一级毛片免费不卡在线视频,国产日批视频免费在线观看,菠萝菠萝蜜在线视频免费视频,欧美日韩亚洲无线码在线观看,久久精品这里精品,国产成人综合手机在线播放,色噜噜狠狠狠综合曰曰曰,琪琪视频

八年級數(shù)學上冊的教案

時間:2024-07-09 18:38:49 數(shù)學教案 我要投稿

八年級數(shù)學上冊的教案[必備15篇]

  作為一名為他人授業(yè)解惑的教育工作者,編寫教案是必不可少的,教案是備課向課堂教學轉(zhuǎn)化的關節(jié)點。怎樣寫教案才更能起到其作用呢?下面是小編為大家整理的八年級數(shù)學上冊的教案,供大家參考借鑒,希望可以幫助到有需要的朋友。

八年級數(shù)學上冊的教案[必備15篇]

八年級數(shù)學上冊的教案1

  【學習目標】

  1.掌握等腰三角形的有關概念和性質(zhì),運用等腰三角形的性質(zhì)解決問題。

  2. 通過學生之間的交流活動,培養(yǎng)學生主動與他人合作 交流的意識和良好的學習習慣。

  【學習重點】

  探索和掌握等腰三角形的`性質(zhì)及其應用。

  【學習難點】

  等腰三角形的性質(zhì)的應用。

  【學習 過程】

  一、你知道嗎?

  等腰三角形的有關概念

  《等腰三角形應用》講義

  課前預習

  1.SAS,SSS,ASA,AAS,HL

  2.這條線段的兩個端點的距離相等

  3.這個角的兩邊的距離相等

  4.這樣的點有4個

  ?知識點睛

  1.線段垂直平分線上的點到這條線段的兩個端點的距離相等

  2.角平分線上的點到這個角的兩邊距離相等

  3.頂角的平分線 底邊上的中線 底邊上的高 三線合一

  《13.3等腰三角形》專項練習

  1、填空題

  2、如圖,以等腰直角三角形AOB的斜邊為直角邊向外作第2個等腰直角三角形ABA1,再以等腰直角三角形ABA1的斜邊為直角邊向外作第3個等腰直角三角形A1BB1,如此作下去。若OA=OB=1,則第 個等腰直角三角形的面積 。

八年級數(shù)學上冊的教案2

  【教學目標】

  1.了解分式概念.

  2.理解分式有意義的條件,分式的值為零的條件;能熟練地求出分式有意義的條件,分式的值為零的條件.

  【教學重難點】

  重點:理解分式有意義的條件,分式的值為零的條件.

  難點:能熟練地求出分式有意義的條件,分式的值為零的條件.

  【教學過程】

  一、課堂導入

  1.讓學生填寫[思考],學生自己依次填出:,,,.

  2.問題:一艘輪船在靜水中的最大航速為20千米/時,它沿江以最大航速順流航行100千米所用實踐,與以最大航速逆流航行60千米所用時間相等,江水的流速為多少?

  設江水的流速為x千米/時.

  輪船順流航行100千米所用的時間為小時,逆流航行60千米所用時間小時,所以=.

  3.以上的式子,,,,有什么共同點?它們與分數(shù)有什么相同點和不同點?可以發(fā)現(xiàn),這些式子都像分數(shù)一樣都是A÷B的形式.分數(shù)的分子A與分母B都是整數(shù),而這些式子中的A、B都是整式,并且B中都含有字母.

  [思考]引發(fā)學生思考分式的分母應滿足什么條件,分式才有意義?由分數(shù)的.分母不能為零,用類比的方法歸納出:分式的分母也不能為零.注意只有滿足了分式的分母不能為零這個條件,分式才有意義.即當B≠0時,分式才有意義.

  二、例題講解

  例1:當x為何值時,分式有意義.

  【分析】已知分式有意義,就可以知道分式的分母不為零,進一步解出字母x的取值范圍.

  (補充)例2:當m為何值時,分式的值為0?

  (1);(2);(3).

  【分析】分式的值為0時,必須同時滿足兩個條件:①分母不能為零;②分子為零,這樣求出的m的解集中的公共部分,就是這類題目的解.

  三、隨堂練習

  1.判斷下列各式哪些是整式,哪些是分式?

  9x+4,,,,,

  2.當x取何值時,下列分式有意義?

  3.當x為何值時,分式的值為0?

  四、小結

  談談你的收獲.

  五、布置作業(yè)

  課本128~129頁練習.

八年級數(shù)學上冊的教案3

  教學目標:

  1、知識目標:了解圖案最常見的構圖方式:軸對稱、平移、旋轉(zhuǎn)……,理解簡單圖案設計的意圖。認識和欣賞平移,旋轉(zhuǎn)在現(xiàn)實生活中的應用,能夠靈活運用軸對稱、平移、旋轉(zhuǎn)的組合,設計出簡單的圖案。

  2、能力目標:經(jīng)歷收集、欣賞、分析、操作和設計的過程,培養(yǎng)學生收集和整理信息的能力,分析和解決問題的能力,合作和交流的能力以及創(chuàng)新能力。

  3、情感體驗點:經(jīng)歷對典型圖案設計意圖的分析,進一步發(fā)展學生的空間觀念,增強審美意識,培養(yǎng)學生積極進取的生活態(tài)度。

  重點與難點:

  重點:靈活運用軸對稱、平移、旋轉(zhuǎn)……等方法及它們的組合進行的圖案設計。

  難點:分析典型圖案的設計意圖。

  疑點:在設計的圖案中清晰地表現(xiàn)自己的設計意圖

  教具學具準備:

  提前一周布置學生以小組為單位,通過各種渠道收集到的圖案、圖標的`剪貼、臨摹以及。多種常見的圖案及其形成過程的動畫演示。

  教學過程設計:

  1、情境導入:在優(yōu)美的音樂中,逐個展示生活中常見的典型圖案,并讓學生試著說一說每種圖案標志的對象。(展示課本圖3—23)

  明確在欣賞了圖案后,簡單地復習平移、旋轉(zhuǎn)的概念,為下面圖案的設計作好理論準備。對教材給出的六個圖案通過觀察、分析進行議論交流,讓學生初步了解圖案的設計中常常運用圖形變換的思想方法,為學生自己設計圖案指明方向。其中圖(1)、(2)、(3)、(4)、(5)、(6)都可以通過旋轉(zhuǎn)適合角度形成(可以讓學生自己說說每個旋轉(zhuǎn)的角度和旋轉(zhuǎn)的次數(shù)及旋轉(zhuǎn)中心的位置),另外圖(2)、(3)、(5)也可以通過軸對稱變換形成(可以讓學生指出對軸對稱及對稱軸的條數(shù)),而圖(2)可以通過平移形成。

  2、課本

  1 欣賞課本75頁圖3—24的圖案,并分析這個圖案形成過程。

  評注:圖案是密鋪圖案的代表,旨在通過對典型圖案的分析欣賞,使學生逐步能夠進行圖案設計,同時了解軸對稱、平移、旋轉(zhuǎn)變換是圖案制作的基本手段。例題解答的關鍵是確定“基本圖案”,然后再運用平移、旋轉(zhuǎn)關系加以說明,注意旋轉(zhuǎn)中心可以為圖形上某一特征的點。

  評注:可以取其中的任何一個為基本圖案,然后通過變換得到。而且變化方式也可以是:左下角的圖案通過軸對稱變換得到左上圖和右下圖。

  (二)課內(nèi)練習

  (1) 以小組為單位,由每組指定一個同學展示該組搜集得到的圖案,并在全班交流。

  (2) 利用下面提供的基本圖形,用平移、旋轉(zhuǎn)、軸對稱、中心對稱等方法進行圖案設計,并簡要說明自己的設計意圖。

  (三)議一議

  生活中還有那些圖案用到了平移或旋轉(zhuǎn)?分析其中的一個,并與同伴進行交流。

  (四)課時小結

  本課時的重點是了解平移、旋轉(zhuǎn)和軸對稱變換是圖案設計的基本方法,并能運用這些變換設計出一些簡單的圖案。

  通過今天的學習,你對圖案的設計又增加了哪些新的認識?(可以利用平移、旋轉(zhuǎn)、軸對稱等多種方法來設計,而且設計的圖案要能表達自己的創(chuàng)作意圖,再就是圖案的設計一定要新穎,獨特,這樣才能使人過目不忘,達到標志的效果。)

  八年級數(shù)學上冊教案(五)延伸拓展

  進一步搜集身邊的各種標志性圖案,嘗試著重新設計它,并結合實際背景分析它的設計意圖。

八年級數(shù)學上冊的教案4

 、.教學任務分析

  教學目標

  知識與技能 使學生理解正比例函數(shù)的概念,會用描點法畫正比例函數(shù)圖象,掌握正比例函數(shù)的性質(zhì).

  過程與能力 培養(yǎng)學生數(shù)學建模的能力.

  情感與態(tài)度 實例引入,激發(fā)學生學習數(shù)學的興趣.

  教學重點 探索正比例函數(shù)的性質(zhì).

  教學難點 從實際問題情境中建立正比例函數(shù)的數(shù)學模型.

 、.教學過程設計

  問題及師生行為 設計意圖

  一、創(chuàng)設問題,激發(fā)興趣

  【問題1】將下列問題中的變量用函數(shù)表示出來:

  (1)小明騎自行車去郊游,速度為4km/h,其行駛路程y隨時間x變化而變化;

  (2)三角形的底為10cm,其面積y隨高x的變化而變化;

  (3)筆記本的單價為3元,買筆記本所要的錢數(shù)y隨作業(yè)本數(shù)量x的變化而變化.

  解:(1)y=4x;(2)y=5x;(3)y=3x.

  教師提出問題,學生獨立思考并回答問題.

  教師點評,并且提醒學生注意用x表示y. 問題引入,為新知作好鋪墊.

  二、誘導參與,探究新知

  思考:觀察函數(shù)關系式:

 、 y=4x; ② y=5x; ③ y=3x.

  這些函數(shù)有什么特點?

  都是y等于一個常量與x的乘積.

  教師提出問題,并引導學生觀察:

  學生觀察思考并回答問題.

  三、引導歸納,提煉新知

  (板書)正比例函數(shù)的概念:

  一般地,形如y=kx(k是常數(shù),k≠0)的函數(shù),叫做正比例函數(shù),其中k叫做比例系數(shù).

  注意:x 的取值范圍是全體實數(shù).

  由教師引導,學生觀察得出結論.體現(xiàn)學生為主體,教師為主導的關系.

  通過板書,突出本節(jié)課的重點.

  四、指導應用,發(fā)展能力

  1.下列函數(shù)是否是正比例函數(shù)?比例系數(shù)是多少?

  (1) 是,比例系數(shù)k=8. (2) 不是.

  (3) 是,比例系數(shù)k= . (4) 不是.

  填空

  1.若函數(shù)y=(2m2+8)xm2-8+(m+3)是正比例函數(shù),則m的值是___-3____.

  題 1請學生口答, 題2學生獨立完成,并到黑板板書,教師評價書寫規(guī)范.

  在本次活動中,教師要關注:

  學生能否準確地理解正比例函數(shù)的定義,注意二次項系數(shù)不能為0.

  五、探究新知

  例1 畫出正比例函數(shù)y=x的'圖象.

  解:(1)列表:

  x --- -2 -1 0 1 2 ---

  y --- -2 -1 0 1 2 ---

  畫出函數(shù)y=x的圖象.

  (1)列表: (2)描點: (3)連線:

  想一想

  除了用描點法外,還有其他簡單的方法畫正比例函數(shù)圖象嗎?

  根據(jù)兩點確定一條直線,我們可以經(jīng)過原點與點(1,k)畫直線,即兩點法.

  同理,畫出y=-x的圖象.

  師生共同分析:兩個圖象的共同點:都是經(jīng)過原點的直線.不同點:函數(shù)y=x的圖象從左向右呈上升狀態(tài),即隨著x的增大y也增大,經(jīng)過第一、三象限.

  函數(shù)y=-x的圖象從左向右呈下降狀態(tài),即隨x增大y反而減小,經(jīng)過第二、四象限.

  歸納:一般地,正比例函數(shù)y=kx(k是常數(shù),k≠ 0)的圖象是一條經(jīng)過原點的直線.

  當k>0時,圖象經(jīng)過一、三象限,從左向右上升,即隨x的增大y也增大;

  當k<0時,圖象經(jīng)過二、四象限,從左向右下降,即隨x增大y反而減小.

  由于正比例函數(shù)y=kx(k是常數(shù),k≠0)的圖象是一條直線,我們可以稱它為直線y=kx.

  六、指導應用,發(fā)展能力

  例2 在同一直角坐標系中畫出y=x,y=2x,y=3x的函數(shù)圖象,并比較它們的異同點.

  相同點:圖象經(jīng)過一、三象限,從左向右上升;

  不同點:傾斜度不同, y=x,y=2x,y=3x的函數(shù)圖象離y軸越來越近.

  例3 在同一直角坐標系中畫出y=-x,y=-2x,y=-3x的函數(shù)圖象,并比較它們的異同點.

  相同點:圖象經(jīng)過二、四象限,從左向右下降;

  不同點:傾斜度不同, y=-x,y=-2x,y=-3x的函數(shù)圖象離y軸越來越近.

  在y=kx中,k的絕對值越大,函數(shù)圖象越靠近y軸.

八年級數(shù)學上冊的教案5

  教學目標:完全平方公式的推導及其應用;完全平方公式的幾何解釋;視學生對算理的理解,有意識地培養(yǎng)學生的思維條理性和表達能力.

  教學重點與難點:完全平方公式的`推導過程、結構特點、幾何解釋,靈活應用.

  教學過程:

  一、提出問題,學生自學

  問題:根據(jù)乘方的定義,我們知道:a2=aa,那么(a+b)2應該寫成什么樣的形式呢?(a+b)2的運算結果有什么規(guī)律?計算下列各式,你能發(fā)現(xiàn)什么規(guī)律?

 。1)(p+1)2=(p+1)(p+1)=_______;(m+2)2=_______;

 。2)(p1)2=(p1)(p1)=_______;(m2)2=_______;

  學生討論,教師歸納,得出結果:

  (1)(p+1)2=(p+1)(p+1)=p2+2p+1

  (m+2)2=(m+2)(m+2)=m2+4m+4

  (2)(p1)2=(p1)(p1)=p22p+1

  (m2)2=(m2)(m2)=m24m+4

  分析推廣:結果中有兩個數(shù)的平方和,而2p=2p1,4m=2m2,恰好是兩個數(shù)乘積的二倍(1)(2)之間只差一個符號.

  推廣:計算(a+b)2=__________;(ab)2=__________.

  得到公式,分析公式

  結論:(a+b)2=a2+2ab+b2(ab)2=a22ab+b2

  即:兩數(shù)和(或差)的平方,等于它們的平方和,加(或減)它們的積的2倍.

  二、幾何分析

  你能根據(jù)圖(1)和圖(2)的面積說明完全平方公式嗎?

  圖(1)大正方形的邊長為(a+b),面積就是(a+b)2,同時,大正方形可以分成圖中①②③④四個部分,它們分別的面積為a2、ab、ab、b2,因此,整個面積為a2+ab+ab+b2=a2+2ab+b2,即說明(a+b)2=a2+2ab+b2. 請點擊下載Word版完整教案:新人教版八年級數(shù)學上冊《完全平方公式》教案教案《新人教版八年級數(shù)學上冊《完全平方公式》教案》,來自網(wǎng)!

八年級數(shù)學上冊的教案6

  教學目標:

  1、經(jīng)歷用數(shù)格子的辦法探索勾股定理的過程,進一步發(fā)展學生的合情推力意識,主動探究的習慣,進一步體會數(shù)學與現(xiàn)實生活的緊密聯(lián)系。

  2、探索并理解直角三角形的三邊之間的數(shù)量關系,進一步發(fā)展學生的說理和簡單的推理的意識及能力。

  重點難點:

  重點:了解勾股定理的由來,并能用它來解決一些簡單的問題。

  難點:勾股定理的發(fā)現(xiàn)

  教學過程

  一、創(chuàng)設問題的情境,激發(fā)學生的學習熱情,導入課題

  出示投影1(章前的圖文p1)教師道白:介紹我國古代在勾股定理研究方面的貢獻,并結合課本p5談一談,講述我國是最早了解勾股定理的國家之一,介紹商高(三千多年前周期的數(shù)學家)在勾股定理方面的貢獻。

  出示投影2(書中的'P2圖1—2)并回答:

  1、觀察圖

  1—2,正方形A中有_______個小方格,即A的面積為______個單位。

  正方形B中有_______個小方格,即A的面積為______個單位。

  正方形C中有_______個小方格,即A的面積為______個單位。

  2、你是怎樣得出上面的結果的?在學生交流回答的基礎上教師直接發(fā)問:

  3、圖

  1—2中,A,B,C之間的面積之間有什么關系?

  學生交流后形成共識,教師板書,A+B=C,接著提出圖1—1中的A。B,C的關系呢?

  二、做一做

  出示投影3(書中P3圖1—4)提問:

  1、圖

  1—3中,A,B,C之間有什么關系?

  2、圖

  1—4中,A,B,C之間有什么關系?

  3、從圖

  1—1,1—2,1—3,1|—4中你發(fā)現(xiàn)什么?

  學生討論、交流形成共識后,教師總結:

  以三角形兩直角邊為邊的正方形的面積和,等于以斜邊的正方形面積。

  三、議一議

  1、圖

  1—1、1—2、1—3、1—4中,你能用三角形的邊長表示正方形的面積嗎?

  2、你能發(fā)現(xiàn)直角三角形三邊長度之間的關系嗎?

  在同學的交流基礎上,老師板書:

  直角三角形邊的兩直角邊的平方和等于斜邊的平方。這就是的“勾股定理”

  也就是說:如果直角三角形的兩直角邊為a,b,斜邊為c

  那么

  我國古代稱直角三角形的較短的直角邊為勾,較長的為股,斜邊為弦,這就是勾股定理的由來。

  3、分別以

  5厘米和12厘米為直角邊做出一個直角三角形,并測量斜邊的長度(學生測量后回答斜邊長為13)請大家想一想(2)中的規(guī)律,對這個三角形仍然成立嗎?(回答是肯定的:成立)

  四、想一想

  這里的29英寸(74厘米)的電視機,指的是屏幕的長嗎?只的是屏幕的款嗎?那他指什么呢?

  五、鞏固練習

  1、錯例辨析:

  △ABC的兩邊為3和4,求第三邊

  解:由于三角形的兩邊為3、4

  所以它的第三邊的c應滿足=25

  即:c=5

  辨析:(1)要用勾股定理解題,首先應具備直角三角形這個必不可少的條件,可本題

  △ ABC并未說明它是否是直角三角形,所以用勾股定理就沒有依據(jù)。

 。2)若告訴△ABC是直角三角形,第三邊C也不一定是滿足,題目中并為交待C是斜邊

  綜上所述這個題目條件不足,第三邊無法求得。

  2、練習P

  7 §1.1 1

  六、作業(yè)

  課本P7 §1.1 2、3、4

八年級數(shù)學上冊的教案7

  第二環(huán)節(jié):探索發(fā)現(xiàn)勾股定理

  1、探究活動一

  內(nèi)容:投影顯示如下地板磚示意圖,引導學生從面積角度觀察圖形:

  問:你能發(fā)現(xiàn)各圖中三個正方形的面積之間有何關系嗎?

  學生通過觀察,歸納發(fā)現(xiàn):

  結論1以等腰直角三角形兩直角邊為邊長的小正方形的面積的和,等于以斜邊為邊長的正方形的面積。

  意圖:從觀察實際生活中常見的地板磚入手,讓學生感受到數(shù)學就在我們身邊。通過對特殊情形的探究得到結論1,為探究活動二作鋪墊。

  效果:1.探究活動一讓學生獨立觀察,自主探究,培養(yǎng)獨立思考的`習慣和能力;

  2.通過探索發(fā)現(xiàn),讓學生得到成功體驗,激發(fā)進一步探究的熱情和愿望。

  2、探究活動二

  內(nèi)容:由結論1我們自然產(chǎn)生聯(lián)想:一般的直角三角形是否也具有該性質(zhì)呢?

  (1)觀察下面兩幅圖:

 。2)填表:

  A的面積

 。▎挝幻娣e)B的面積

 。▎挝幻娣e)C的面積

 。▎挝幻娣e)

  左圖

  右圖

 。3)你是怎樣得到正方形C的面積的?與同伴交流(學生可能會做出多種方法,教師應給予充分肯定)。

  學生的方法可能有:

  方法一:

  如圖1,將正方形C分割為四個全等的直角三角形和一個小正方形。

  方法二:

  如圖2,在正方形C外補四個全等的直角三角形,形成大正方形,用大正方形的面積減去四個直角三角形的面積。

  方法三:

  如圖3,正方形C中除去中間5個小正方形外,將周圍部分適當拼接可成為正方形,如圖3中兩塊紅色(或兩塊綠色)部分可拼成一個小正方形,按此拼法。

 。4)分析填表的數(shù)據(jù),你發(fā)現(xiàn)了什么?

  學生通過分析數(shù)據(jù),歸納出:

  結論2以直角三角形兩直角邊為邊長的小正方形的面積的和,等于以斜邊為邊長的正方形的面積。

  意圖:探究活動二意在讓學生通過觀察、計算、探討、歸納進一步發(fā)現(xiàn)一般直角三角形的性質(zhì)。由于正方形C的面積計算是一個難點,為此設計了一個交流環(huán)節(jié)。

  效果:學生通過充分討論探究,在突破正方形C的面積計算這一難點后得出結論2.

  3、議一議

  內(nèi)容:(1)你能用直角三角形的邊長,來表示上圖中正方形的面積嗎?

  (2)你能發(fā)現(xiàn)直角三角形三邊長度之間存在什么關系嗎?

 。3)分別以5厘米、12厘米為直角邊作出一個直角三角形,并測量斜邊的長度。2中發(fā)現(xiàn)的規(guī)律對這個三角形仍然成立嗎?

  勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方。如果用,分別表示直角三角形的兩直角邊和斜邊,那么。

  數(shù)學小史:勾股定理是我國最早發(fā)現(xiàn)的,中國古代把直角三角形中較短的直角邊稱為勾,較長的直角邊稱為股,斜邊稱為弦,“勾股定理”因此而得名(在西方文獻中又稱為畢達哥拉斯定理)。

  意圖:議一議意在讓學生在結論2的基礎上,進一步發(fā)現(xiàn)直角三角形三邊關系,得到勾股定理。

  效果:1.讓學生歸納表述結論,可培養(yǎng)學生的抽象概括能力及語言表達能力;

  2.通過作圖培養(yǎng)學生的動手實踐能力。

八年級數(shù)學上冊的教案8

  教材分析

  平方差公式是在學習多項式乘法等知識的基礎上,自然過渡到具有特殊形式的多項式的乘法,體現(xiàn)教材從一般到特殊的意圖。教材為學生在教學活動中獲得數(shù)學的思想方法、能力、素質(zhì)提供了良好的契機。對它的學習和研究,不僅得到了特殊的多項式乘法的簡便算法,而且為以后的因式分解,分式的化簡、二次根式中的分母有理化、解一元二次方程、函數(shù)等內(nèi)容奠定了基礎,同時也為完全平方公式的學習提供了方法,因此,平方差公式在教材中有承上啟下的.作用,是初中階段一個重要的公式。

  學情分析

  學生是在學習積的乘方和多項式乘多項式后學習平方差公式的,但在進行積的乘方的運算時,底數(shù)是數(shù)與幾個字母的積時往往把括號漏掉,在進行多項式乘法運算時常常會確定錯某些次符號及漏項等問題。學生學習平方差公式的困難在于對公式的結構特征以及公式中字母的廣泛的理解,當公式中a、b是式時,要把它括號在平方。

  教學目標

  1、知識與技能:經(jīng)歷探索平方差公式的過程,會推導平方差公式,并能運用公式進行運算.

  2、過程與方法:在探索平方差公式的過程中,發(fā)展學生的符號感和歸納能力、推理能力.在計算的過程中發(fā)現(xiàn)規(guī)律,掌握平方差公式的結構特征,并能用符號表達,從而體會數(shù)學語言的簡潔美.

  3、情感、態(tài)度與價值觀:激發(fā)學習數(shù)學的興趣.鼓勵學生自己探索,有意識地培養(yǎng)學生的合作意識與創(chuàng)新能力.

  教學重點和難點

  重點:平方差公式的推導和應用.

  難點:理解掌握平方差公式的結構特點以及靈活運用平方差公式解決實際問題.

八年級數(shù)學上冊的教案9

  一、內(nèi)容和內(nèi)容解析

  1.內(nèi)容

  三角形中相關元素的概念、按邊分類及三角形的三邊關系.

  2.內(nèi)容解析

  三角形是一種最基本的幾何圖形,是認識其他圖形的基礎,在本章中,學好了三角形的有關概念和性質(zhì),為進一步學習多邊形的相關內(nèi)容打好基礎,本節(jié)主要介紹與三角形的的概念、按邊分類和三角形三邊關系,使學生對三角形的有關知識有更為深刻的理解.

  本節(jié)課的.教學重點:三角形中的相關概念和三角形三邊關系.

  本節(jié)課的教學難點:三角形的三邊關系.

  二、目標和目標解析

  1.教學目標

  (1)了解三角形中的相關概念,學會用符號語言表示三角形中的對應元素.

  (2)理解并且靈活應用三角形三邊關系.

  2.教學目標解析

  (1)結合具體圖形,識三角形的概念及其基本元素.

  (2)會用符號、字母表示三角形中的相關元素,并會按邊對三角形進行分類.

  (3)理解三角形兩邊之和大于第三邊這一性質(zhì),并會運用這一性質(zhì)來解決問題.

  三、教學問題診斷分析

  在探索三角形三邊關系的過程中,讓學生經(jīng)歷觀察、探究、推理、交流等活動過程,培養(yǎng)學生的和推理能力和合作學習的精神.

  四、教學過程設計

  1.創(chuàng)設情境,提出問題

  問題回憶生活中的三角形實例,結合你以前對三角形的了解,請你給三角形下一個定義.

  師生活動:先讓學生分組討論,然后各小組派代表發(fā)言,針對學生下的定義,給出各種圖形反例,如下圖,指出其不完整性,加深學生對三角形概念的理解.

  【設計意圖】三角形概念的獲得,要讓學生經(jīng)歷其描述的過程,借此培養(yǎng)學生的語言表述能力,加深學生對三角形概念的理解.

  2.抽象概括,形成概念

  動態(tài)演示“首尾順次相接”這個的動畫,歸納出三角形的定義.

  師生活動:

  三角形的定義:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形.

  【設計意圖】讓學生體會由抽象到具體的過程,培養(yǎng)學生的語言表述能力.

  補充說明:要求學生學會三角形、三角形的頂點、邊、角的概念以及幾何表達方法.

  師生活動:結合具體圖形,教師引導學生分析,讓學生學會由文字語言向幾何語言的過渡.

  【設計意圖】進一步加深學生對三角形中相關元素的認知,并進一步熟悉幾何語言在學習中的應用.

  3.概念辨析,應用鞏固

  如圖,不重復,且不遺漏地識別所有三角形,并用符號語言表示出來.

  1.以AB為一邊的三角形有哪些?

  2.以∠D為一個內(nèi)角的三角形有哪些?

  3.以E為一個頂點的三角形有哪些?

  4.說出ΔBCD的三個角.

  師生活動:引導學生從概念出發(fā)進行思考,加深學生對三角形中相關元素概念的理解.

  4.拓廣延伸,探究分類

  我們知道,按照三個內(nèi)角的大小,可以將三角形分為銳角三角形、直角三角形和鈍角三角形,如果要按照邊的大小關系對三角形進行分類,又應該如何分呢?小組之間同學進行交流并說說你們的想法.

  師生活動:通過討論,學生類比按角的分類方法按邊對三角形進行分類,接著引出等腰三角形及等邊三角形的概念,引導學生了解等腰三角形與等邊三角形的聯(lián)系,強化學生對三角形按邊分類的理解.

八年級數(shù)學上冊的教案10

  一、創(chuàng)設情境

  在學習與生活中,經(jīng)常要研究一些數(shù)量關系,先看下面的問題。

  問題1如圖是某地一天內(nèi)的氣溫變化圖。

  看圖回答:

  (1)這天的6時、10時和14時的氣溫分別為多少?任意給出這天中的某一時刻,說出這一時刻的氣溫。

  (2)這一天中,最高氣溫是多少?最低氣溫是多少?

  (3)這一天中,什么時段的氣溫在逐漸升高?什么時段的氣溫在逐漸降低?

  解(1)這天的6時、10時和14時的氣溫分別為-1℃、2℃、5℃;

  (2)這一天中,最高氣溫是5℃。最低氣溫是-4℃;

  (3)這一天中,3時~14時的氣溫在逐漸升高。0時~3時和14時~24時的氣溫在逐漸降低。

  從圖中我們可以看到,隨著時間t(時)的變化,相應地氣溫T(℃)也隨之變化。那么在生活中是否還有其它類似的數(shù)量關系呢?

  二、探究歸納

  問題2銀行對各種不同的存款方式都規(guī)定了相應的利率,下表是20xx年7月中國工商銀行為“整存整取”的存款方式規(guī)定的年利率:

  觀察上表,說說隨著存期x的增長,相應的年利率y是如何變化的。

  解隨著存期x的增長,相應的年利率y也隨著增長。

  問題3收音機刻度盤的.波長和頻率分別是用米(m)和千赫茲(kHz)為單位標刻的。下面是一些對應的數(shù)值:

  觀察上表回答:

  (1)波長l和頻率f數(shù)值之間有什么關系?

  (2)波長l越大,頻率f就________。

  解(1)l與f的乘積是一個定值,即

  lf=300000,或者說。

  (2)波長l越大,頻率f就 越小 。

  問題4圓的面積隨著半徑的增大而增大。如果用r表示圓的半徑,S表示圓的面積則S與r之間滿足下列關系:S=_________。

  利用這個關系式,試求出半徑為1cm、1.5cm、2cm、2.6cm、3.2cm時圓的面積,并將結果填入下表:

  由此可以看出,圓的半徑越大,它的面積就_________。

  解S=πr2。

  圓的半徑越大,它的面積就越大。

  在上面的問題中,我們研究了一些數(shù)量關系,它們都刻畫了某些變化規(guī)律。這里出現(xiàn)了各種各樣的量,特別值得注意的是出現(xiàn)了一些數(shù)值會發(fā)生變化的量。例如問題1中,刻畫氣溫變化規(guī)律的量是時間t和氣溫T,氣溫T隨著時間t的變化而變化,它們都會取不同的數(shù)值。像這樣在某一變化過程中,可以取不同數(shù)值的量,叫做變量(variable)。

  上面各個問題中,都出現(xiàn)了兩個變量,它們互相依賴,密切相關。一般地,如果在一個變化過程中,有兩個變量,例如x和y,對于x的每一個值

八年級數(shù)學上冊的教案11

  教學目標:

  理解同底數(shù)冪的乘法法則,運用同底數(shù)冪的乘法法則解決一些實際問題.通過“同底數(shù)冪的乘法法則”的推導和應用,使學生初步理解特殊到般再到特殊的認知規(guī)律.

  教學重點與難點:

  正確理解同底數(shù)冪的乘法法則以及適用范圍.

  教學過程:

  一、回顧冪的相關知識

  an的意義:an表示n個a相乘,我們把這種運算叫做乘方.乘方的結果叫冪;a叫做底數(shù),n是指數(shù).

  二、創(chuàng)設情境,感覺新知

  問題:一種電子計算機每秒可進行1012次運算,它工作103秒可進行多少次運算?

  學生分析,總結結果

  1012×103=()×(10×10×10)==1015.

  通過觀察可以發(fā)現(xiàn)1012、103這兩個因數(shù)是同底數(shù)冪的'形式,所以我們把像1012×103的運算叫做同底數(shù)冪的乘法.根據(jù)實際需要,我們有必要研究和學習這樣的運算──同底數(shù)冪的乘法.

  學生動手:

  計算下列各式:(1)25×22(2)a3·a2(3)5m·5n(m、n都是正整數(shù))

  教師引導學生注意觀察計算前后底數(shù)和指數(shù)的關系,并能用自己的語言描述.

  得到結論:

  (1)特點:這三個式子都是底數(shù)相同的冪相乘.相乘結果的底數(shù)與原來底數(shù)相同,指數(shù)是原來兩個冪的指數(shù)的和.

  (2)一般性結論:am·an表示同底數(shù)冪的乘法.根據(jù)冪的意義可得:

  am·an=()·()=()=am+n

  am·an=am+n(m、n都是正整數(shù)),即為:同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加

  三、小結:

  同底數(shù)冪的乘法的運算法則:同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加.

  注意兩點:

  一是必須是同底數(shù)冪的乘法才能運用這個性質(zhì);

  二是運用這個性質(zhì)計算時一定是底數(shù)不變,指數(shù)相加,即am·an=am+n

八年級數(shù)學上冊的教案12

  學習目標

  1、通過運算多項式乘法,來推導平方差公式,學生的認識由一般法則到特殊法則的能力。

  2、通過親自動手、觀察并發(fā)現(xiàn)平方差公式的結構特征,并能從廣義上理解公式中字母的含義。

  3、初步學會運用平方差公式進行計算。

  學習重難點重點:

  平方差公式的推導及應用。

  難點是對公式中a,b的廣泛含義的理解及正確運用。

  自學過程設計教學過程設計

  看一看

  認真閱讀教材,記住以下知識:

  文字敘述平方差公式:_________________

  用字母表示:________________

  做一做:

  1、完成下列練習:

 、(m+n)(p+q)

  ②(a+b)(x-y)

 、(2x+3y)(a-b)

 、(a+2)(a-2)

  ⑤(3-x)(3+x)

 、(2m+n)(2m-n)

  想一想

  你還有哪些地方不是很懂?請寫出來。

  _______________________________

  _______________________________

  ________________________________、

  1、下列計算對不對?若不對,請在橫線上寫出正確結果、

  (1)(x-3)(x+3)=x2-3( ),__________;

  (2)(2x-3)(2x+3)=2x2-9( ),_________;

  (3)(-x-3)(x-3)=x2-9( ),_________;

  (4)(2xy-1)(2xy+1)=2xy2-1( ),________、

  2、(1)(3a-4b)( )=9a2-16b2; (2)(4+2x)( )=16-4x2;

  (3)(-7-x)( )=49-x2; (4)(-a-3b)(-3b+a)=_________、

  3、計算:50×49=_________、

  應用探究

  1、幾何解釋平方差公式

  展示:邊長a的'大正方形中有一個邊長為b的小正方形。

  (1)請計算圖的陰影部分的面積(讓學生用正方形的面積公式計算)。

  (2)小明將陰影部分拼成一個長方形,這個長方形長與寬是多少?你能表示出它的面積嗎?

  2、用平方差公式計算

  (1)103×93 (2)59、8×60、2

  拓展提高

  1、閱讀題:

  我們在計算(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)時,發(fā)現(xiàn)直接運算很麻煩,如果在算式前乘以(2-1),即1,原算式的值不變,而且還使整個算式能用乘法公式計算、解答過程如下:

  原式=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)

  =(22-1)(22+1)(24+1)(28+1)(216+1)(232+1)

  =(24-1)(24+1)(28+1)(216+1)(232+1)

  =……=264-1

  你能用上述方法算出(3+1)(32+1)(34+1)(38+1)(316+1)的值嗎?請試試看!

  2、仔細觀察,探索規(guī)律:

  (x-1)(x+1)=x2-1

  (x-1)(x2+x+1)=x3-1

  (x-1)(x3+x2+x+1)=x4-1

  (x-1)(x4+x3+x2+x+1)=x5-1

  ……

  (1)試求25+24+23+22+2+1的值;

  (2)寫出22006+22005+22004+…+2+1的個位數(shù)、

  堂堂清

  一、選擇題

  1、下列各式中,能用平方差公式計算的是( )

  (1)(a-2b)(-a+2b);

  (2)(a-2b)(-a-2b);

  (3)(a-2b)(a+2b);

  (4)(a-2b)(2a+b)、

八年級數(shù)學上冊的教案13

  《正方形》教學設計

  教學內(nèi)容分析:

 、艑W習特殊的平行四邊形—正方形,它的特殊的性質(zhì)和判定。

 、魄懊鎸W習了平行四邊形、矩形菱形,類比他們的性質(zhì)與判斷,有利于對正方形的研究。

  ⑶對本節(jié)的學習,繼續(xù)培養(yǎng)學生分類研究的思想,并且建立新舊知識的聯(lián)系,類比的基礎上進行歸納,梳理知識,進一步發(fā)展學生的推理能力。

  學生分析

 、艑W生在小學初步認識了正方形,并且本節(jié)課之前,學生又學習了幾種平行四邊形,已經(jīng)具備了觀察研究平行四邊形的經(jīng)驗與知識基礎。

 、茖W生在上幾節(jié)已有了推理的經(jīng)歷,但是對于證明,學生的思維能力還不成熟,有待于提高。

  教學目標:

 、胖R與技能:了解正方形是特殊的平行四邊形,掌握它的性質(zhì)和判定,會利用性質(zhì)與判定進行簡單的說理。

 、七^程與方法:通過類比前邊的四邊形的研究,探索并歸納正方形的性質(zhì)與判定。通過運用提高學生的推理能力。

  ⑶情感態(tài)度與價值觀:在學習中體會正方形的完美性,通過活動獲得成功的喜悅與自信。

  重點:掌握正方形的性質(zhì)與判定,并進行簡單的推理。

  難點:探索正方形的判定,發(fā)展學生的推理能

  教學方法:類比與探究

  教具準備:可以活動的四邊形模型。

  一、教學分析

  (一)教學內(nèi)容分析

  1.教材:義務教育課程標準實驗教科書《數(shù)學》九年級上冊(人民教育出版社)

  2.本課教學內(nèi)容的地位、作用,知識的前后聯(lián)系

  《中心對稱圖形》是新人教版九年級數(shù)學上冊第二十三章第二單元第二節(jié)課的內(nèi)容。本節(jié)教材屬于圖形變換的內(nèi)容,是在學習了“軸對稱和軸對稱圖形”、“旋轉(zhuǎn)和中心對稱”后的一種對稱圖形,因此涉及歸納、類比等思想方法,對激發(fā)學生探索精神和創(chuàng)新意識等方面都有重要意義。

  3.本課教學內(nèi)容的特點,重點分析體現(xiàn)新課程理念的特點

  本節(jié)課主要介紹中心對稱圖形的概念、中心對稱圖形的識別、中心對稱圖形與軸對稱圖形與中心對稱的比較、中心對稱圖形的性質(zhì)。為使學生感受、理解知識的產(chǎn)生和發(fā)展過程,培養(yǎng)學生的抽象思維,我將通過:(1)例舉日常生活中的一些旋轉(zhuǎn)對稱圖形引出中心對稱圖形的概念;(2)引導學生觀察、猜想、實驗、歸納、類比等方法探究中心對稱圖形的性質(zhì),(3)通過多媒體演示使學生對中心對稱圖形的性質(zhì)有直觀的表象。我認為這環(huán)環(huán)相扣、層層深入、循序漸進的活動過程,符合新課程標準理念和學生建構知識的規(guī)律,有利于激發(fā)學生的學習情趣。

  (二)教學對象分析

  1.學生所在地區(qū)、學校及班級的特色

  我授課的班級是西安市閻良區(qū)振興中學九年級一班,作為九年級的學生,在圖形的對稱方面已經(jīng)積累一些經(jīng)驗,已經(jīng)具有一定的觀察、猜想、實驗、歸納、類比等研究圖形對稱變換的能力;班級學生具有個性活潑,思維活躍,對各種事物充滿好奇,學習情緒易于調(diào)動,學習積極性高的特點,但學生的抽象思維能力個體差異較大,并且班級中已出現(xiàn)分化現(xiàn)象。

  2.學生的年齡特點和認知特點

  班級學生的年齡大多在15歲到17歲間。他們已具備了一定的獨立分析、解決問題的能力,表現(xiàn)欲望較為強烈,喜好發(fā)表個人見解并且具有一定的合作交流、共同探討的意識與經(jīng)驗,因此在課程內(nèi)容的安排中,適當?shù)貏?chuàng)設一些具有一定思維深度的問題,加強學生在學習過程中自主探索與合作交流的緊密結合,促使學生在探究的過程中,更多地獲得成功的體驗,感受學習思考的樂趣。

  教學過程

  一:復習鞏固,建立聯(lián)系。

  【教師活動

  問題設置:①平行四邊形、矩形,菱形各有哪些性質(zhì)?

 、()的四邊形是平行四邊形。()的平行四邊形是矩形。()的平行四邊形是菱形。()的四邊形是矩形。()的四邊形是菱形。

  【學生活動

  學生回憶,并舉手回答,對于填空題,讓更多的學生參與,說出更多的答案。

  【教師活動

  評析學生的結果,給予表揚。

  總結性質(zhì)從邊角對角線考慮,在填空時也考慮這幾方面之外,還應該考慮三者之間的聯(lián)系與區(qū)別。

  演示平行四邊形變?yōu)榫匦瘟庑蔚倪^程。

  二:動手操作,探索發(fā)現(xiàn)。

  活動一:拿出一張矩形紙片,拉起一角,使其寬AB落在長AD邊上,如下圖所示,沿著B′E剪下,能得到什么圖形?

  【學生活動

  學生拿出自備矩形紙片,動手操作,不難發(fā)現(xiàn)它是正方形。

  設置問題:①什么是正方形?

  觀察發(fā)現(xiàn),從活動中體會。

  【教師活動】:演示矩形變?yōu)檎叫蔚倪^程,菱形變?yōu)檎叫蔚倪^程。

  【學生活動】認真觀察變化過程,思考之間的聯(lián)系,舉手回答設置問題。

  設置問題②正方形是矩形嗎,是菱形嗎?是平行四邊形嗎?為什么?

  【學生活動】

  小組討論,分組回答。

  【教師活動】

  總結板書:㈠(一組鄰邊相等)的矩形是正方形,(一個角是直角)的菱形是正方形。

  設置問題③正方形有那些性質(zhì)?

  【學生活動】

  小組討論,舉手搶答。

  【教師活動

  表揚學生發(fā)言,板書學生發(fā)現(xiàn),㈡正方形每一條對角線平分一組對角

  活動二:拿出活動一得到的正方形折一折,正方形是軸對稱圖形嗎?有幾條對稱軸?

  學生活動

  折紙發(fā)現(xiàn),說出自己的發(fā)現(xiàn)。得到正方形的又一性質(zhì)。正方形是軸對稱圖形。

  教師活動

  演示從平行四邊形變?yōu)檎叫蔚倪^程,擦去板書㈠中的括號內(nèi)容,出示一下問題:你還可以怎樣填空?

  ()的菱形是正方形,()的矩形是正方形,()的平行四邊形是正方形,()的四邊形是正方形。

  學生活動

  小組充分交流,表達不同的意見。

  教師活動

  評析活動,總結發(fā)現(xiàn):

  一組鄰邊相等的矩形是正方形,對角線互相平分的矩形是正方形;

  有一個角是直角的菱形是正方形,對角線相等的菱形是正方形,;

  有一組鄰邊相等且有一個角是直角的平行四邊形是正方形,對角線相等且互相平分的平行四邊形是正方形;

  四邊相等且有一角是直角的'四邊形是正方形,對角線相等且互相垂直平分的四邊形是正方形。

  以上是正方形的判定方法。

  正方形是一個多么完美的平行四邊形呀?大家互相說一說,它的完美體現(xiàn)在哪里?生活中有哪些利用正方形的例子?

  學生交流,感受正方形

  三,應用體驗,推理證明。

  出示例一:正方形ABCD的兩條對角線AC,BD交與O,AB長4cm,求AC,AO長,及的度數(shù)。

  方法一解:∵四邊形ABCD是正方形

  ∴∠ABC=90°(正方形的四個角是直角)

  BC=AB=4cm(正方形的四條邊相等)

  ∴=45°(等腰直角三角形的底角是45°)

  ∴利用勾股定理可知,AC===4cm

  ∵AO=AC(正方形的對角線互相平分)

  ∴AO=×4=2cm

  方法二:證明△AOB是等腰直角三角形,即可得證。

  學生活動

  獨立思考,寫出推理過程,再進行小組討論,并且各小組指派代表寫在黑板上,共同交流。

  教師活動

  總結解題方法,從正方形的性質(zhì)全面考慮,準確利用條件,減少麻煩。評析解題步驟,表揚突出學生。

  出示例二:在正方形ABCD中,E、F、G、H分別在它的四條邊上,且AE=BF=CG=DH,四邊形EFGH是什么特殊的四邊形,你是如何判斷的?

  學生活動

  小組交流,分析題意,整理思路,指名口答。

  教師活動

  說明思路,從已知出發(fā)或者從已有的判定加以選擇。

  四,歸納新知,梳理知識。

  這一節(jié)課你有什么收獲?

  學生舉手談論自己的收獲。

  請把平行四邊形,矩形,菱形,正方形分別填寫在下圖的ABCDC處,說明它們的關系。

  發(fā)表評論

  教學目標:

  情意目標:培養(yǎng)學生團結協(xié)作的精神,體驗探究成功的樂趣。

  能力目標:能利用等腰梯形的性質(zhì)解簡單的幾何計算、證明題;培養(yǎng)學生探究問題、自主學習的能力。

  認知目標:了解梯形的概念及其分類;掌握等腰梯形的性質(zhì)。

  教學重點、難點

  重點:等腰梯形性質(zhì)的探索;

  難點:梯形中輔助線的添加。

  教學課件:PowerPoint演示文稿

  教學方法:啟發(fā)法、

  學習方法:討論法、合作法、練習法

  教學過程:

 。ㄒ唬⿲

  1、出示圖片,說出每輛汽車車窗形狀(投影)

  2、板書課題:5梯形

  3、練習:下列圖形中哪些圖形是梯形?(投影)

  結梯形概念:只有4、總結梯形概念:一組對邊平行另以組對邊不平行的四邊形是梯形。

  5、指出圖形中各部位的名稱:上底、下底、腰、高、對角線。(投影)

  6、特殊梯形的分類:(投影)

  (二)等腰梯形性質(zhì)的探究

  【探究性質(zhì)一】

  思考:在等腰梯形中,如果將一腰AB沿AD的方向平移到DE的位置,那么所得的△DEC是怎樣的三角形?(投影)

  猜想:由此你能得到等腰梯形的內(nèi)角有什么樣的性質(zhì)?(學生操作、討論、作答)

  如圖,等腰梯形ABCD中,AD∥BC,AB=CD。求證:∠B=∠C

  想一想:等腰梯形ABCD中,∠A與∠D是否相等?為什么?

  等腰梯形性質(zhì):等腰梯形的同一條底邊上的兩個內(nèi)角相等。

  【操練】

 。1)如圖,等腰梯形ABCD中,AD∥BC,AB=CD,∠B=60o,BC=10cm,AD=4cm,則腰AB=cm。(投影)

 。2)如圖,在等腰梯形ABCD中,AD∥BC,AB=CD,DE∥AC,交BC的延長線于點E,CA平分∠BCD,求證:∠B=2∠E.(投影)

  【探究性質(zhì)二】

  如果連接等腰梯形的兩條對角線,圖中有哪幾對全等三角形?哪些線段相等?(學生操作、討論、作答)

  如上圖,等腰梯形ABCD中,AD∥BC,AB=CD,AC、BD相交于O,求證:AC=BD。(投影)

  等腰梯形性質(zhì):等腰梯形的兩條對角線相等。

  【探究性質(zhì)三】

  問題一:延長等腰梯形的兩腰,哪些三角形是軸對稱圖形?為什么?對稱軸呢?(學生操作、作答)

  問題二:等腰梯是否軸對稱圖形?為什么?對稱軸是什么?(重點討論)

  等腰梯形性質(zhì):同以底上的兩個內(nèi)角相等,對角線相等

 。ㄈ┵|(zhì)疑反思、小結

  讓學生回顧本課教學內(nèi)容,并提出尚存問題;

  學生小結,教師視具體情況給予提示:性質(zhì)(從邊、角、對角線、對稱性等角度總結)、解題方法(化梯形問題為三角形及平行四邊形問題)、梯形中輔助線的添加方法。

八年級數(shù)學上冊的教案14

  教學目標:

  1.了解軸對稱圖形和兩個圖形關于某直線對稱的概念.

  2.能識別簡單的軸對稱圖形及其對稱軸(直線),能找出兩個圖形關于某直線對稱的對稱點.

  3.了解軸對稱圖形與兩個圖形關于某直線對稱的區(qū)別和聯(lián)系.

  教學重點:

  1、軸對稱圖形和兩個圖形成軸對稱的概念;

  2、探索軸對稱的性質(zhì)。

  教學難點:

  1、能夠識別軸對稱圖形并找出它的對稱軸;

  2、能運用其性質(zhì)解答簡單的`幾何問題。

  教學方法啟發(fā)誘導法

  教具準備多媒體課件,剪刀,彩色紙

  教學過程

  一、情境導入

  同學們,自古以來,對稱圖形被認為是和諧、美麗的.不論在自然界里還是在建筑中,不論在藝術中還是在科學中,甚至最普通的日常生活用品中,對稱圖形隨處可見,對稱給我們帶來了美的感受!而軸對稱是對稱中很重要的一種,今天就讓我們一起走進軸對稱世界,探索它的秘密吧!

  我們先來看一下這節(jié)課的學習目標

  1.了解軸對稱圖形和兩個圖形關于某直線對稱的概念.

  2.能識別簡單的軸對稱圖形及其對稱軸,能找出兩個圖形關于某直線對稱的對稱點.

  3.了解軸對稱圖形與兩個圖形關于某直線對稱的區(qū)別和聯(lián)系.

  二、自主探究

  【探究一】

  (一)我們先來看幾幅圖片,觀察它們都有些什么共同特征.

  1、它們都是對稱的.

  2、它們沿著某條直線折疊后,直線兩旁的部分能完全重合。

 。ǘ﹦赢嬚故竞恼郫B過程

 。ㄈ┳鲆蛔

  1.準備一張紙;

  2.對折紙;

  3.用鉛筆在紙上畫出你喜歡的圖案;

  4.剪下你畫的圖案;

  5.把紙打開鋪平,觀察所得的圖案,位于折痕兩側(cè)的部分有什么關系?

  【答】能互相重合一模一樣是對稱的

  從而得出軸對稱圖形的概念:

  如果一個圖形沿著一條直線折疊,只限兩旁的部分能夠互相重合,這個圖形就叫做軸對稱圖形。這條直線就是它的對稱軸。我們說這個圖形關于這條直線對稱。

八年級數(shù)學上冊的教案15

  教學目標

 。保J識變量、常量.

 。玻畬W會用含一個變量的代數(shù)式表示另一個變量.

  教學重點

 。保J識變量、常量.

 。玻檬阶颖硎咀兞块g關系.

  教學難點

  用含有一個變量的式子表示另一個變量.

  教學過程

  Ⅰ.提出問題,創(chuàng)設情境

  情景問題:一輛汽車以60千米/小時的速度勻速行駛,行駛里程為s千米.行駛時間為t小時.

  1.請同學們根據(jù)題意填寫下表:

  t/時 1 2 3 4 5

  s/千米

  2.在以上這個過程中,變化的量是________.變變化的量是__________.

  3.試用含t的式子表示s.

  Ⅱ.導入新課

  首先讓學生思考上面的幾個問題,可以互相討論一下,然后回答.

  從題意中可以知道汽車是勻速行駛,那么它1小時行駛60千米,2小時行駛2×60千米,即120千米,3小時行駛3×60千米,即180千米,4小時行駛4×60千米,即240千米,5小時行駛5×60千米,即300千米……因此行駛里程s千米與時間t小時之間有關系:s=60t.其中里程s與時間t是變化的量,速度60千米/小時是不變的量.

  這種問題反映了勻速行駛的汽車所行駛的里程隨行駛時間的變化過程.其實現(xiàn)實生活中有好多類似的問題,都是反映不同事物的變化過程,其中有些量的值是按照某種規(guī)律變化,其中有些量的是按照某種規(guī)律變化的,如上例中的時間t、里程s,有些量的數(shù)值是始終不變的,如上例中的速度60千米/小時.

  [活動一]

 。保繌堧娪捌笔蹆r為10元,如果早場售出票150張,日場售出205張,晚場售出310張.三場電影的票房收入各多少元.設一場電影售票x張,票房收入y元.怎樣用含x的式子表示y?

 。玻谝桓鶑椈傻南露藨覓熘匚,改變并記錄重物的質(zhì)量,觀察并記錄彈簧長度的變化,探索它們的變化規(guī)律.如果彈簧原長10cm,每1kg重物使彈簧伸長0.5cm,怎樣用含有重物質(zhì)量m的式子表示受力后的彈簧長度?

  引導學生通過合理、正確的思維方法探索出變化規(guī)律.

  結論:

  1.早場電影票房收入:150×10=1500(元)

  日場電影票房收入:205×10=20xx(元)

  晚場電影票房收入:310×10=3100(元)

  關系式:y=10x

 。玻畳1kg重物時彈簧長度: 1×0.5+10=10.5(cm)

  掛2kg重物時彈簧長度:2×0.5+10=11(cm)

  掛3kg重物時彈簧長度:3×0.5+10=11.5(cm)

  關系式:L=0.5m+10

  通過上述活動,我們清楚地認識到,要想尋求事物變化過程的規(guī)律,首先需確定在這個過程中哪些量是變化的,而哪些量又是不變的.在一個變化過程中,我們稱數(shù)值發(fā)生變化的量為變量(variable),那么數(shù)值始終不變的量稱之為常量(constant).如上述兩個過程中,售出票數(shù)x、票房收入y;重物質(zhì)量m,彈簧長度L都是變量.而票價10元,彈簧原長10cm……都是常量.

  [活動二]

 。保嬕粋面積為10cm2的圓,圓的半徑應取多少?圓的面積為20cm2呢?怎樣用含有圓面積S的`式子表示圓半徑r?

 。玻10m長的繩子圍成矩形,試改變矩形長度.觀察矩形的面積怎樣變化.記錄不同的矩形的長度值,計算相應的矩形面積的值,探索它們的變化規(guī)律:設矩形的長度為xcm,面積為Scm2.怎樣用含有x的式子表示S?

  結論:

  1.要求已知面積的圓的半徑,可利用圓的面積公式經(jīng)過變形求出S= r2r=

  面積為10cm2的圓半徑r= ≈1.78(cm)

  面積為20cm2的圓半徑r= ≈2.52(cm)

  關系式:r=

 。玻蚓匦蝺山M對邊相等,所以它一條長與一條寬的和應是周長10cm的一半,即5cm.

  若長為1cm,則寬為5-1=4(cm)

  據(jù)矩形面積公式:S=1×4=4(cm2)

  若長為2cm,則寬為5-2=3(cm)

  面積S=2×(5-2)=6(cm2)

  … …

  若長為xcm,則寬為5-x(cm)

  面積S=x?(5-x)=5x-x2(cm2)

  從以上兩個題中可以看出,在探索變量間變化規(guī)律時,可利用以前學過的一些有關知識公式進行分析尋找,以便盡快找出之間關系,確定關系式.

  Ⅲ.隨堂練習

 。保徺I一些鉛筆,單價0.2元/支,總價y元隨鉛筆支數(shù)x變化,指出其中的常量與變量,并寫出關系式.

  2.一個三角形的底邊長5cm,高h可以任意伸縮.寫出面積S隨h變化關系式,并指出其中常量與變量.

  解:1.買1支鉛筆價值1×0.2=0.2(元)

  買2支鉛筆價值2×0.2=0.4(元)

  ……

  買x支鉛筆價值x×0.2=0.2x(元)

  所以y=0.2x

  其中單價0.2元/支是常量,總價y元與支數(shù)x是變量.

 。玻鶕(jù)三角形面積公式可知:

  當高h為1cm時,面積S= ×5×1=2.5cm2

  當高h為2cm時,面積S= ×5×2=5cm2

  … …

  當高為hcm,面積S= ×5×h=2.5hcm2

【八年級數(shù)學上冊的教案】相關文章:

數(shù)學八年級上冊教案03-02

初中數(shù)學八年級上冊教案02-06

八年級上冊數(shù)學函數(shù)教案03-09

八年級數(shù)學上冊教案02-27

數(shù)學八年級上冊教案(15篇)03-02

八年級數(shù)學上冊的教案07-09

八年級上冊數(shù)學優(yōu)秀教案01-23

數(shù)學八年級上冊教案15篇03-02

八年級上冊數(shù)學教案01-13

八年級數(shù)學上冊教案06-08