過(guò)觀察、測(cè)量、猜想、驗(yàn)證、探索構(gòu)成平行四邊形的條件,思考并探討:

 。1)你能適當(dāng)選擇手中的硬紙板條搭建一個(gè)平行四邊形嗎?

 。2)你怎樣驗(yàn)證你搭建的四邊形一定是平行四邊形?

 。3)你能說(shuō)出你的做法及其道理嗎?

 。4)能否將你的探索結(jié)論作為平行四邊形的一種判別方法?你能用文字語(yǔ)言表述出來(lái)嗎?

 。5)你還能找出其他方法嗎?

  從探究中得到:

  平行四邊形判定方法1 兩組對(duì)邊分別相等的四邊形是平行四邊形。

  平行四邊形判定方法2 對(duì)角線互相平分的四邊形是平行四邊形。

  例習(xí)題分析

  1(教材P96例3)已知:如圖ABCD的對(duì)角線AC、BD交于點(diǎn)O,E、F是AC上的兩點(diǎn),并且AE=CF.

  求證:四邊形BFDE是平行四邊形.

  分析:欲證四邊形BFDE是平行四邊形可以根據(jù)判定方法2來(lái)證明.

 。ㄗC明過(guò)程參看教材)

  問(wèn);你還有其它的證明方法嗎?比較一下,哪種證明方法簡(jiǎn)單.

  2(補(bǔ)充) 已知:如圖,A′B′∥BA,B′C′∥CB, C′A′∥AC.

  求證:(1) ∠ABC=∠B′,∠CAB=∠A′,∠BCA=∠C′;

  (2) △ABC的頂點(diǎn)分別是△B′C′A′各邊的中點(diǎn).

  證明:(1)∵A′B′∥BA,C′B′∥BC,

  ∴四邊形ABCB′是平行四邊形.

  ∴ ∠ABC=∠B′(平行四邊形的對(duì)角相等).

  同理∠CAB=∠A′,∠BCA=∠C′.

  (2) 由(1)證得四邊形ABCB′是平行四邊形.同理,四邊形ABA′C是平行四邊形.

  ∴ AB=B′C, AB=A′C(平行四邊形的對(duì)邊相等).

  ∴ B′C=A′C.

  同理 B′A=C′A, A′B=C′B.

  ∴ △ABC的頂點(diǎn)A、B、C分別是△B′C′A′的邊B′C′、C′A′、A′B′的中點(diǎn).

  3(補(bǔ)充)小明用手中六個(gè)全等的正三角形做拼圖游戲時(shí),拼成一個(gè)六邊形.你能在圖中找出所有的平行四邊形嗎?并說(shuō)說(shuō)你的理由.

  解:有6個(gè)平行四邊形,分別是ABOF,ABCO, BCDO,CDEO,DEFO,EFAO.

  理由是:因?yàn)檎鰽BO≌正△AOF,所以AB=BO,OF=FA.根據(jù) “兩組對(duì)邊分別相等的四邊形是平行四邊形”,可知四邊形ABCD是平行四邊形.其它五個(gè)同理.

  隨堂練習(xí)

  1.如圖,在四邊形ABCD中,AC、BD相交于點(diǎn)O,

 。1)若AD=8cm,AB=4cm,那么當(dāng)BC=____cm,CD=____cm時(shí),四邊形ABCD為平行四邊形;

  (2)若AC=10cm,BD=8cm,那么當(dāng)AO=___cm,DO=___cm時(shí),四邊形ABCD為平行四邊形.

  2.已知:如圖,ABCD中,點(diǎn)E、F分別在CD、AB上,DF∥BE,EF交BD于點(diǎn)O.求證:EO=OF.

  3.靈活運(yùn)用課本P89例題,如圖:由火柴棒拼出的一列圖形,第n個(gè)圖形由(n+1)個(gè)等邊三角形拼成,通過(guò)觀察,分析發(fā)現(xiàn):

 、俚4個(gè)圖形中平行四邊形的個(gè)數(shù)為_____.

  (6個(gè))

 、诘8個(gè)圖形中平行四邊形的個(gè)數(shù)為_____.

  (20個(gè))

  課后練習(xí)

  1.(選擇)下列條件中能判斷四邊形是平行四邊形的是( ).

 。ˋ)對(duì)角線互相垂直 (B)對(duì)角線相等

  (C)對(duì)角線互相垂直且相等 (D)對(duì)角線互相平分

  2.已知:如圖,△ABC,BD平分∠ABC,DE∥BC,EF∥BC,

  求證:BE=CF

八年級(jí)數(shù)學(xué)教案11

  一、學(xué)習(xí)目標(biāo):

  讓學(xué)生了解多項(xiàng)式公因式的意義,初步會(huì)用提公因式法分解因式

  二、重點(diǎn)難點(diǎn)

  重點(diǎn):能觀察出多項(xiàng)式的公因式,并根據(jù)分配律把公因式提出來(lái)

  難點(diǎn):讓學(xué)生識(shí)別多項(xiàng)式的公因式.

  三、合作學(xué)習(xí):

  公因式與提公因式法分解因式的概念.

  三個(gè)矩形的長(zhǎng)分別為a、b、c,寬都是m,則這塊場(chǎng)地的面積為ma+mb+mc,或m(a+b+c)

  既ma+mb+mc = m(a+b+c)

  由上式可知,把多項(xiàng)式ma+mb+mc寫成m與(a+b+c)的乘積的形式,相當(dāng)于把公因式m從各項(xiàng)中提出來(lái),作為多項(xiàng)式ma+mb+mc的一個(gè)因式,把m從多項(xiàng)式ma+mb+mc各項(xiàng)中提出后形成的多項(xiàng)式(a+b+c),作為多項(xiàng)式ma+mb+mc的另一個(gè)因式,這種分解因式的`方法叫做提公因式法。

  四、精講精練

  例1、將下列各式分解因式:

  (1)3x+6; (2)7x2-21x; (3)8a3b2-12ab3c+abc (4)-24x3-12x2+28x.

  例2把下列各式分解因式:

  (1)a(x-y)+b(y-x);(2)6(m-n)3-12(n-m)2.

  (3) a(x-3)+2b(x-3)

  通過(guò)剛才的練習(xí),下面大家互相交流,總結(jié)出找公因式的一般步驟.

  首先找各項(xiàng)系數(shù)的____________________,如8和12的公約數(shù)是4.

  其次找各項(xiàng)中含有的相同的字母,如(3)中相同的字母有ab,相同字母的指數(shù)取次數(shù)最___________的

  課堂練習(xí)

  1.寫出下列多項(xiàng)式各項(xiàng)的公因式.

  (1)ma+mb 2)4kx-8ky (3)5y3+20y2 (4)a2b-2ab2+ab

  2.把下列各式分解因式

  (1)8x-72 (2)a2b-5ab

  (3)4m3-6m2 (4)a2b-5ab+9b

  (5)(p-q)2+(q-p)3 (6)3m(x-y)-2(y-x)2

  五、小結(jié):

  總結(jié)出找公因式的一般步驟.:

  首先找各項(xiàng)系數(shù)的大公約數(shù),

  其次找各項(xiàng)中含有的相同的字母,相同字母的指數(shù)取次數(shù)最小的

  注意:(a-b)2=(b-a)2

  六、作業(yè)

  1、教科書習(xí)題

  2、已知2x-y=1/3,xy=2,求2x4y3-x3y4 3、(-2)20xx+(-2)20xx

  4、已知a-2b=2,,4-5b=6,求3a(a-2b)2-5(2b-a)3

八年級(jí)數(shù)學(xué)教案12

  菱形

  學(xué)習(xí)目標(biāo)(學(xué)習(xí)重點(diǎn)):

  1.經(jīng)歷探索菱形的識(shí)別方法的過(guò)程,在活動(dòng)中培養(yǎng)探究意識(shí)與合作交流的習(xí)慣;

  2.運(yùn)用菱形的識(shí)別方法進(jìn)行有關(guān)推理.

  補(bǔ)充例題:

  例1. 如圖,在△ABC中,AD是△ABC的角平分線。DE∥AC交AB于E,DF∥AB交AC于F.四邊形AEDF是菱形嗎?說(shuō)明你的理由.

  例2.如圖,平行四邊形ABCD的`對(duì) 角線AC的垂直平分線與邊AD、BC分別交于E、F.

  四邊形AFCE是菱形嗎?說(shuō)明理由.

  例3.如圖 , ABCD是矩形紙片,翻折B、D,使BC、AD恰好落在AC上,設(shè)F、H分別是B、D落在AC上的兩點(diǎn),E、G分別是折痕CE、AG與AB、CD的交點(diǎn)

  (1)試說(shuō)明四邊形AECG是平行四邊形;

  (2)若AB=4cm,BC=3cm,求線段EF的長(zhǎng);

  (3)當(dāng)矩形兩邊AB、BC具備怎樣的關(guān)系時(shí),四邊形AECG是菱形.

  課后續(xù)助:

  一、填空題

  1.如果四邊形ABCD是平行四邊形,加上條件___________________,就可以是矩形;加上條件_______________________,就可以是菱形

  2.如圖,D、E、F分別是△ABC的邊BC、CA、AB上的點(diǎn),

  且DE∥BA,DF∥ CA

  (1)要使四邊形AFDE是菱形,則要增加條件______________________

  (2)要使四邊形AFDE是矩形,則要增加條件______________________

  二、解答題

  1.如圖,在□ABCD中 ,若2,判斷□ABCD是矩形還是菱形?并說(shuō)明理由。

  2.如圖 ,平行四邊形A BCD的兩條對(duì)角線AC,BD相交于點(diǎn)O,OA=4,OB=3,AB=5.

  (1) AC,BD互相垂直嗎?為什么?

  (2) 四邊形ABCD是菱形 嗎?

  3.如圖,在□ABCD中,已知ADAB,ABC的平分線交AD于E,EF∥AB交BC于F,試問(wèn): 四 邊形ABFE是菱形嗎?請(qǐng)說(shuō)明理由。

  4.如圖,把一張矩形的紙ABCD沿對(duì)角線BD折疊,使點(diǎn)C落在點(diǎn)E處,BE與AD交于點(diǎn)F.

 、徘笞C:ABF≌

  ⑵若將折疊的圖形恢復(fù)原狀,點(diǎn)F與BC邊上的點(diǎn)M正好重合,連接DM,試判斷四邊形BMDF的形狀,并說(shuō)明理由.

八年級(jí)數(shù)學(xué)教案13

  教學(xué)目標(biāo):

  1、知道負(fù)整數(shù)指數(shù)冪=(a≠0,n是正整數(shù))、

  2、掌握整數(shù)指數(shù)冪的運(yùn)算性質(zhì)、

  3、會(huì)用科學(xué)計(jì)數(shù)法表示小于1的數(shù)、

  教學(xué)重點(diǎn):

  掌握整數(shù)指數(shù)冪的運(yùn)算性質(zhì)。

  難點(diǎn):

  會(huì)用科學(xué)計(jì)數(shù)法表示小于1的數(shù)。

  情感態(tài)度與價(jià)值觀:

  通過(guò)學(xué)習(xí)課堂知識(shí)使學(xué)生懂得任何事物之間是相互聯(lián)系的,理論來(lái)源于實(shí)踐,服務(wù)于實(shí)踐。能利用事物之間的類比性解決問(wèn)題、

  教學(xué)過(guò)程:

  一、課堂引入

  1、回憶正整數(shù)指數(shù)冪的運(yùn)算性質(zhì):

 。1)同底數(shù)的冪的乘法:am?an = am+n(m,n是正整數(shù));

 。2)冪的乘方:(am)n = amn (m,n是正整數(shù));

  (3)積的乘方:(ab)n = anbn (n是正整數(shù));

  (4)同底數(shù)的冪的除法:am÷an = am?n(a≠0,m,n是正整數(shù),m>n);

 。5)商的乘方:()n = (n是正整數(shù));

  2、回憶0指數(shù)冪的規(guī)定,即當(dāng)a≠0時(shí),a0 = 1、

  3、你還記得1納米=10?9米,即1納米=米嗎?

  4、計(jì)算當(dāng)a≠0時(shí),a3÷a5 ===,另一方面,如果把正整數(shù)指數(shù)冪的運(yùn)算性質(zhì)am÷an = am?n (a≠0,m,n是正整數(shù),m>n)中的m>n這個(gè)條件去掉,那么a3÷a5 = a3?5 = a?2,于是得到a?2 =(a≠0)。

  二、總結(jié):一般地,數(shù)學(xué)中規(guī)定:當(dāng)n是正整數(shù)時(shí),=(a≠0)(注意:適用于m、n可以是全體整數(shù))教師啟發(fā)學(xué)生由特殊情形入手,來(lái)看這條性質(zhì)是否成立、事實(shí)上,隨著指數(shù)的取值范圍由正整數(shù)推廣到全體整數(shù),前面提到的運(yùn)算性質(zhì)都可推廣到整數(shù)指數(shù)冪;am?an = am+n(m,n是整數(shù))這條性質(zhì)也是成立的、

  三、科學(xué)記數(shù)法:

  我們已經(jīng)知道,一些較大的數(shù)適合用科學(xué)記數(shù)法表示,有了負(fù)整數(shù)指數(shù)冪后,小于1的.正數(shù)也可以用科學(xué)記數(shù)法來(lái)表示,例如:0。000012 = 1。2×10?即小于1的正數(shù)可以用科學(xué)記數(shù)法表示為a×10?n的形式,其中a是整數(shù)位數(shù)只有1位的正數(shù),n是正整數(shù)。啟發(fā)學(xué)生由特殊情形入手,比如0。012 = 1。2×10?2,0。0012 = 1。2×10?3,0。00012 = 1。2×10?4,以此發(fā)現(xiàn)其中的規(guī)律,從而有0。0000000012 = 1。2×10?9,即對(duì)于一個(gè)小于1的正數(shù),如果小數(shù)點(diǎn)后到第一個(gè)非0數(shù)字前有8個(gè)0,用科學(xué)記數(shù)法表示這個(gè)數(shù)時(shí),10的指數(shù)是?9,如果有m個(gè)0,則10的指數(shù)應(yīng)該是?m?1。

八年級(jí)數(shù)學(xué)教案14

  教學(xué)目標(biāo):

  (1)理解通分的意義,理解最簡(jiǎn)公分母的意義;

  (2)掌握分式的通分法則,能熟練掌握通分運(yùn)算。

  教學(xué)重點(diǎn):分式通分的理解和掌握。

  教學(xué)難點(diǎn):分式通分中最簡(jiǎn)公分母的確定。

  教學(xué)工具:投影儀

  教學(xué)方法:啟發(fā)式、討論式

  教學(xué)過(guò)程:

  (一)引入

  (1)如何計(jì)算:

  由此讓學(xué)生復(fù)習(xí)分?jǐn)?shù)通分的意義、通分的根據(jù)、通分的法則以及最簡(jiǎn)公分母的概念。

  (2)如何計(jì)算:

  (3)何計(jì)算:

  引導(dǎo)學(xué)生思考,猜想如何求解?

  (二)新課

  1、類比分?jǐn)?shù)的通分得到分式的通分:

  把幾個(gè)異分母的分式分別化成與原來(lái)的分式相等的同分母的分式,叫做分式的通分.

  注意:通分保證

  (1)各分式與原分式相等;

  (2)各分式分母相等。

  2.通分的依據(jù):分式的基本性質(zhì).

  3.通分的關(guān)鍵:確定幾個(gè)分式的最簡(jiǎn)公分母.

  通常取各分母的所有因式的最高次冪的積作最簡(jiǎn)公分母,這樣的公分母叫做最簡(jiǎn)公分母.

  根據(jù)分式通分和最簡(jiǎn)公分母的定義,將分式通分:

  最簡(jiǎn)公分母為:

  然后根據(jù)分式的.基本性質(zhì),分別對(duì)原來(lái)的各分式的分子和分母乘一個(gè)適當(dāng)?shù)恼剑垢鞣质降姆帜付蓟癁橥ǚ秩缦拢簒xx

  通過(guò)本例使學(xué)生對(duì)于分式的通分大致過(guò)程和思路有所了解。讓學(xué)生歸納通分的思路過(guò)程。

  例1 通分:xxx

  分析:讓學(xué)生找分式的公分母,可設(shè)問(wèn)“分母的系數(shù)各不相同如何解決?”,依據(jù)分?jǐn)?shù)的通分找最小公倍數(shù)。

  解:∵ 最簡(jiǎn)公分母是12xy2,

  小結(jié):各分母的系數(shù)都是整數(shù)時(shí),通常取它們的系數(shù)的最小公倍數(shù)作為最簡(jiǎn)公分母的系數(shù).

  解:∵最簡(jiǎn)公分母是10a2b2c2,

  由學(xué)生歸納最簡(jiǎn)公分母的思路。

  分式通分中求最簡(jiǎn)公分母概括為:(1)取各分母系數(shù)的最小公倍數(shù);(2)凡出現(xiàn)的字母為底的冪的因式都要取;(3)相同字母的冪的因式取指數(shù)最大的。取這些因式的積就是最簡(jiǎn)公分母。

八年級(jí)數(shù)學(xué)教案15

  一、內(nèi)容和內(nèi)容解析

  1.內(nèi)容

  三角形高線、中線及角平分線的概念、幾何語(yǔ)言表達(dá)及它們的畫法.

  2.內(nèi)容解析

  本節(jié)內(nèi)容概念較多,有三角形的高、中線、角平分線和重心等有關(guān)概念;需要學(xué)生動(dòng)手的頻率也較高,要掌握任意三角形的高、中線、角平分線的畫法,培養(yǎng)學(xué)生動(dòng)手操作及解決問(wèn)題的能力;鼓勵(lì)學(xué)生主動(dòng)參與,體驗(yàn)幾何知識(shí)在現(xiàn)實(shí)生活中的真實(shí)性,激發(fā)學(xué)生熱愛生活、勇于探索的思想感情。

  理解三角形高、角平分線及中線概念到用幾何語(yǔ)言精確表述,這是學(xué)生在幾何學(xué)習(xí)上的一個(gè)深入.學(xué)習(xí)了這一課,對(duì)于學(xué)生增長(zhǎng)幾何知識(shí),運(yùn)用幾何知識(shí)解決生活中的有關(guān)問(wèn)題,起著十分重要的作用.它也是學(xué)習(xí)三角形的角、邊的延續(xù)以及三角形全等、相似等后繼知識(shí)一個(gè)準(zhǔn)備.

  本節(jié)的重點(diǎn)是了解三角形的高、中線及角平分線概念的同時(shí)還要掌握它們的畫法,難點(diǎn)是鈍角三角形的高的畫法及不同類型的三角形高線的位置關(guān)系.

  二、目標(biāo)和目標(biāo)解析

  1.教學(xué)目標(biāo)

  (1)理解三角形的高、中線與角平分線等概念;

  (2)會(huì)用工具畫三角形的高、中線與角平分線;

  2.教學(xué)目標(biāo)解析

  (1)經(jīng)歷畫圖實(shí)踐過(guò)程,理解三角形的高、中線與角平分線等概念.

  (2)能夠熟練用幾何語(yǔ)言表達(dá)三角形的高、中線與角平分線的性質(zhì).

  (3)掌握三角形的高、中線與角平分線的畫法.

  (4)了解三角形的三條高、三條中線與三條角平分線分別相交于一點(diǎn).

  三、教學(xué)問(wèn)題診斷分析

  三角形的高線的理解:三角形的高是線段,不是直線,它的一個(gè)端點(diǎn)是三角形的頂點(diǎn),另一個(gè)端點(diǎn)在這個(gè)頂點(diǎn)的對(duì)邊或?qū)吽诘?直線上.

  三角形的中線的理解:三角形的中線也是線段,它是一個(gè)頂點(diǎn)和對(duì)邊中點(diǎn)的連線,它的一個(gè)端點(diǎn)是三角形的頂點(diǎn),另一個(gè)端點(diǎn)是這個(gè)頂點(diǎn)的對(duì)邊中點(diǎn).

  三角形的角平分線的理解:三角形的角平分線也是一條線段,角的頂點(diǎn)是一個(gè)端點(diǎn),另一個(gè)端點(diǎn)在對(duì)邊上.而角的平分線是一條射線,即就是說(shuō)三角形的角平分線與通常的角平線有一定的聯(lián)系又有本質(zhì)的區(qū)別.

【八年級(jí)數(shù)學(xué)教案】相關(guān)文章:

有關(guān)八年級(jí)數(shù)學(xué)教案八年級(jí)數(shù)學(xué)教案全套10-03

八年級(jí)數(shù)學(xué)教案12-04

八年級(jí)數(shù)學(xué)教案03-05

八年級(jí)數(shù)學(xué)教案【精】02-01

【精】八年級(jí)數(shù)學(xué)教案01-21

【推薦】八年級(jí)數(shù)學(xué)教案01-31

【熱門】八年級(jí)數(shù)學(xué)教案01-31

【薦】八年級(jí)數(shù)學(xué)教案01-17

八年級(jí)數(shù)學(xué)教案優(yōu)秀07-27

八年級(jí)數(shù)學(xué)教案(推薦)06-21