一级毛片免费不卡在线视频,国产日批视频免费在线观看,菠萝菠萝蜜在线视频免费视频,欧美日韩亚洲无线码在线观看,久久精品这里精品,国产成人综合手机在线播放,色噜噜狠狠狠综合曰曰曰,琪琪视频

八年級(jí)數(shù)學(xué)的教案

時(shí)間:2024-07-24 09:44:48 數(shù)學(xué)教案 我要投稿

八年級(jí)數(shù)學(xué)的教案

  作為一名專(zhuān)為他人授業(yè)解惑的人民教師,常常要寫(xiě)一份優(yōu)秀的教案,教案有利于教學(xué)水平的提高,有助于教研活動(dòng)的開(kāi)展。那么教案應(yīng)該怎么寫(xiě)才合適呢?下面是小編為大家整理的八年級(jí)數(shù)學(xué)的教案,供大家參考借鑒,希望可以幫助到有需要的朋友。

八年級(jí)數(shù)學(xué)的教案

八年級(jí)數(shù)學(xué)的教案1

  知識(shí)結(jié)構(gòu):

  重點(diǎn)與難點(diǎn)分析:

  本節(jié)內(nèi)容的重點(diǎn)是等腰三角形的判定定理.本定理是證明兩條線段相等的重要定理,它是把三角形中角的相等關(guān)系轉(zhuǎn)化為邊的相等關(guān)系的重要依據(jù),此定理為證明線段相等提供了又一種方法,這是本節(jié)的重點(diǎn).推論1、2提供證明等邊三角形的方法,推論3是直角三角形的一條重要性質(zhì),在直角三角形中找邊和角的等量關(guān)系經(jīng)常用到此推論.

  本節(jié)內(nèi)容的難點(diǎn)是性質(zhì)與判定的區(qū)別。等腰三角形的性質(zhì)定理和判定定理是互逆定理,題設(shè)與結(jié)論正好相反.學(xué)生在應(yīng)用它們的時(shí)候,經(jīng);煜瑤椭鷮W(xué)生認(rèn)識(shí)判定與性質(zhì)的區(qū)別,這是本節(jié)的難點(diǎn).另外本節(jié)的文字?jǐn)⑹鲱}也是難點(diǎn)之一,和上節(jié)結(jié)合讓學(xué)生逐步掌握解題的思路方法.由于知識(shí)點(diǎn)的增加,題目的復(fù)雜程度也提高,一定要學(xué)生真正理解定理和推論,才能在解題時(shí)從條件得到用哪個(gè)定理及如何用.

  教法建議:

  本節(jié)課教學(xué)方法主要是“以學(xué)生為主體的討論探索法”。在數(shù)學(xué)教學(xué)中要避免過(guò)多告訴學(xué)生現(xiàn)成結(jié)論。提倡教師鼓勵(lì)學(xué)生討論解決問(wèn)題的方法,引導(dǎo)他們探索數(shù)學(xué)的內(nèi)在規(guī)律。具體說(shuō)明如下:

  (1)參與探索發(fā)現(xiàn),領(lǐng)略知識(shí)形成過(guò)程

  學(xué)生學(xué)習(xí)過(guò)互逆命題和互逆定理的概念,首先提出問(wèn)題:等腰三角形性質(zhì)定理的逆命題的什么?找一名學(xué)生口述完了,接下來(lái)問(wèn):此命題是否為真命?等同學(xué)們證明完了,找一名學(xué)生代表發(fā)言.最后找一名學(xué)生用文字口述定理的內(nèi)容。這樣很自然就得到了等腰三角形的判定定理.這樣讓學(xué)生親自動(dòng)手實(shí)踐,積極參與發(fā)現(xiàn),滿打滿算了學(xué)生的認(rèn)識(shí)沖突,使學(xué)生克服思維和探求的惰性,獲得鍛煉機(jī)會(huì),對(duì)定理的產(chǎn)生過(guò)程,真正做到心領(lǐng)神會(huì)。

  (2)采用“類(lèi)比”的學(xué)習(xí)方法,獲取知識(shí)。

  由性質(zhì)定理的學(xué)習(xí),我們得到了幾個(gè)推論,自然想到:根據(jù)等腰三角形的判定定理,我們能得到哪些特殊的結(jié)論或者說(shuō)哪些推論呢?這里先讓學(xué)生發(fā)表意見(jiàn),然后大家共同分析討論,把一些有價(jià)值的、甚至就是教材中的推論板書(shū)出來(lái)。如果學(xué)生提到的'不完整,教師可以做適當(dāng)?shù)狞c(diǎn)撥引導(dǎo)。

  (3)總結(jié),形成知識(shí)結(jié)構(gòu)

  為了使學(xué)生對(duì)本節(jié)課有一個(gè)完整的認(rèn)識(shí),便于今后的應(yīng)用,教師提出如下問(wèn)題,讓學(xué)生思考回答:(1)怎樣判定一個(gè)三角形是等腰三角形?有哪些定理依據(jù)?(2)怎樣判定一個(gè)三角形是等邊三角形?

  一.教學(xué)目標(biāo):

  1.使學(xué)生掌握等腰三角形的判定定理及其推論;

  2.掌握等腰三角形判定定理的運(yùn)用;

  3.通過(guò)例題的學(xué)習(xí),提高學(xué)生的邏輯思維能力及分析問(wèn)題解決問(wèn)題的能力;

  4.通過(guò)自主學(xué)習(xí)的發(fā)展體驗(yàn)獲取數(shù)學(xué)知識(shí)的感受;

  5.通過(guò)知識(shí)的縱橫遷移感受數(shù)學(xué)的辯證特征.

  二.教學(xué)重點(diǎn):等腰三角形的判定定理

  三.教學(xué)難點(diǎn):性質(zhì)與判定的區(qū)別

  四.教學(xué)用具:直尺,微機(jī)

  五.教學(xué)方法:以學(xué)生為主體的討論探索法

  六.教學(xué)過(guò)程:

  1、新課背景知識(shí)復(fù)習(xí)

  (1)請(qǐng)同學(xué)們說(shuō)出互逆命題和互逆定理的概念

  估計(jì)學(xué)生能用自己的語(yǔ)言說(shuō)出,這里重點(diǎn)復(fù)習(xí)怎樣分清題設(shè)和結(jié)論。

  (2)等腰三角形的性質(zhì)定理的內(nèi)容是什么?并檢驗(yàn)它的逆命題是否為真命題?

  啟發(fā)學(xué)生用自己的語(yǔ)言敘述上述結(jié)論,教師稍加整理后給出規(guī)范敘述:

  1.等腰三角形的判定定理:如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等.

  (簡(jiǎn)稱“等角對(duì)等邊”).

  由學(xué)生說(shuō)出已知、求證,使學(xué)生進(jìn)一步熟悉文字轉(zhuǎn)化為數(shù)學(xué)語(yǔ)言的方法.

  已知:如圖,△ABC中,∠B=∠C.

  求證:AB=AC.

  教師可引導(dǎo)學(xué)生分析:

  聯(lián)想證有關(guān)線段相等的知識(shí)知道,先需構(gòu)成以AB、AC為對(duì)應(yīng)邊的全等三角形.因?yàn)橐阎螧=∠C,沒(méi)有對(duì)應(yīng)相等邊,所以需添輔助線為兩個(gè)三角形的公共邊,因此輔助線應(yīng)從A點(diǎn)引起.再讓學(xué)生回想等腰三角形中常添的輔助線,學(xué)生可找出作∠BAC的平分線AD或作BC邊上的高AD等證三角形全等的不同方法,從而推出AB=AC.

  注意:(1)要弄清判定定理的條件和結(jié)論,不要與性質(zhì)定理混淆.

  (2)不能說(shuō)“一個(gè)三角形兩底角相等,那么兩腰邊相等”,因?yàn)檫未判定它是一個(gè)等腰三角形.

  (3)判定定理得到的結(jié)論是三角形是等腰三角形,性質(zhì)定理是已知三角形是等腰三角形,得到邊邊和角角關(guān)系.

  2.推論1:三個(gè)角都相等的三角形是等邊三角形.

  推論2:有一個(gè)角等于60°的等腰三角形是等邊三角形.

  要讓學(xué)生自己推證這兩條推論.

  小結(jié):證明三角形是等腰三角形的方法:①等腰三角形定義;②等腰三角形判定定理.

  證明三角形是等邊三角形的方法:①等邊三角形定義;②推論1;③推論2.

  3.應(yīng)用舉例

  例1.求證:如果三角形一個(gè)外角的平分線平行于三角形的一邊,那么這個(gè)三角形是等腰三角形.

  分析:讓學(xué)生畫(huà)圖,寫(xiě)出已知求證,啟發(fā)學(xué)生遇到已知中有外角時(shí),常?紤]應(yīng)用外角的兩個(gè)特性①它與相鄰的內(nèi)角互補(bǔ);②它等于與它不相鄰的兩個(gè)內(nèi)角的和.要證AB=AC,可先證明∠B=∠C,因?yàn)橐阎?=∠2,所以可以設(shè)法找出∠B、∠C與∠1、∠2的關(guān)系.

  已知:∠CAE是△ABC的外角,∠1=∠2,AD∥BC.

  求證:AB=AC.

  證明:(略)由學(xué)生板演即可.

  補(bǔ)充例題:(投影展示)

  1.已知:如圖,AB=AD,∠B=∠D.

  求證:CB=CD.

  分析:解具體問(wèn)題時(shí)要突出邊角轉(zhuǎn)換環(huán)節(jié),要證CB=CD,需構(gòu)造一個(gè)以 CB、CD為腰的等腰三角形,連結(jié)BD,需證∠CBD=∠CDB,但已知∠B=∠D,由AB=AD可證∠ABD=∠ADB,從而證得∠CDB=∠CBD,推出CB=CD.

  證明:連結(jié)BD,在 中, (已知)

  (等邊對(duì)等角)

  (已知)

  即

  (等教對(duì)等邊)

  小結(jié):求線段相等一般在三角形中求解,添加適當(dāng)?shù)妮o助線構(gòu)造三角形,找出邊角關(guān)系.

  2.已知,在 中, 的平分線與 的外角平分線交于D,過(guò)D作DE//BC交AC與F,交AB于E,求證:EF=BE-CF.

  分析:對(duì)于三個(gè)線段間關(guān)系,盡量轉(zhuǎn)化為等量關(guān)系,由于本題有兩個(gè)角平分線和平行線,可以通過(guò)角找邊的關(guān)系,BE=DE,DF=CF即可證明結(jié)論.

  證明: DE//BC(已知)

  ,

  BE=DE,同理DF=CF.

  EF=DE-DF

  EF=BE-CF

  小結(jié):

  (1)等腰三角形判定定理及推論.

  (2)等腰三角形和等邊三角形的證法.

  七.練習(xí)

  教材 P.75中1、2、3.

  八.作業(yè)

  教材 P.83 中 1.1)、2)、3);2、3、4、5.

  九.板書(shū)設(shè)計(jì)

八年級(jí)數(shù)學(xué)的教案2

  知識(shí)目標(biāo):理解函數(shù)的概念,能準(zhǔn)確識(shí)別出函數(shù)關(guān)系中的自變量和函數(shù)

  能力目標(biāo):會(huì)用變化的量描述事物

  情感目標(biāo):回用運(yùn)動(dòng)的觀點(diǎn)觀察事物,分析事物

  重點(diǎn):函數(shù)的概念

  難點(diǎn):函數(shù)的概念

  教學(xué)媒體:多媒體電腦,計(jì)算器

  教學(xué)說(shuō)明:注意區(qū)分函數(shù)與非函數(shù)的關(guān)系,學(xué)會(huì)確定自變量的取值范圍

  教學(xué)設(shè)計(jì):

  引入:

  信息1:小明在14歲生日時(shí),看到他爸爸為他記錄的以前各年周歲時(shí)體重?cái)?shù)值表,你能看出小明各周歲時(shí)體重是如何變化的嗎?

  新課:

  問(wèn)題:(1)如圖是某日的氣溫變化圖。

  ① 這張圖告訴我們哪些信息?

 、 這張圖是怎樣來(lái)展示這天各時(shí)刻的.溫度和刻畫(huà)這鐵的氣溫變化規(guī)律的?

  (2)收音機(jī)上的刻度盤(pán)的波長(zhǎng)和頻率分別是用米(m)和赫茲(KHz)為單位標(biāo)刻的,下表中是一些對(duì)應(yīng)的數(shù):

 、 這表告訴我們哪些信息?

  ② 這張表是怎樣刻畫(huà)波長(zhǎng)和頻率之間的變化規(guī)律的,你能用一個(gè)表達(dá)式表示出來(lái)嗎?

  一般的,在一個(gè)變化過(guò)程中,如果有兩個(gè)變量x和y,并且對(duì)于x的每一個(gè)確定的值,y都有惟一確定的值與其對(duì)應(yīng),那么我們就說(shuō)x是自變量,y是x的函數(shù)。如果當(dāng)x=a時(shí),y=b,那么b叫做當(dāng)自變量的值為a時(shí)的函數(shù)值。

  范例:例1 判斷下列變量之間是不是函數(shù)關(guān)系:

  (5) 長(zhǎng)方形的寬一定時(shí),其長(zhǎng)與面積;

  (6) 等腰三角形的底邊長(zhǎng)與面積;

  (7) 某人的年齡與身高;

  活動(dòng)1:閱讀教材7頁(yè)觀察1. 后完成教材8頁(yè)探究,利用計(jì)算器發(fā)現(xiàn)變量和函數(shù)的關(guān)系

  思考:自變量是否可以任意取值

  例2 一輛汽車(chē)的油箱中現(xiàn)有汽油50L,如果不再加油,那么油箱中的油量y(單位:L)隨行駛里程x(單位:km)的增加而減少,平均耗油量為0.1L/km。

  (1) 寫(xiě)出表示y與x的函數(shù)關(guān)系式.

  (2) 指出自變量x的取值范圍.

  (3) 汽車(chē)行駛200km時(shí),油箱中還有多少汽油?

  解:(1)y=50-0.1x

  (2)0500

  (3)x=200,y=30

  活動(dòng)2:練習(xí)教材9頁(yè)練習(xí)

  小結(jié):(1)函數(shù)概念

  (2)自變量,函數(shù)值

  (3)自變量的取值范圍確定

  作業(yè):18頁(yè):2,3,4題

八年級(jí)數(shù)學(xué)的教案3

  教學(xué)目標(biāo):

  知識(shí)目標(biāo):

  1、初步掌握函數(shù)概念,能判斷兩個(gè)變量間的關(guān)系是否可看作函數(shù)。

  2、根據(jù)兩個(gè)變量間的關(guān)系式,給定其中一個(gè)量,相應(yīng)地會(huì)求出另一個(gè)量的值。

  3、會(huì)對(duì)一個(gè)具體實(shí)例進(jìn)行概括抽象成為數(shù)學(xué)問(wèn)題。

  能力目標(biāo):

  1、通過(guò)函數(shù)概念,初步形成學(xué)生利用函數(shù)的觀點(diǎn)認(rèn)識(shí)現(xiàn)實(shí)世界的意識(shí)和能力。

  2、經(jīng)歷具體實(shí)例的抽象概括過(guò)程,進(jìn)一步發(fā)展學(xué)生的抽象思維能力。

  情感目標(biāo):

  1、經(jīng)歷函數(shù)概念的抽象概括過(guò)程,體會(huì)函數(shù)的模型思想。

  2、讓學(xué)生主動(dòng)地從事觀察、操作、交流、歸納等探索活動(dòng),形成自己對(duì)數(shù)學(xué)知識(shí)的理解和有效的學(xué)習(xí)模式。

  教學(xué)重點(diǎn):

  掌握函數(shù)概念。

  判斷兩個(gè)變量之間的關(guān)系是否可看作函數(shù)。

  能把實(shí)際問(wèn)題抽象概括為函數(shù)問(wèn)題。

  教學(xué)難點(diǎn):

  理解函數(shù)的概念。

  能把實(shí)際問(wèn)題抽象概括為函數(shù)問(wèn)題。

  教學(xué)過(guò)程設(shè)計(jì):

  一、創(chuàng)設(shè)問(wèn)題情境,導(dǎo)入新課

  『師』:同學(xué)們,你們看下圖上面那個(gè)像車(chē)輪狀的物體是什么?

  『生』:摩天輪。

  『師』:你們坐過(guò)嗎?

  ……

  『師』:當(dāng)你坐在摩天輪上時(shí),人的高度隨時(shí)在變化,那么變化是否有規(guī)律呢?

  『生』:應(yīng)該有規(guī)律。因?yàn)槿穗S輪一直做圓周運(yùn)動(dòng)。所以人的高度過(guò)一段時(shí)間就會(huì)重復(fù)依次,即轉(zhuǎn)動(dòng)一圈高度就重復(fù)一次。

  『師』:分析有道理。摩天輪上一點(diǎn)的高度h與旋轉(zhuǎn)時(shí)間t之間有一定的關(guān)系。請(qǐng)看下圖,反映了旋轉(zhuǎn)時(shí)間t(分)與摩天輪上一點(diǎn)的高度h(米)之間的關(guān)系。

  大家從圖上可以看出,每過(guò)6分鐘摩天輪就轉(zhuǎn)一圈。高度h完整地變化一次。而且從圖中大致可以判斷給定的時(shí)間所對(duì)應(yīng)的高度h。下面根據(jù)圖5-1進(jìn)行填表:

  t/分 0 1 2 3 4 5 …… h/米

  t/分 0 1 2 3 4 5 …… h/米 3 11 37 45 37 11 ……

  『師』:對(duì)于給定的時(shí)間t,相應(yīng)的高度h確定嗎?

  『生』:確定。

  『師』:在這個(gè)問(wèn)題中,我們研究的對(duì)象有幾個(gè)?分別是什么?

  『生』:研究的對(duì)象有兩個(gè),是時(shí)間t和高度h。

  『師』:生活中充滿著許許多多變化的量,你了解這些變量之間的關(guān)系嗎?如:彈簧的長(zhǎng)度與所掛物體的質(zhì)量,路程的距離與所用時(shí)間……了解這些關(guān)系,可以幫助我們更好地認(rèn)識(shí)世界。下面我們就去研究一些有關(guān)變量的問(wèn)題。

  二、新課學(xué)習(xí)

  做一做

 。1)瓶子或罐子盒等圓柱形的物體,常常如下圖那樣堆放,隨著層數(shù)的增加,物體的總數(shù)是如何變化的?

  填寫(xiě)下表:

  層數(shù)n 1 2 3 4 5 … 物體總數(shù)y 1 3 6 10 15 … 『師』:在這個(gè)問(wèn)題中的變量有幾個(gè)?分別師什么?

  『生』:變量有兩個(gè),是層數(shù)與圓圈總數(shù)。

 。2)在平整的路面上,某型號(hào)汽車(chē)緊急剎車(chē)后仍將滑行S米,一般地有經(jīng)驗(yàn)公式,其中V表示剎車(chē)前汽車(chē)的速度(單位:千米/時(shí))

  ①計(jì)算當(dāng)fenbie為50,60,100時(shí),相應(yīng)的滑行距離S是多少?

 、诮o定一個(gè)V值,你能求出相應(yīng)的S值嗎?

  解:略

  議一議

  『師』:在上面我們研究了三個(gè)問(wèn)題。下面大家探討一下,在這三個(gè)問(wèn)題中的共同點(diǎn)是什么?不同點(diǎn)又是什么?

  『生』:相同點(diǎn)是:這三個(gè)問(wèn)題中都研究了兩個(gè)變量。

  不同點(diǎn)是:在第一個(gè)問(wèn)題中,是以圖象的形式表示兩個(gè)變量之間的.關(guān)系;第二個(gè)問(wèn)題中是以表格的形式表示兩個(gè)變量間的關(guān)系;第三個(gè)問(wèn)題是以關(guān)系式來(lái)表示兩個(gè)變量間的關(guān)系的。

  『師』:通過(guò)對(duì)這三個(gè)問(wèn)題的研究,明確“給定其中某一個(gè)變量的值,相應(yīng)地就確定了另一個(gè)變量的值”這一共性。

  函數(shù)的概念

  在上面各例中,都有兩個(gè)變量,給定其中某一各變量(自變量)的值,相應(yīng)地就確定另一個(gè)變量(因變量)的值。

  一般地,在某個(gè)變化過(guò)程中,有兩個(gè)變量x和y,如果給定一個(gè)x值,相應(yīng)地就確定了一個(gè)y值,那么我們稱y是x的函數(shù),其中x是自變量,y是因變量。

  三、隨堂練習(xí)

  書(shū)P152頁(yè) 隨堂練習(xí)1、2、3

  四、本課小結(jié)

  初步掌握函數(shù)的概念,能判斷兩個(gè)變量間的關(guān)系是否可看作函數(shù)。

  在一個(gè)函數(shù)關(guān)系式中,能識(shí)別自變量與因變量,給定自變量的值,相應(yīng)地會(huì)求出函數(shù)的值。

  函數(shù)的三種表達(dá)式:

  圖象;(2)表格;(3)關(guān)系式。

  五、探究活動(dòng)

  為了加強(qiáng)公民的節(jié)水意識(shí),某市制定了如下用水收費(fèi)標(biāo)準(zhǔn):每戶每月的用水不超過(guò)10噸時(shí),水價(jià)為每噸1.2元;超過(guò)10噸時(shí),超過(guò)的部分按每噸1.8元收費(fèi),該市某戶居民5月份用水x噸(x>10),應(yīng)交水費(fèi)y元,請(qǐng)用方程的知識(shí)來(lái)求有關(guān)x和y的關(guān)系式,并判斷其中一個(gè)變量是否為另一個(gè)變量的函數(shù)?

  (答案:Y=1.8x-6或)

  六、課后作業(yè)

  習(xí)題6.1

八年級(jí)數(shù)學(xué)的教案4

  一、學(xué)生起點(diǎn)分析

  通過(guò)前一章《勾股定理》的學(xué)習(xí),學(xué)生已經(jīng)明白什么是勾股數(shù),但也發(fā)現(xiàn)并不是所有的直角三角形的邊長(zhǎng)都是勾股數(shù),甚至有些直角三角形的邊長(zhǎng)連有理數(shù)都不是,例如:①腰長(zhǎng)為1的等腰直角三角形的底邊長(zhǎng)不是有理數(shù),②兩條直角邊分別為1,2的直角三角形的斜邊長(zhǎng)不是有理數(shù),這為引入“新數(shù)”奠定了必要性.

  二、教學(xué)任務(wù)分析

  《數(shù)不夠用了》是義務(wù)教育課程標(biāo)準(zhǔn)北師大版實(shí)驗(yàn)教科書(shū)八年級(jí)(上)第二章《實(shí)數(shù)》的第一節(jié). 本節(jié)內(nèi)容安排了2個(gè)課時(shí)完成,第1課時(shí)讓學(xué)生感受無(wú)理數(shù)的存在,初步建立無(wú)理數(shù)的印象,結(jié)合勾股定理知識(shí),會(huì)根據(jù)要求畫(huà)線段;第2課時(shí)借助計(jì)算器感受無(wú)理數(shù)是無(wú)限不循環(huán)小數(shù),會(huì)判斷一個(gè)數(shù)是無(wú)理數(shù).本課是第1課時(shí),學(xué)生將在具體的實(shí)例中,通過(guò)操作、估算、分析等活動(dòng),感受無(wú)理數(shù)的客觀存在性和引入的必要性,并能判斷一個(gè)數(shù)是不是有理數(shù).

  本節(jié)課的教學(xué)目標(biāo)是:

 、偻ㄟ^(guò)拼圖活動(dòng),讓學(xué)生感受客觀世界中無(wú)理數(shù)的存在;

 、谀芘袛嗳切蔚哪尺呴L(zhǎng)是否為無(wú)理數(shù);

 、蹖W(xué)生親自動(dòng)手做拼圖活動(dòng),培養(yǎng)學(xué)生的.動(dòng)手能力和探索精神;

 、苣苷_地進(jìn)行判斷某些數(shù)是否為有理數(shù),加深對(duì)有理數(shù)和無(wú)理數(shù)的理解;

  三、教學(xué)過(guò)程設(shè)計(jì)

  本節(jié)課設(shè)計(jì)了6個(gè)教學(xué)環(huán)節(jié):

  第一環(huán)節(jié):置疑;第二環(huán)節(jié):課題引入;第三環(huán)節(jié):獲取新知;第四環(huán)節(jié):應(yīng)用與鞏固;第五環(huán)節(jié):課堂小結(jié);第六環(huán)節(jié):作業(yè)布置.

  第一環(huán)節(jié):質(zhì)疑

  內(nèi)容:【想一想】

  ⑴一個(gè)整數(shù)的平方一定是整數(shù)嗎?

 、埔粋(gè)分?jǐn)?shù)的平方一定是分?jǐn)?shù)嗎?

  目的:作必要的知識(shí)回顧,為第二環(huán)節(jié)埋下伏筆,便于后續(xù)問(wèn)題的說(shuō)理.

  效果:為后續(xù)環(huán)節(jié)的進(jìn)行起了很好的鋪墊的作用

  第二環(huán)節(jié):課題引入

  內(nèi)容:1.【算一算】

  已知一個(gè)直角三角形的兩條直角邊長(zhǎng)分別為1和2,算一算斜邊長(zhǎng) 的平方 ,并提出問(wèn)題: 是整數(shù)(或分?jǐn)?shù))嗎?

  2.【剪剪拼拼】

  把邊長(zhǎng)為1的兩個(gè)小正方形通過(guò)剪、拼,設(shè)法拼成一個(gè)大正方形,你會(huì)嗎?

  目的:選取客觀存在的“無(wú)理數(shù)“實(shí)例,讓學(xué)生深刻感受“數(shù)不夠用了”.

  效果:巧設(shè)問(wèn)題背景,順利引入本節(jié)課題.

  第三環(huán)節(jié):獲取新知

  內(nèi)容:【議一議】→【釋一釋】→【憶一憶】→【找一找】

  【議一議】: 已知 ,請(qǐng)問(wèn):① 可能是整數(shù)嗎?② 可能是分?jǐn)?shù)嗎?

  【釋一釋】:釋1.滿足 的 為什么不是整數(shù)?

  釋2.滿足 的 為什么不是分?jǐn)?shù)?

  【憶一憶】:讓學(xué)生回顧“有理數(shù)”概念,既然 不是整數(shù)也不是分?jǐn)?shù),那么 一定不是有理數(shù),這表明:有理數(shù)不夠用了,為“新數(shù)”(無(wú)理數(shù))的學(xué)習(xí)奠定了基礎(chǔ)

  【找一找】:在下列正方形網(wǎng)格中,先找出長(zhǎng)度為有理數(shù)的線段,再找出長(zhǎng)度不是有理數(shù)的線段

  目的:創(chuàng)設(shè)從感性到理性的認(rèn)知過(guò)程,讓學(xué)生充分感受“新數(shù)”(無(wú)理數(shù))的存在,從而激發(fā)學(xué)習(xí)新知的興趣

  效果:學(xué)生感受到無(wú)理數(shù)產(chǎn)生的過(guò)程,確定存在一種數(shù)與以往學(xué)過(guò)的數(shù)不同,產(chǎn)生了學(xué)習(xí)新數(shù)的必要性.

  第四環(huán)節(jié):應(yīng)用與鞏固

  內(nèi)容:【畫(huà)一畫(huà)1】→【畫(huà)一畫(huà)2】→【仿一仿】→【賽一賽】

  【畫(huà)一畫(huà)1】:在右1的正方形網(wǎng)格中,畫(huà)出兩條線段:

  1.長(zhǎng)度是有理數(shù)的線段

  2.長(zhǎng)度不是有理數(shù)的線段

  【畫(huà)一畫(huà)2】:在右2的正方形網(wǎng)格中畫(huà)出四個(gè)三角形 (右1)

  2.三邊長(zhǎng)都是有理數(shù)

  2.只有兩邊長(zhǎng)是有理數(shù)

  3.只有一邊長(zhǎng)是有理數(shù)

  4.三邊長(zhǎng)都不是有理數(shù)

  【仿一仿】:例:在數(shù)軸上表示滿足 的

  解: (右2)

  仿:在數(shù)軸上表示滿足 的

  【賽一賽】:右3是由五個(gè)單位正方形組成的紙片,請(qǐng)你把

  它剪成三塊,然后拼成一個(gè)正方形,你會(huì)嗎?試試看! (右3)

  目的:進(jìn)一步感受“新數(shù)”的存在,而且能把“新數(shù)”表示在數(shù)軸上

  效果:加深了對(duì)“新知”的理解,鞏固了本課所學(xué)知識(shí).

  第五環(huán)節(jié):課堂小結(jié)

  內(nèi)容:

  1.通過(guò)本課學(xué)習(xí),感受有理數(shù)又不夠用了, 請(qǐng)問(wèn)你有什么收獲與體會(huì)?

  2.客觀世界中,的確存在不是有理數(shù)的數(shù),你能列舉幾個(gè)嗎?

  3.除了本課所認(rèn)識(shí)的非有理數(shù)的數(shù)以外,你還能找到嗎?

  目的:引導(dǎo)學(xué)生自己小結(jié)本節(jié)課的知識(shí)要點(diǎn)及數(shù)學(xué)方法,使知識(shí)系統(tǒng)化.

  效果:學(xué)生總結(jié)、相互補(bǔ)充,學(xué)會(huì)進(jìn)行概括總結(jié).

  第六環(huán)節(jié):布置作業(yè)

  習(xí)題2.1

  六、教學(xué)設(shè)計(jì)反思

 。ㄒ唬┥钍菙(shù)學(xué)的源泉,興趣是學(xué)習(xí)的動(dòng)力

  大量事實(shí)都證明一點(diǎn),與生活貼得越近的東西最容易引起學(xué)習(xí)者的濃厚興趣,才能激發(fā)學(xué)習(xí)者的學(xué)習(xí)積極性,學(xué)習(xí)才可能是主動(dòng)的.本節(jié)課中教師首先用拼圖游戲引發(fā)學(xué)生學(xué)習(xí)的欲望,把課程內(nèi)容通過(guò)學(xué)生的生活經(jīng)驗(yàn)呈現(xiàn)出來(lái),然后進(jìn)行大膽置疑,生活中的數(shù)并不都是有理數(shù),那它們究竟是什么數(shù)呢?從而引發(fā)了學(xué)生的好奇心,為獲取新知,創(chuàng)設(shè)了積極的氛圍.在教學(xué)中,不要盲目的搶時(shí)間,讓學(xué)生能夠充分的思考與操作.

 。ǘ┗橄鬄榫唧w

  常言道:“數(shù)學(xué)是鍛煉思維的體操”,數(shù)學(xué)教師應(yīng)通過(guò)一系列數(shù)學(xué)活動(dòng)開(kāi)啟學(xué)生的思維,因此對(duì)新數(shù)的學(xué)習(xí)不能僅僅停留于感性認(rèn)識(shí),還應(yīng)要求學(xué)生充分理解,并能用恰當(dāng)數(shù)學(xué)語(yǔ)言進(jìn)行解釋?zhuān)腔谶@個(gè)原因,在教學(xué)過(guò)程中,刻意安排了一些環(huán)節(jié),加深對(duì)新數(shù)的理解,充分感受新數(shù)的客觀存在,讓學(xué)生覺(jué)得新數(shù)并不抽象.

 。ㄈ⿵(qiáng)化知識(shí)間聯(lián)系,注意糾錯(cuò)

  既然稱之為“新數(shù)”,那它當(dāng)然不是有理數(shù),亦即不是整數(shù),也不是分?jǐn)?shù),所以“新數(shù)”不可以用分?jǐn)?shù)來(lái)表示,這為進(jìn)一步學(xué)習(xí)“新數(shù)”,即第二課時(shí)教學(xué)埋下了伏筆,在教學(xué)中,要著重強(qiáng)調(diào)這一點(diǎn):“新數(shù)”不能表示成分?jǐn)?shù),為無(wú)理數(shù)的教學(xué)奠好基.

八年級(jí)數(shù)學(xué)的教案5

  學(xué)習(xí)目標(biāo):

  1. 在同一直角坐標(biāo)系中,感受點(diǎn)的坐標(biāo)變化與圖形的變化之間的關(guān)系,并能找出變化規(guī)律。

  2. 通過(guò)坐標(biāo)的變化探索新舊圖形之間的變化。

  重點(diǎn):

  1. 對(duì)稱軸的對(duì)稱圖形,并且能寫(xiě)出所得圖形各點(diǎn)的坐標(biāo)。

  2. 根據(jù)軸對(duì)稱圖形的特點(diǎn),已知軸一邊的圖形或坐標(biāo)確定另一邊的圖形或坐標(biāo)。

  難點(diǎn):

  1. 理解并應(yīng)用直角坐標(biāo)與極坐標(biāo)。

  2. 解決一些簡(jiǎn)單的問(wèn)題。

  學(xué)習(xí)過(guò)程:

  第一課時(shí)

  一、舊知回顧:

  1. 平面直角坐標(biāo)系定義:在平面內(nèi),兩條垂直且有公共端點(diǎn)的數(shù)軸組成平面直角坐標(biāo)系。

  2. 坐標(biāo)平面內(nèi)點(diǎn)的坐標(biāo)的表示方法是(x,y)。

  3. 各象限點(diǎn)的坐標(biāo)的特征:

  第一象限:x和y坐標(biāo)都是正數(shù)。第二象限:x坐標(biāo)為負(fù)數(shù),y坐標(biāo)為正數(shù)。第三象限:x和y坐標(biāo)都是負(fù)數(shù)。第四象限:x坐標(biāo)為正數(shù),y坐標(biāo)為負(fù)數(shù)。

  二、新知檢索:

  1. 在方格紙上描出下列各點(diǎn)(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0)并用線段依次連接,觀察形成了什么圖形。

  三、典例分析:

  例1、

  (1) 將魚(yú)的頂點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)分別加5畫(huà)出圖形,分析所得圖形與原來(lái)圖形相比有什么變化?如果縱坐標(biāo)保持不變,橫坐標(biāo)分別減2呢?

  (2)將魚(yú)的頂點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)分別加3畫(huà)出圖形,分析所得圖形與原來(lái)圖形相比有什么變化?如果橫坐標(biāo)保持不變,縱坐標(biāo)減2呢?

  例2、

  (1)將魚(yú)的頂點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)分別變?yōu)樵瓉?lái)的2倍畫(huà)出圖形,分析所得圖形與原來(lái)圖形相比有什么變化?

  (2) 將魚(yú)的頂點(diǎn)的橫坐標(biāo)不變,縱坐標(biāo)變成原來(lái)的一半,并繪制圖形。分析得到的圖形和原圖形之間有什么不同?

  四、習(xí)題組訓(xùn)練

  1、在平面直角坐標(biāo)系中,將點(diǎn)(0,0)、(2,4)、(2,0)和(4,4)連接形成一個(gè)圖案。

  (1)將這四個(gè)點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)變成原來(lái)的一半,然后依次連接得到新圖形。得到的圖形和原圖形之間有什么變化?

  (2)將縱坐標(biāo)和橫坐標(biāo)都增加3,所得到的圖形會(huì)發(fā)生怎樣的變化?

  (3)將縱坐標(biāo)和橫坐標(biāo)都乘以2,所得到的圖形會(huì)發(fā)生怎樣的`變化?

  歸納得出:圖形坐標(biāo)變化的規(guī)律

  1、平移規(guī)律

  2、圖形伸縮規(guī)律

  第二課時(shí)

  一、已學(xué)內(nèi)容回顧:

  1、軸對(duì)稱圖形的定義:如果一個(gè)圖形能夠沿著某條軸翻折成重合的兩部分,那么這個(gè)圖形就是軸對(duì)稱圖形。

  2、中心對(duì)稱圖形的定義:如果一個(gè)圖形繞著某個(gè)點(diǎn)旋轉(zhuǎn)一定的度數(shù)后與原圖形完全重合,那么這個(gè)圖形就是中心對(duì)稱圖形。

  二、新學(xué)內(nèi)容引入:

  1、如下圖所示,左邊的魚(yú)和右邊的魚(yú)是關(guān)于y軸對(duì)稱的。

  (1) 左邊的魚(yú)可以通過(guò)平移、壓縮或拉伸來(lái)得到右邊的魚(yú)嗎?

  (2) 左邊魚(yú)和右邊魚(yú)的頂點(diǎn)坐標(biāo)之間有怎樣的關(guān)系?

  (3) 如果將右邊的魚(yú)沿著x軸正方向平移1個(gè)單位長(zhǎng)度,然后通過(guò)不改變關(guān)于y軸對(duì)稱的條件,那么左邊的魚(yú)的頂點(diǎn)坐標(biāo)會(huì)發(fā)生怎樣的變化?

  三、典型例題解析:

  1、如下圖所示,右邊的魚(yú)是通過(guò)何種變換得到左邊的魚(yú)的?

  2、如果將右邊魚(yú)的橫坐標(biāo)保持不變,縱坐標(biāo)變成原來(lái)的一倍,繪制得到的圖形與原圖形之間有何不同?

  3、如果將右邊魚(yú)的縱坐標(biāo)和橫坐標(biāo)都變成原來(lái)的一倍,所得到的圖形和原圖形之間有何不同?

  四、習(xí)題組練習(xí):

  1、當(dāng)坐標(biāo)發(fā)生如下變化時(shí),圖形會(huì)做出怎樣的變化?

  1、已知點(diǎn)位移的矩陣:

 、 (x,y) → (x,y + 4)

 、 (x,y) → (x,y - 2)

  ③ (x,y) → (1/2x,y)

 、 (x,y) → (3x,y)

 、 (x,y) → (x,1/2y)

 、 (x,y) → (3x,3y)

  2、在第一象限內(nèi)有一只蝴蝶,現(xiàn)在在第二象限內(nèi)畫(huà)出一個(gè)與它形狀大小完全一樣的蝴蝶,并標(biāo)出它們的各個(gè)頂點(diǎn)坐標(biāo)。

  3、以圖中的字母M為輪廓,在y軸上作出與它關(guān)于軸對(duì)稱圖形,并標(biāo)出相應(yīng)端點(diǎn)的坐標(biāo)。

  4、簡(jiǎn)要描繪圖示中楓葉圖案關(guān)于x軸對(duì)稱的軸對(duì)稱圖形。

  學(xué)習(xí)筆記:

八年級(jí)數(shù)學(xué)的教案6

  一.教學(xué)目標(biāo):

  1.了解方差的定義和計(jì)算公式。

  2.理解方差概念的產(chǎn)生和形成的過(guò)程。

  3.會(huì)用方差計(jì)算公式來(lái)比較兩組數(shù)據(jù)的波動(dòng)大小。

  二.重點(diǎn)、難點(diǎn)和難點(diǎn)的突破方法:

  1.重點(diǎn):方差產(chǎn)生的必要性和應(yīng)用方差公式解決實(shí)際問(wèn)題。

  2.難點(diǎn):理解方差公式

  3.難點(diǎn)的突破方法:

  方差公式:S = [( - ) +( - ) +…+( - )]比較復(fù)雜,學(xué)生理解和記憶這個(gè)公式都會(huì)有一定困難,以致應(yīng)用時(shí)常常出現(xiàn)計(jì)算的錯(cuò)誤,為突破這一難點(diǎn),我安排了幾個(gè)環(huán)節(jié),將難點(diǎn)化解。

  (1)首先應(yīng)使學(xué)生知道為什么要學(xué)習(xí)方差和方差公式,目的不明確學(xué)生很難對(duì)本節(jié)課內(nèi)容產(chǎn)生興趣和求知欲望。教師在授課過(guò)程中可以多舉幾個(gè)生活中的小例子,不如選擇儀仗隊(duì)隊(duì)員、選擇運(yùn)動(dòng)員、選擇質(zhì)量穩(wěn)定的電器等。學(xué)生從中可以體會(huì)到生活中為了更好的做出選擇判斷經(jīng)常要去了解一組數(shù)據(jù)的波動(dòng)程度,僅僅知道平均數(shù)是不夠的。

  (2)波動(dòng)性可以通過(guò)什么方式表現(xiàn)出來(lái)?第一環(huán)節(jié)中點(diǎn)明了為什么去了解數(shù)據(jù)的波動(dòng)性,第二環(huán)節(jié)則主要使學(xué)生知道描述數(shù)據(jù),波動(dòng)性的方法?梢援(huà)折線圖方法來(lái)反映這種波動(dòng)大小,可是當(dāng)波動(dòng)大小區(qū)別不大時(shí),僅用畫(huà)折線圖方法去描述恐怕不會(huì)準(zhǔn)確,這自然希望可以出現(xiàn)一種數(shù)量來(lái)描述數(shù)據(jù)波動(dòng)大小,這就引出方差產(chǎn)生的必要性。

  (3)第三環(huán)節(jié)教師可以直接對(duì)方差公式作分析和解釋?zhuān)▌?dòng)大小指的是與平均數(shù)之間差異,那么用每個(gè)數(shù)據(jù)與平均值的差完全平方后便可以反映出每個(gè)數(shù)據(jù)的波動(dòng)大小,整體的波動(dòng)大小可以通過(guò)對(duì)每個(gè)數(shù)據(jù)的波動(dòng)大小求平均值得到。所以方差公式是能夠反映一組數(shù)據(jù)的波動(dòng)大小的一個(gè)統(tǒng)計(jì)量,教師也可以根據(jù)學(xué)生程度和課堂時(shí)間決定是否介紹平均差等可以反映數(shù)據(jù)波動(dòng)大小的其他統(tǒng)計(jì)量。

  三.例習(xí)題的意圖分析:

  1.教材P125的討論問(wèn)題的意圖:

  (1).創(chuàng)設(shè)問(wèn)題情境,引起學(xué)生的學(xué)習(xí)興趣和好奇心。

  (2).為引入方差概念和方差計(jì)算公式作鋪墊。

  (3).介紹了一種比較直觀的衡量數(shù)據(jù)波動(dòng)大小的方法——畫(huà)折線法。

  (4).客觀上反映了在解決某些實(shí)際問(wèn)題時(shí),求平均數(shù)或求極差等方法的局限性,使學(xué)生體會(huì)到學(xué)習(xí)方差的意義和目的。

  2.教材P154例1的設(shè)計(jì)意圖:

  (1).例1放在方差計(jì)算公式和利用方差衡量數(shù)據(jù)波動(dòng)大小的規(guī)律之后,不言而喻其主要目的是及時(shí)復(fù)習(xí),鞏固對(duì)方差公式的掌握。

  (2).例1的解題步驟也為學(xué)生做了一個(gè)示范,學(xué)生以后可以模仿例1的格式解決其他類(lèi)似的`實(shí)際問(wèn)題。

  四.課堂引入:

  除采用教材中的引例外,可以選擇一些更時(shí)代氣息、更有現(xiàn)實(shí)意義的引例。例如,通過(guò)學(xué)生觀看2004年奧運(yùn)會(huì)劉翔勇奪110米欄冠軍的錄像,進(jìn)而引導(dǎo)教練員根據(jù)平時(shí)比賽成績(jī)選擇參賽隊(duì)員這樣的實(shí)際問(wèn)題上,這樣引入自然而又真實(shí),學(xué)生也更感興趣一些。

  五.例題的分析:

  教材P154例1在分析過(guò)程中應(yīng)抓住以下幾點(diǎn):

  1.題目中“整齊”的含義是什么?說(shuō)明在這個(gè)問(wèn)題中要研究一組數(shù)據(jù)的什么?學(xué)生通過(guò)思考可以回答出整齊即波動(dòng)小,所以要研究?jī)山M數(shù)據(jù)波動(dòng)大小,這一環(huán)節(jié)是明確題意。

  2.在求方差之前先要求哪個(gè)統(tǒng)計(jì)量,為什么?學(xué)生也可以得出先求平均數(shù),因?yàn)楣街行枰骄,這個(gè)問(wèn)題可以使學(xué)生明確利用方差計(jì)算步驟。

  3.方差怎樣去體現(xiàn)波動(dòng)大小?

  這一問(wèn)題的提出主要復(fù)習(xí)鞏固方差,反映數(shù)據(jù)波動(dòng)大小的規(guī)律。

  六.隨堂練習(xí):

  1.從甲、乙兩種農(nóng)作物中各抽取1株苗,分別測(cè)得它的苗高如下:(單位:cm)

  甲:9、10、11、12、7、13、10、8、12、8;

  乙:8、13、12、11、10、12、7、7、9、11;

  問(wèn):(1)哪種農(nóng)作物的苗長(zhǎng)的比較高?

  (2)哪種農(nóng)作物的苗長(zhǎng)得比較整齊?

  2.段巍和金志強(qiáng)兩人參加體育項(xiàng)目訓(xùn)練,近期的5次測(cè)試成績(jī)?nèi)缦卤硭荆l(shuí)的成績(jī)比較穩(wěn)定?為什么?

  測(cè)試次數(shù)1 2 3 4 5

  段巍13 14 13 12 13

  金志強(qiáng)10 13 16 14 12

  參考答案:1.(1)甲、乙兩種農(nóng)作物的苗平均高度相同;(2)甲整齊

  2.段巍的成績(jī)比金志強(qiáng)的成績(jī)要穩(wěn)定。

  七.課后練習(xí):

  1.已知一組數(shù)據(jù)為2、0、-1、3、-4,則這組數(shù)據(jù)的方差為。

  2.甲、乙兩名學(xué)生在相同的條件下各射靶10次,命中的環(huán)數(shù)如下:

  甲:7、8、6、8、6、5、9、10、7、4

  乙:9、5、7、8、7、6、8、6、7、7

  經(jīng)過(guò)計(jì)算,兩人射擊環(huán)數(shù)的平均數(shù)相同,但S S,所以確定去參加比賽。

  3.甲、乙兩臺(tái)機(jī)床生產(chǎn)同種零件,10天出的次品分別是( )

  甲:0、1、0、2、2、0、3、1、2、4

  乙:2、3、1、2、0、2、1、1、2、1

  分別計(jì)算出兩個(gè)樣本的平均數(shù)和方差,根據(jù)你的計(jì)算判斷哪臺(tái)機(jī)床的性能較好?

  4.小爽和小兵在10次百米跑步練習(xí)中成績(jī)?nèi)绫硭荆?單位:秒)

  小爽10.8 10.9 11.0 10.7 11.1 11.1 10.8 11.0 10.7 10.9

  小兵10.9 10.9 10.8 10.8 11.0 10.9 10.8 11.1 10.9 10.8

  如果根據(jù)這幾次成績(jī)選拔一人參加比賽,你會(huì)選誰(shuí)呢?

  答案:1. 6 2. >、乙;3. =1.5、S =0.975、 =1. 5、S =0.425,乙機(jī)床性能好

  4. =10.9、S =0.02;

  =10.9、S =0.008

  選擇小兵參加比賽。

八年級(jí)數(shù)學(xué)的教案7

  知識(shí)點(diǎn)2總體、個(gè)體、樣本

  調(diào)查中,所要考察對(duì)象的全體稱為總體,而組成總體的每一個(gè)考察對(duì)象稱為個(gè)體。

  例如,某班10名女生的考試成績(jī)是總體,每一名女生的考試成績(jī)是個(gè)體。

  從總體中抽取部分個(gè)體進(jìn)行調(diào)查,這種調(diào)查稱為抽樣調(diào)查,其中從總體中抽取的一部分個(gè)體叫做總體的一個(gè)樣本。

  例如,要調(diào)查全縣農(nóng)村中學(xué)生學(xué)生平均每周每人的零花錢(qián)數(shù),由于人數(shù)較多(一般涉及幾萬(wàn)人),我們從中抽取500名學(xué)生進(jìn)行調(diào)查,就是抽樣調(diào)查,這500名學(xué)生平均每周每人的零花錢(qián)數(shù),就是總體的一個(gè)樣本。

  知識(shí)點(diǎn)3中位數(shù)的概念

  將一組數(shù)據(jù)按照由小到大(或由大到。┑捻樞蚺帕,如果數(shù)據(jù)的個(gè)數(shù)是奇數(shù),則處于中間位置的數(shù)稱為這組數(shù)據(jù)的中位數(shù);如果數(shù)據(jù)的個(gè)數(shù)是偶數(shù),則中間兩個(gè)數(shù)據(jù)的平均數(shù)稱為這組數(shù)據(jù)的中位數(shù)。

  知識(shí)點(diǎn)4眾數(shù)的概念

  一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)就是這組數(shù)據(jù)的眾數(shù)。

  例如:求一組數(shù)據(jù)3,2,3,5,3,1的眾數(shù)。

  解:這組數(shù)據(jù)中3出現(xiàn)3次,2,5,1均出現(xiàn)1次。所以3是這組數(shù)據(jù)的眾數(shù)。

  又如:求一組數(shù)據(jù)2,3,5,2,3,6的眾數(shù)。

  解:這組數(shù)據(jù)中2出現(xiàn)2次,3出現(xiàn)2次,5,6各出現(xiàn)1次。

  所以這組數(shù)據(jù)的眾數(shù)是2和3。

  【規(guī)律方法小結(jié)】

  (1)平均數(shù)、中位數(shù)、眾數(shù)都是描述一組數(shù)據(jù)集中趨勢(shì)的量。

 。2)平均數(shù)反映一組數(shù)據(jù)的平均水平,與這組數(shù)據(jù)中的每個(gè)數(shù)據(jù)都有關(guān),是最為重要的量。

  (3)中位數(shù)不受個(gè)別偏大或偏小數(shù)據(jù)的影響,當(dāng)一組數(shù)據(jù)中的個(gè)別數(shù)據(jù)變動(dòng)較大時(shí),一般用它來(lái)描述集中趨勢(shì)。

 。4)眾數(shù)只與數(shù)據(jù)出現(xiàn)的頻數(shù)有關(guān),不受個(gè)別數(shù)據(jù)影響,有時(shí)是我們最為關(guān)心的統(tǒng)計(jì)數(shù)據(jù)。

  探究交流

  1、一組數(shù)據(jù)的中位數(shù)一定是這組數(shù)據(jù)中的一個(gè),這句話對(duì)嗎?為什么?

  解析:不對(duì),一組數(shù)據(jù)的中位數(shù)不一定是這組數(shù)據(jù)中的一個(gè),當(dāng)這組數(shù)據(jù)有偶數(shù)個(gè)時(shí),中位數(shù)由中間兩個(gè)數(shù)的平均數(shù)決定,若中間兩數(shù)相等,則這組數(shù)據(jù)的中位數(shù)在這組數(shù)據(jù)之中,反之,中位數(shù)不在這組數(shù)據(jù)之中。

  總結(jié):

 。1)中位數(shù)在一組數(shù)據(jù)中是唯一的,可能是這組數(shù)據(jù)中的`一個(gè),也可能不是這組數(shù)據(jù)中的數(shù)據(jù)。

  (2)求中位數(shù)時(shí),先將數(shù)據(jù)按由小到大的順序排列(或按由大到小的順序排列)。若這組數(shù)據(jù)是奇數(shù)個(gè),則最中間的數(shù)據(jù)是中位數(shù);若這組數(shù)據(jù)是偶數(shù)個(gè),則最中間的兩個(gè)數(shù)據(jù)的平均數(shù)是中位數(shù)。

 。3)中位數(shù)的單位與數(shù)據(jù)的單位相同。

 。4)中位數(shù)與數(shù)據(jù)排序有關(guān)。當(dāng)一組數(shù)據(jù)中的個(gè)別數(shù)據(jù)變動(dòng)較大時(shí),可用中位數(shù)來(lái)描述這組數(shù)據(jù)的集中趨勢(shì)。

  課堂檢測(cè)

  基本概念題

  1、填空題。

 。1)數(shù)據(jù)15,23,17,18,22的平均數(shù)是;

  (2)在某班的40名學(xué)生中,14歲的有5人,15歲的有30人,16歲的有4人,17歲的有1人,則這個(gè)班學(xué)生的平均年齡約是_________;

  (3)某一學(xué)生5門(mén)學(xué)科考試成績(jī)的平均分為86分,已知其中兩門(mén)學(xué)科的總分為193分,則另外3門(mén)學(xué)科的分為_(kāi)_______;

 。4)為了考察某公園一年中每天進(jìn)園的人數(shù),在其中的30天里,對(duì)進(jìn)園的人數(shù)進(jìn)行了統(tǒng)計(jì),這個(gè)問(wèn)題中的總體是________,樣本是________,個(gè)體是________。

  基礎(chǔ)知識(shí)應(yīng)用題

  2、某公交線路總站設(shè)在一居民小區(qū)附近,為了了解高峰時(shí)段從總站乘車(chē)出行的人數(shù),隨機(jī)抽查了10個(gè)班次的乘車(chē)人數(shù),結(jié)果如下:20,23,26,25,29,28,30,25,21,23。

 。1)計(jì)算這10個(gè)班次乘車(chē)人數(shù)的平均數(shù);

 。2)如果在高峰時(shí)段從總站共發(fā)車(chē)60個(gè)班次,根據(jù)前面的計(jì)算結(jié)果,估計(jì)在高峰時(shí)段從總站乘該路車(chē)出行的乘客共有多少。

八年級(jí)數(shù)學(xué)的教案8

  教學(xué)目標(biāo)

 。ㄒ唬┙虒W(xué)知識(shí)點(diǎn)

  1.經(jīng)歷探索積的乘方的運(yùn)算法則的過(guò)程,進(jìn)一步體會(huì)冪的意義。

  2.理解積的乘方運(yùn)算法則,能解決一些實(shí)際問(wèn)題。

 。ǘ┠芰τ(xùn)練要求

  1.在探究積的乘方的運(yùn)算法則的過(guò)程中,發(fā)展推理能力和有條理的表達(dá)能力。

  2.學(xué)習(xí)積的乘方的運(yùn)算法則,提高解決問(wèn)題的能力。

 。ㄈ┣楦信c價(jià)值觀要求

  在發(fā)展推理能力和有條理的語(yǔ)言、符號(hào)表達(dá)能力的同時(shí),進(jìn)一步體會(huì)學(xué)習(xí)數(shù)學(xué)的興趣,提高學(xué)習(xí)數(shù)學(xué)的信心,感受數(shù)學(xué)的簡(jiǎn)潔美。

  教學(xué)重點(diǎn)

  積的乘方運(yùn)算法則及其應(yīng)用。

  教學(xué)難點(diǎn)

  冪的運(yùn)算法則的靈活運(yùn)用。

  教學(xué)方法

  自學(xué)─引導(dǎo)相結(jié)合的方法。

  同底數(shù)冪的乘法、冪的乘方、積的乘方成一個(gè)體系,研究方法類(lèi)同,有前兩節(jié)課做基礎(chǔ),本節(jié)課可放手讓學(xué)生自學(xué),教師引導(dǎo)學(xué)生總結(jié),從而讓學(xué)生真正理解冪的運(yùn)算方法,能解決一些實(shí)際問(wèn)題。

  教具準(zhǔn)備

  投影片.

  教學(xué)過(guò)程

 、瘢岢鰡(wèn)題,創(chuàng)設(shè)情境

  [師]還是就上節(jié)課開(kāi)課提出的問(wèn)題:若已知一個(gè)正方體的棱長(zhǎng)為1.1×103cm,你能計(jì)算出它的體積是多少嗎?

  [生]它的體積應(yīng)是V=(1.1×103)3cm3。

  [師]這個(gè)結(jié)果是冪的.乘方形式嗎?

  [生]不是,底數(shù)是1.1和103的乘積,雖然103是冪,但總體來(lái)看,我認(rèn)為應(yīng)是積的乘方才有道理。

  [師]你分析得很有道理,積的乘方如何運(yùn)算呢?能不能找到一個(gè)運(yùn)算法則?有前兩節(jié)課的探究經(jīng)驗(yàn),老師想請(qǐng)同學(xué)們自己探索,發(fā)現(xiàn)其中的奧秒。

 、颍畬(dǎo)入新課

  老師列出自學(xué)提綱,引導(dǎo)學(xué)生自主探究、討論、嘗試、歸納。

  出示投影片

  1.填空,看看運(yùn)算過(guò)程用到哪些運(yùn)算律,從運(yùn)算結(jié)果看能發(fā)現(xiàn)什么規(guī)律?

 。1)(ab)2=(ab)·(ab)=(a·a)·(b·b)=a()b()

 。2)(ab)3=______=_______=a()b()

 。3)(ab)n=______=______=a()b()(n是正整數(shù))

  2.把你發(fā)現(xiàn)的規(guī)律用文字語(yǔ)言表述,再用符號(hào)語(yǔ)言表達(dá)。

  3.解決前面提到的正方體體積計(jì)算問(wèn)題。

  4.積的乘方的運(yùn)算法則能否進(jìn)行逆運(yùn)算呢?請(qǐng)驗(yàn)證你的想法。

  5.完成課本P170例3。

  學(xué)生探究的經(jīng)過(guò):

  1.(1)(ab)2=(ab)·(ab)=(a·a)·(b·b)=a2b2,其中第①步是用乘方的意義;第②步是用乘法的交換律和結(jié)合律;第③步是用同底數(shù)冪的乘法法則。同樣的方法可以算出(2)、(3)題。

八年級(jí)數(shù)學(xué)的教案9

  學(xué)習(xí)重點(diǎn):函數(shù)的概念 及確定自變量的取值范圍。

  學(xué)習(xí)難點(diǎn):認(rèn)識(shí)函數(shù),領(lǐng)會(huì)函數(shù)的意義。

  【自主復(fù)習(xí)知識(shí)準(zhǔn)備】

  請(qǐng)你舉出生活中含有兩個(gè)變量的變化過(guò)程,說(shuō)明其中的常量和變量。

  【自主探究知識(shí)應(yīng)用】

  請(qǐng)看書(shū)72——74頁(yè)內(nèi)容,完成下列問(wèn)題:

  1、 思考書(shū)中第72頁(yè)的問(wèn)題,歸納出變量之間的關(guān)系。

  2、 完成書(shū)上第73頁(yè)的思考,體會(huì)圖形中體現(xiàn)的變量和變量之間的關(guān)系。

  3、 歸納出函數(shù)的定義,明確函數(shù)定義中必須要滿足的條件。

  歸納:一般的,在一個(gè)變化過(guò)程中,如果有______變量x和y,并且對(duì)于x的_______,y都有_________與其對(duì)應(yīng),那么我們就說(shuō)x是__________,y是x的________。如果當(dāng)x=a時(shí),y=b,那么b叫做當(dāng)自變量的值為a時(shí)的函數(shù)值。

  補(bǔ)充小結(jié):

  (1)函數(shù)的定義:

  (2)必須是一個(gè)變化過(guò)程;

  (3)兩個(gè)變量;其中一個(gè)變量每取一個(gè)值 ,另一個(gè)變量有且有唯一值對(duì)它對(duì)應(yīng)。

  三、鞏固與拓展:

  例1:一輛汽車(chē)的.油箱中現(xiàn)有汽油50L,如果不再加油,那么油箱中的油量y(單位:L)隨行駛里程x(單位:千米)的增加而減少,平均耗油量為0.1L/千米。

  (1)寫(xiě)出表示y與x的函數(shù)關(guān)系式.

  (2)指出自變量x的取值范圍.

  (3) 汽車(chē)行駛200千米時(shí),油箱中還有多少汽油?

  【當(dāng)堂檢測(cè)知識(shí)升華】

  1、判斷下列變量之間是不是函數(shù)關(guān)系:

  (1)長(zhǎng)方形的寬一定時(shí),其長(zhǎng)與面積;

  (2)等腰三角形的底邊長(zhǎng)與面積;

  (3)某人的年齡與身高;

  2、寫(xiě)出下列函數(shù)的解析式.

  (1)一個(gè)長(zhǎng)方體盒子高3cm,底面是正方形,這個(gè)長(zhǎng)方體的體積為y(cm3),底面邊長(zhǎng)為x(cm),寫(xiě)出表示y與x的函數(shù)關(guān)系的式子.

  (2)汽車(chē)加油時(shí),加油槍的流量為10L/min.

 、偃绻佑颓,油箱里還有5 L油,寫(xiě)出在加油過(guò)程中,油箱中的油量y(L)與加油時(shí)間x(min)之間的函數(shù)關(guān)系;

 、谌绻佑蜁r(shí),油箱是空的,寫(xiě)出在加油過(guò)程中,油箱中的油量y(L)與加油時(shí)間x(min) 之間的函數(shù)關(guān)系.

  (3)某種活期儲(chǔ)蓄的月利率為0.16%,存入10000元本金,按國(guó)家規(guī)定,取款時(shí),應(yīng)繳納利息部分的20%的利息稅,求這種活期儲(chǔ)蓄扣除利息稅后實(shí)得的本息和y(元)與所存月數(shù)x之間的關(guān)系式.

  (4)如圖,每個(gè)圖中是由若干個(gè)盆花組成的圖案,每條邊(包括兩個(gè)頂點(diǎn))有n盆花,每個(gè)圖案的花盆總數(shù)是S,求S與n之間的關(guān)系式.

  八年級(jí)變量與函數(shù)(2)數(shù)學(xué)教案的全部?jī)?nèi)容由數(shù)學(xué)網(wǎng)提供,教材中的每一個(gè)問(wèn)題,每一個(gè)環(huán)節(jié),都有教師依據(jù)學(xué)生學(xué)習(xí)的實(shí)際和教材的實(shí)際進(jìn)行有針對(duì)性的設(shè)置,希望大家喜歡!

八年級(jí)數(shù)學(xué)的教案10

  教學(xué)目標(biāo)

  1.等腰三角形的概念。2.等腰三角形的性質(zhì)。3.等腰三角形的概念及性質(zhì)的應(yīng)用。

  教學(xué)重點(diǎn):1.等腰三角形的概念及性質(zhì)。2.等腰三角形性質(zhì)的應(yīng)用。

  教學(xué)難點(diǎn):等腰三角形三線合一的性質(zhì)的理解及其應(yīng)用。

  教學(xué)過(guò)程

 、.提出問(wèn)題,創(chuàng)設(shè)情境

  在前面的學(xué)習(xí)中,我們認(rèn)識(shí)了軸對(duì)稱圖形,探究了軸對(duì)稱的性質(zhì),并且能夠作出一個(gè)簡(jiǎn)單平面圖形關(guān)于某一直線的軸對(duì)稱圖形,還能夠通過(guò)軸對(duì)稱變換來(lái)設(shè)計(jì)一些美麗的圖案.這節(jié)課我們就是從軸對(duì)稱的角度來(lái)認(rèn)識(shí)一些我們熟悉的幾何圖形.來(lái)研究:①三角形是軸對(duì)稱圖形嗎?②什么樣的三角形是軸對(duì)稱圖形?

  有的三角形是軸對(duì)稱圖形,有的三角形不是。

  問(wèn)題:那什么樣的三角形是軸對(duì)稱圖形?

  滿足軸對(duì)稱的條件的`三角形就是軸對(duì)稱圖形,也就是將三角形沿某一條直線對(duì)折后兩部分能夠完全重合的就是軸對(duì)稱圖形。

  我們這節(jié)課就來(lái)認(rèn)識(shí)一種成軸對(duì)稱圖形的三角形──等腰三角形。

 、.導(dǎo)入新課:要求學(xué)生通過(guò)自己的思考來(lái)做一個(gè)等腰三角形。

  作一條直線L,在L上取點(diǎn)A,在L外取點(diǎn)B,作出點(diǎn)B關(guān)于直線L的對(duì)稱點(diǎn)C,連結(jié)AB、BC、CA,則可得到一個(gè)等腰三角形。

  等腰三角形的定義:有兩條邊相等的三角形叫做等腰三角形.相等的兩邊叫做腰,另一邊叫做底邊,兩腰所夾的角叫做頂角,底邊與腰的夾角叫底角.同學(xué)們?cè)谧约鹤鞒龅牡妊切沃校⒚魉难、底邊、頂角和底角?/p>

  思考:

  1.等腰三角形是軸對(duì)稱圖形嗎?請(qǐng)找出它的對(duì)稱軸。

  2.等腰三角形的兩底角有什么關(guān)系?

  3.頂角的平分線所在的直線是等腰三角形的對(duì)稱軸嗎?

  4.底邊上的中線所在的直線是等腰三角形的對(duì)稱軸嗎?底邊上的高所在的直線呢?

  結(jié)論:等腰三角形是軸對(duì)稱圖形.它的對(duì)稱軸是頂角的平分線所在的直線.因?yàn)榈妊切蔚膬裳嗟龋园堰@兩條腰重合對(duì)折三角形便知:等腰三角形是軸對(duì)稱圖形,它的對(duì)稱軸是頂角的平分線所在的直線。

  要求學(xué)生把自己做的等腰三角形進(jìn)行折疊,找出它的對(duì)稱軸,并看它的兩個(gè)底角有什么關(guān)系。

  沿等腰三角形的頂角的平分線對(duì)折,發(fā)現(xiàn)它兩旁的部分互相重合,由此可知這個(gè)等腰三角形的兩個(gè)底角相等,而且還可以知道頂角的平分線既是底邊上的中線,也是底邊上的高。

  由此可以得到等腰三角形的性質(zhì):

  1.等腰三角形的兩個(gè)底角相等。(簡(jiǎn)寫(xiě)成“等邊對(duì)等角”)

  2.等腰三角形的頂角平分線,底邊上的中線、底邊上的高互相重合。(通常稱作“三線合一”)

  由上面折疊的過(guò)程獲得啟發(fā),我們可以通過(guò)作出等腰三角形的對(duì)稱軸,得到兩個(gè)全等的三角形,從而利用三角形的全等來(lái)證明這些性質(zhì)。同學(xué)們現(xiàn)在就動(dòng)手來(lái)寫(xiě)出這些證明過(guò)程。

  如右圖,在△ABC中,AB=AC,作底邊BC的中線AD,因?yàn)?/p>

  所以△BAD≌△CAD(SSS).

  所以∠B=∠C.

  ]如右圖,在△ABC中,AB=AC,作頂角∠BAC的角平分線AD,因?yàn)?/p>

  所以△BAD≌△CAD.

  所以BD=CD,∠BDA=∠CDA=∠BDC=90°.

  [例1]如圖,在△ABC中,AB=AC,點(diǎn)D在AC上,且BD=BC=AD,求:△ABC各角的度數(shù).

  分析:根據(jù)等邊對(duì)等角的性質(zhì),我們可以得到

  ∠A=∠ABD,∠ABC=∠C=∠BDC,

  再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A.

  再由三角形內(nèi)角和為180°,就可求出△ABC的三個(gè)內(nèi)角.

  把∠A設(shè)為x的話,那么∠ABC、∠C都可以用x來(lái)表示,這樣過(guò)程就更簡(jiǎn)捷.

  解:因?yàn)锳B=AC,BD=BC=AD,所以∠ABC=∠C=∠BDC.

  ∠A=∠ABD(等邊對(duì)等角).

  設(shè)∠A=x,則∠BDC=∠A+∠ABD=2x,從而∠ABC=∠C=∠BDC=2x.

  于是在△ABC中,有

  ∠A+∠ABC+∠C=x+2x+2x=180°,解得x=36°.在△ABC中,∠A=35°,∠ABC=∠C=72°.

  [師]下面我們通過(guò)練習(xí)來(lái)鞏固這節(jié)課所學(xué)的知識(shí).

 、.隨堂練習(xí):1.課本P51練習(xí)1、2、3.2.閱讀課本P49~P51,然后小結(jié)。

 、.課時(shí)小結(jié)

  這節(jié)課我們主要探討了等腰三角形的性質(zhì),并對(duì)性質(zhì)作了簡(jiǎn)單的應(yīng)用.等腰三角形是軸對(duì)稱圖形,它的兩個(gè)底角相等(等邊對(duì)等角),等腰三角形的對(duì)稱軸是它頂角的平分線,并且它的頂角平分線既是底邊上的中線,又是底邊上的高。

  我們通過(guò)這節(jié)課的學(xué)習(xí),首先就是要理解并掌握這些性質(zhì),并且能夠靈活應(yīng)用它們。

 、.作業(yè):課本P56習(xí)題12.3第1、2、3、4題。

  板書(shū)設(shè)計(jì)

  12.3.1.1等腰三角形

八年級(jí)數(shù)學(xué)的教案11

  一、教學(xué)目標(biāo)

  1.使學(xué)生根據(jù)分?jǐn)?shù)的通分法則及分式的基本性質(zhì),分析、歸納出分式的通分法則,并能熟練掌握通分運(yùn)算。

  2.使學(xué)生理解和掌握分式和減法法則,并會(huì)應(yīng)用法則進(jìn)行分式加減的運(yùn)算。

  3.使學(xué)生能夠靈活運(yùn)用分式的有關(guān)法則進(jìn)行分式的四則混合運(yùn)算。

  4.引導(dǎo)學(xué)生不斷小結(jié)運(yùn)算方法和技巧,提高運(yùn)算能力。

  二、教學(xué)重點(diǎn)和難點(diǎn)

  1.重點(diǎn):分式的加減運(yùn)算。

  2.難點(diǎn):異分母的分式加減法運(yùn)算。

  三、教學(xué)方法

  啟發(fā)式、分組討論。

  四、教學(xué)手段

  幻燈片。

  五、教學(xué)過(guò)程

 。ㄒ唬┮

  1.如何計(jì)算:2.如何計(jì)算:3.若分母不同如何計(jì)算?如:

 。ǘ┬抡n

  1.類(lèi)比分?jǐn)?shù)的通分得到分式的通分:把幾個(gè)異分母的分式分別化成與原來(lái)的分式相等的同分母的分式,叫做分式的通分。

  2.通分的`依據(jù):分式的基本性質(zhì)。

  3.通分的關(guān)鍵:確定幾個(gè)分式的公分母。

  通常取各分母的所有因式的最高次冪的積作公分母,這樣的公分母叫做最簡(jiǎn)公分母。

  例1通分:

 。1)解:∵最簡(jiǎn)公分母是,

  小結(jié):各分母的系數(shù)都是整數(shù)時(shí),通常取它們的系數(shù)的最小公倍數(shù)作為最簡(jiǎn)公分母的系數(shù)。

 。2)解:

  例2通分:

 。1)解:∵最簡(jiǎn)公分母的是2x(x+1)(x—1),

  小結(jié):當(dāng)分母是多項(xiàng)式時(shí),應(yīng)先分解因式。

 。2)解:將分母分解因式:∴最簡(jiǎn)公分母為2(x+2)(x—2),

  練習(xí):教材P,79中1、2、3。

 。ㄈ┱n堂小結(jié)

  1.通分與約分雖都是針對(duì)分式而言,但卻是兩種相反的變形。約分是針對(duì)一個(gè)分式而言,而通分是針對(duì)多個(gè)分式而言;約分是把分式化簡(jiǎn),而通分是把分式化繁,從而把各分式的分母統(tǒng)一起來(lái)。

  2.通分和約分都是依據(jù)分式的基本性質(zhì)進(jìn)行變形,其共同點(diǎn)是保持分式的值不變。

  3.一般地,通分結(jié)果中,分母不展開(kāi)而寫(xiě)成連乘積的形式,分子則乘出來(lái)寫(xiě)成多項(xiàng)式,為進(jìn)一步運(yùn)算作準(zhǔn)備。

八年級(jí)數(shù)學(xué)的教案12

  教學(xué)目標(biāo):

  1、掌握一次函數(shù)解析式的特點(diǎn)及意義

  2、知道一次函數(shù)與正比例函數(shù)的關(guān)系

  3、理解一次函數(shù)圖象特點(diǎn)與解析式的聯(lián)系規(guī)律

  教學(xué)重點(diǎn):

  1、 一次函數(shù)解析式特點(diǎn)

  2、 一次函數(shù)圖象特征與解析式的聯(lián)系規(guī)律

  教學(xué)難點(diǎn):

  1、一次函數(shù)與正比例函數(shù)關(guān)系

  2、根據(jù)已知信息寫(xiě)出一次函數(shù)的表達(dá)式。

  教學(xué)過(guò)程:

 、瘢岢鰡(wèn)題,創(chuàng)設(shè)情境

  問(wèn)題1 小明暑假第一次去北京.汽車(chē)駛上A地的高速公路后,小明觀察里程碑,發(fā)現(xiàn)汽車(chē)的平均車(chē)速是95千米/小時(shí).已知A地直達(dá)北京的高速公路全程為570千米,小明想知道汽車(chē)從A地駛出后,距北京的路程和汽車(chē)在高速公路上行駛的時(shí)間有什么關(guān)系,以便根據(jù)時(shí)間估計(jì)自己和北京的距離.

  分析 我們知道汽車(chē)距北京的路程隨著行車(chē)時(shí)間而變化,要想找出這兩個(gè)變化著的量的關(guān)系,并據(jù)此得出相應(yīng)的值,顯然,應(yīng)該探求這兩個(gè)變量的變化規(guī)律.為此,我們?cè)O(shè)汽車(chē)在高速公路上行駛時(shí)間為t小時(shí),汽車(chē)距北京的路程為s千米,根據(jù)題意,s和t的函數(shù)關(guān)系式是

  s=570-95t.

  說(shuō)明 找出問(wèn)題中的變量并用字母表示是探求函數(shù)關(guān)系的第一步,這里的s、t是兩個(gè)變量,s是t的函數(shù),t是自變量,s是因變量.

  問(wèn)題2 小張準(zhǔn)備將平時(shí)的零用錢(qián)節(jié)約一些儲(chǔ)存起來(lái).他已存有50元,從現(xiàn)在起每個(gè)月節(jié)存12元.試寫(xiě)出小張的存款與從現(xiàn)在開(kāi)始的月份之間的函數(shù)關(guān)系式.

  分析 我們?cè)O(shè)從現(xiàn)在開(kāi)始的月份數(shù)為x,小張的存款數(shù)為y元,得到所求的函數(shù)關(guān)系式為:y=50+12x.

  問(wèn)題3 以上問(wèn)題1和問(wèn)題2表示的這兩個(gè)函數(shù)有什么共同點(diǎn)?

 、颍畬(dǎo)入新課

  上面的兩個(gè)函數(shù)關(guān)系式都是左邊是因變量y,右邊是含自變量x的代數(shù)式。并且自變量和因變量的指數(shù)都是一次。若兩個(gè)變量x,y間的關(guān)系式可以表示成y=kx+b(k,b為常數(shù)k≠0)的形式,則稱y是x的一次函數(shù)(x為自變量,y為因變量)。特別地,當(dāng)b=0時(shí),稱

  y是x的正比例函數(shù)。

  例1:下列函數(shù)中,y是x的一次函數(shù)的是( )

 、賧=x-6;②y=2x;③y=;④y=7-x x8

  A、①②③B、①③④ C、①②③④ D、②③④

  例2 下列函數(shù)關(guān)系中,哪些屬于一次函數(shù),其中哪些又屬于正比例函數(shù)?

  (1)面積為10cm2的三角形的底a(cm)與這邊上的高h(yuǎn)(cm);

  (2)長(zhǎng)為8(cm)的平行四邊形的周長(zhǎng)L(cm)與寬b(cm);

  (3)食堂原有煤120噸,每天要用去5噸,x天后還剩下煤y噸;

  (4)汽車(chē)每小時(shí)行40千米,行駛的路程s(千米)和時(shí)間t(小時(shí)).

 。5)汽車(chē)以60千米/時(shí)的速度勻速行駛,行駛路程中y(千米)與行駛時(shí)間x(時(shí))之間的關(guān)系式;

 。6)圓的面積y(厘米2)與它的半徑x(厘米)之間的關(guān)系;

 。7)一棵樹(shù)現(xiàn)在高50厘米,每個(gè)月長(zhǎng)高2厘米,x月后這棵樹(shù)的高度為y(厘米) 分析 確定函數(shù)是否為一次函數(shù)或正比例函數(shù),就是看它們的解析式經(jīng)過(guò)整理后是否符合y=kx+b(k≠0)或y=kx(k≠0)形式,所以此題必須先寫(xiě)出函數(shù)解析式后解答. 解 (1)a?20,不是一次函數(shù). h

  (2)L=2b+16,L是b的一次函數(shù).

  (3)y=150-5x,y是x的一次函數(shù).

  (4)s=40t,s既是t的一次函數(shù)又是正比例函數(shù).

 。5)y=60x,y是x的一次函數(shù),也是x的正比例函數(shù);

 。6)y=πx2,y不是x的正比例函數(shù),也不是x的一次函數(shù);

 。7)y=50+2x,y是x的一次函數(shù),但不是x的正比例函數(shù)

  例3 已知函數(shù)y=(k-2)x+2k+1,若它是正比例函數(shù),求k的值.若它是一次函數(shù),求k的值.

  分析 根據(jù)一次函數(shù)和正比例函數(shù)的定義,易求得k的值.

  解 若y=(k-2)x+2k+1是正比例函數(shù),則2k+1=0,即k=?

  若y=(k-2)x+2k+1是一次函數(shù),則k-2≠0,即k≠2.

  例4 已知y與x-3成正比例,當(dāng)x=4時(shí),y=3.

  (1)寫(xiě)出y與x之間的'函數(shù)關(guān)系式;

  (2)y與x之間是什么函數(shù)關(guān)系;

  (3)求x=2.5時(shí),y的值.

  解 (1)因?yàn)?y與x-3成正比例,所以y=k(x-3).

  又因?yàn)閤=4時(shí),y=3,所以3= k(4-3),解得k=3,

  所以y=3(x-3)=3x-9.

  (2) y是x的一次函數(shù).

  (3)當(dāng)x=2.5時(shí),y=3×2.5=7.5.

  1. 2

  例5 已知A、B兩地相距30千米,B、C兩地相距48千米.某人騎自行車(chē)以每小時(shí)12千米的速度從A地出發(fā),經(jīng)過(guò)B地到達(dá)C地.設(shè)此人騎行時(shí)間為x(時(shí)),離B地距離為y(千米).

  (1)當(dāng)此人在A、B兩地之間時(shí),求y與x的函數(shù)關(guān)系及自變量x取值范圍.

  (2)當(dāng)此人在B、C兩地之間時(shí),求y與x的函數(shù)關(guān)系及自變量x的取值范圍.

  分析 (1)當(dāng)此人在A、B兩地之間時(shí),離B地距離y為A、B兩地的距離與某人所走的路程的差.

  (2)當(dāng)此人在B、C兩地之間時(shí),離B地距離y為某人所走的路程與A、B兩地的距離的差.

  解 (1) y=30-12x.(0≤x≤2.5)

  (2) y=12x-30.(2.5≤x≤6.5)

  例6 某油庫(kù)有一沒(méi)儲(chǔ)油的儲(chǔ)油罐,在開(kāi)始的8分鐘時(shí)間內(nèi),只開(kāi)進(jìn)油管,不開(kāi)出油管,油罐的進(jìn)油至24噸后,將進(jìn)油管和出油管同時(shí)打開(kāi)16分鐘,油罐中的油從24噸增至40噸.隨后又關(guān)閉進(jìn)油管,只開(kāi)出油管,直至將油罐內(nèi)的油放完.假設(shè)在單位時(shí)間內(nèi)進(jìn)油管與出油管的流量分別保持不變.寫(xiě)出這段時(shí)間內(nèi)油罐的儲(chǔ)油量y(噸)與進(jìn)出油時(shí)間x(分)的函數(shù)式及相應(yīng)的x取值范圍.

  分析 因?yàn)樵谥淮蜷_(kāi)進(jìn)油管的8分鐘內(nèi)、后又打開(kāi)進(jìn)油管和出油管的16分鐘和最后的只開(kāi)出油管的三個(gè)階級(jí)中,儲(chǔ)油罐的儲(chǔ)油量與進(jìn)出油時(shí)間的函數(shù)關(guān)系式是不同的,所以此題因分三個(gè)時(shí)間段來(lái)考慮.但在這三個(gè)階段中,兩變量之間均為一次函數(shù)關(guān)系.

  解 在第一階段:y=3x(0≤x≤8);

  在第二階段:y=16+x(8≤x≤16);

  在第三階段:y=-2x+88(24≤x≤44).

 、螅S堂練習(xí)

  根據(jù)上表寫(xiě)出y與x之間的關(guān)系式是:________________,y是否為x一的次函數(shù)?y是否為x有正比例函數(shù)?

  2、為了加強(qiáng)公民的節(jié)水意識(shí),合理利用水資源,某城市規(guī)定用水收費(fèi)標(biāo)準(zhǔn)如下:每戶每月用水量不超過(guò)6米3時(shí),水費(fèi)按0.6元/米3收費(fèi);每戶每月用水量超過(guò)6米3時(shí),超過(guò)部分按1元/米3收費(fèi)。設(shè)每戶每月用水量為x米3,應(yīng)繳水費(fèi)y元。(1)寫(xiě)出每月用水量不

  超過(guò)6米3和超過(guò)6米3時(shí),y與x之間的函數(shù)關(guān)系式,并判斷它們是否為一次函數(shù)。(2)已知某戶5月份的用水量為8米3,求該用戶5月份的水費(fèi)。[①y=0.6x,y=x-2.4,y是x的一次函數(shù)。②y=8-2.4=5.6(元)]

 、簦n時(shí)小結(jié)

  1、一次函數(shù)、正比例函數(shù)的概念及關(guān)系。

  2、能根據(jù)已知簡(jiǎn)單信息,寫(xiě)出一次函數(shù)的表達(dá)式。

 、酰n后作業(yè)

  1、已知y-3與x成正比例,且x=2時(shí),y=7

  (1)寫(xiě)出y與x之間的函數(shù)關(guān)系.

  (2)y與x之間是什么函數(shù)關(guān)系.

  (3)計(jì)算y=-4時(shí)x的值.

  2.甲市到乙市的包裹郵資為每千克0.9元,每件另加手續(xù)費(fèi)0.2元,求總郵資y(元)與包裹重量x(千克)之間的函數(shù)解析式,并計(jì)算5千克重的包裹的郵資.

  3.倉(cāng)庫(kù)內(nèi)原有粉筆400盒.如果每個(gè)星期領(lǐng)出36盒,求倉(cāng)庫(kù)內(nèi)余下的粉筆盒數(shù)Q與星期數(shù)t之間的函數(shù)關(guān)系.

  4.今年植樹(shù)節(jié),同學(xué)們種的樹(shù)苗高約1.80米.據(jù)介紹,這種樹(shù)苗在10年內(nèi)平均每年長(zhǎng)高0.35米.求樹(shù)高與年數(shù)之間的函數(shù)關(guān)系式.并算一算4年后同學(xué)們中學(xué)畢業(yè)時(shí)這些樹(shù)約有多高.

  5.按照我國(guó)稅法規(guī)定:個(gè)人月收入不超過(guò)800元,免交個(gè)人所得稅.超過(guò)800元不超過(guò)1300元部分需繳納5%的個(gè)人所得稅.試寫(xiě)出月收入在800元到1300元之間的人應(yīng)繳納的稅金y(元)和月收入x(元)之間的函數(shù)關(guān)系式.

八年級(jí)數(shù)學(xué)的教案13

  一、 教學(xué)目標(biāo)

  1.了解分式、有理式的概念.

  2.理解分式有意義的條件,能熟練地求出分式有意義的條件.

  二、重點(diǎn)、難點(diǎn)

  1.重點(diǎn):理解分式有意義的條件.

  2.難點(diǎn):能熟練地求出分式有意義的條件.

  三、課堂引入

  1.讓學(xué)生填寫(xiě)P127[思考],學(xué)生自己依次填出:,,,.

  2.學(xué)生看問(wèn)題:一艘輪船在靜水中的最大航速為30 /h,它沿江以最大航速順流航行90 所用時(shí)間,與以最大航速逆流航行60 所用時(shí)間相等,江水的流速為多少?

  請(qǐng)同學(xué)們跟著教師一起設(shè)未知數(shù),列方程.

  設(shè)江水的流速為v /h.

  輪船順流航行90 所用的時(shí)間為小時(shí),逆流航行60 所用時(shí)間小時(shí),所以=.

  3. 以上的式子,,,,有什么共同點(diǎn)?它們與分?jǐn)?shù)有什么相同點(diǎn)和不同點(diǎn)?

  四、例題講解

  P128例1. 當(dāng)下列分式中的字母為何值時(shí),分式有意義.

  [分析]已知分式有意義,就可以知道分式的分母不為零,進(jìn)一步解

  出字母的取值范圍.

  [補(bǔ)充提問(wèn)]如果題目為:當(dāng)字母為何值時(shí),分式無(wú)意義.你知道怎么解題嗎?這樣可以使學(xué)生一題二用,也可以讓學(xué)生更全面地感受到分式及有關(guān)概念.

  (補(bǔ)充)例2. 當(dāng)為何值時(shí),分式的值為0?

 。1) (2) (3)

  [分析] 分式的值為0時(shí),必須同時(shí)滿足兩個(gè)條件:分母不能為零;分子為零,這樣求出的的解集中的公共部分,就是這類(lèi)題目的解.

  [答案] (1)=0 (2)=2 (3)=1

  五、隨堂練習(xí)

  1.判斷下列各式哪些是整式,哪些是分式?

  9x+4, , , , ,

  2. 當(dāng)x取何值時(shí),下列分式有意義?

 。1) (2) (3)

  3. 當(dāng)x為何值時(shí),分式的值為0?

 。1) (2) (3)

  六、課后練習(xí)

  1.下列代數(shù)式表示下列數(shù)量關(guān)系,并指出哪些是正是?哪些是分式?

  (1)甲每小時(shí)做x個(gè)零件,則他8小時(shí)做零件 個(gè),做80個(gè)零件需 小時(shí).

 。2)輪船在靜水中每小時(shí)走a千米,水流的速度是b千米/時(shí),輪船的'順流速度是 千米/時(shí),輪船的逆流速度是 千米/時(shí).

  (3)x與的差于4的商是 .

  2.當(dāng)x取何值時(shí),分式 無(wú)意義?

  3. 當(dāng)x為何值時(shí),分式 的值為0?

八年級(jí)數(shù)學(xué)的教案14

  教學(xué)建議

  1、平行線等分線段定理

  定理:如果一組平行線在一條直線上截得的線段相等,那么在其他需直線上截得的線段也相等。

  注意事項(xiàng):定理中的平行線組是指每相鄰的兩條距離都相等的特殊的平行線組;它是由三條或三條以上的平行線組成。

  定理的作用:可以用來(lái)證明同一直線上的線段相等;可以等分線段。

  2、平行線等分線段定理的推論

  推論1:經(jīng)過(guò)梯形一腰的中點(diǎn)與底平行的直線,必平分另一腰。

  推論2:經(jīng)過(guò)三角形一邊的中點(diǎn)與另一邊平行的直線,必平分第三邊。

  記憶方法:“中點(diǎn)”+“平行”得“中點(diǎn)”。

  推論的用途:(1)平分已知線段;(2)證明線段的倍分。

  重難點(diǎn)分析

  本節(jié)的重點(diǎn)是平行線等分線段定理。因?yàn)樗粌H是推證三角形、梯形中位線定理的基礎(chǔ),而且是第五章中“平行線分線段成比例定理”的基礎(chǔ)。

  本節(jié)的難點(diǎn)也是平行線等分線段定理。由于學(xué)生初次接觸到平行線等分線段定理,在認(rèn)識(shí)和理解上有一定的難度,在加上平行線等分線段定理的兩個(gè)推論以及各種變式,學(xué)生難免會(huì)有應(yīng)接不暇的感覺(jué),往往會(huì)有感覺(jué)新鮮有趣但掌握不深的情況發(fā)生,教師在教學(xué)中要加以注意。

  教法建議

  平行線等分線段定理的引入

  生活中有許多平行線等分線段定理的例子,并不陌生,平行線等分線段定理的引入可從下面幾個(gè)角度考慮:

 、?gòu)纳顚?shí)例引入,如刻度尺、作業(yè)本、柵欄、等等;

 、诳捎脝(wèn)題式引入,開(kāi)始時(shí)設(shè)計(jì)一系列與平行線等分線段定理概念相關(guān)的問(wèn)題由學(xué)生進(jìn)行思考、研究,然后給出平行線等分線段定理和推論。

  教學(xué)設(shè)計(jì)示例

  一、教學(xué)目標(biāo)

  1、使學(xué)生掌握平行線等分線段定理及推論。

  2、能夠利用平行線等分線段定理任意等分一條已知線段,進(jìn)一步培養(yǎng)學(xué)生的作圖能力。

  3、通過(guò)定理的變式圖形,進(jìn)一步提高學(xué)生分析問(wèn)題和解決問(wèn)題的能力。

  4、通過(guò)本節(jié)學(xué)習(xí),體會(huì)圖形語(yǔ)言和符號(hào)語(yǔ)言的和諧美

  二、教法設(shè)計(jì)

  學(xué)生觀察發(fā)現(xiàn)、討論研究,教師引導(dǎo)分析

  三、重點(diǎn)、難點(diǎn)

  1、教學(xué)重點(diǎn):平行線等分線段定理

  2、教學(xué)難點(diǎn):平行線等分線段定理

  四、課時(shí)安排

  l課時(shí)

  五、教具學(xué)具

  計(jì)算機(jī)、投影儀、膠片、常用畫(huà)圖工具

  六、師生互動(dòng)活動(dòng)設(shè)計(jì)

  教師復(fù)習(xí)引入,學(xué)生畫(huà)圖探索;師生共同歸納結(jié)論;教師示范作圖,學(xué)生板演練習(xí)

  七、教學(xué)步驟

  【復(fù)習(xí)提問(wèn)】

  1、什么叫平行線?平行線有什么性質(zhì)。

  2、什么叫平行四邊形?平行四邊形有什么性質(zhì)?

  【引入新課】

  由學(xué)生動(dòng)手做一實(shí)驗(yàn):每個(gè)同學(xué)拿一張橫格紙,首先觀察橫線之間有什么關(guān)系?(橫線是互相平等的,并且它們之間的距離是相等的),然后在橫格紙上畫(huà)一條垂直于橫線的直線 ,看看這條直線被相鄰橫線截成的各線段有什么關(guān)系?(相等,為什么?)這時(shí)在橫格紙上再任畫(huà)一條與橫線相交的直線 ,測(cè)量它被相鄰橫線截得的線段是否也相等?

 。ㄒ龑(dǎo)學(xué)生把做實(shí)驗(yàn)的條件和得到的結(jié)論寫(xiě)成一個(gè)命題,教師總結(jié),由此得到平行線等分線段定理)

  平行線等分線段定理:如果一組平行線在一條直線上掛得的線段相等,那么在其他直線上截得的線段也相等。

  注意:定理中的“一組平行線”指的是一組具有特殊條件的平行線,即每相鄰兩條平行線間的距離都相等的特殊平行線組,這一點(diǎn)必須使學(xué)生明確。

  下面我們以三條平行線為例來(lái)證明這個(gè)定理(由學(xué)生口述已知,求證)。

  已知:如圖,直線 , 。

  求證: 。

  分析1:如圖把已知相等的線段平移,與要求證的兩條線段組成三角形(也可應(yīng)用平行線間的平行線段相等得 ),通過(guò)全等三角形性質(zhì),即可得到要證的結(jié)論。

 。ㄒ龑(dǎo)學(xué)生找出另一種證法)

  分析2:要證的兩條線段分別是梯形的腰,我們借助于前面常用的輔助線,把梯形轉(zhuǎn)化為平行四邊形和三角形,然后再利用這些熟悉的.知識(shí)即可證得 。

  證明:過(guò) 點(diǎn)作 分別交 、 于點(diǎn) 、 ,得 和 ,如圖。

  ∴

  ∵ ,

  ∴

  又∵ , ,

  ∴

  ∴

  為使學(xué)生對(duì)定理加深理解和掌握,把知識(shí)學(xué)活,可讓學(xué)生認(rèn)識(shí)幾種定理的變式圖形,如圖(用計(jì)算機(jī)動(dòng)態(tài)演示)。

  引導(dǎo)學(xué)生觀察下圖,在梯形 中, , ,則可得到 ,由此得出推論 1。

  推論1:經(jīng)過(guò)梯形一腰的中點(diǎn)與底平行的直線,必平分另一腰。

  再引導(dǎo)學(xué)生觀察下圖,在 中, , ,則可得到 ,由此得出推論2。

  推論2:經(jīng)過(guò)三角形一邊的中點(diǎn)與另一邊平行的直線必平分第三邊。

  注意:推論1和推論2也都是很重要的定理,在今后的論證和計(jì)算中經(jīng)常用到,因此,要求學(xué)生必須掌握好。

  接下來(lái)講如何利用平行線等分線段定理來(lái)任意等分一條線段。

  例 已知:如圖,線段 。

  求作:線段 的五等分點(diǎn)。

  作法:①作射線 。

 、谠谏渚 上以任意長(zhǎng)順次截取 。

 、圻B結(jié) 。

  ④過(guò)點(diǎn) 。 、 、 分別作 的平行線 、 、 、 ,分別交 于點(diǎn) 、 、 、 。

  、 、 、 就是所求的五等分點(diǎn)。

 。ㄕf(shuō)明略,由學(xué)生口述即可)

  【總結(jié)、擴(kuò)展】

  小結(jié):

 。╨)平行線等分線段定理及推論。

 。2)定理的證明只取三條平行線,是在較簡(jiǎn)單的情況下證明的,對(duì)于多于三條的平行線的情況,也可用同樣方法證明。

  (3)定理中的“平行線組”,是指每相鄰兩條平行線間的距離都相等的特殊平行線組。

 。4)應(yīng)用定理任意等分一條線段。

  八、布置作業(yè)

  教材P188中A組2、9

  九、板書(shū)設(shè)計(jì)

  十、隨堂練習(xí)

  教材P182中1、2

八年級(jí)數(shù)學(xué)的教案15

  我們聽(tīng)了兩節(jié)優(yōu)秀的公開(kāi)課,很成功,兩位老師精心準(zhǔn)備,教學(xué)氛圍和諧、積極。兩位老師素質(zhì)好,基本功扎實(shí),講授知識(shí)有深度、有廣度、有技巧。教師的形體語(yǔ)言親切、自然,口頭語(yǔ)言清晰、流暢。營(yíng)造了積極、和諧的教學(xué)氛圍和平等、民主、自由的師生的關(guān)系,很好的實(shí)現(xiàn)了教師角色的轉(zhuǎn)變,為教師指導(dǎo)下學(xué)生自由地對(duì)知識(shí)探究作了很好的教學(xué)鋪墊。教師調(diào)控能力和應(yīng)變能力強(qiáng)、富有激情。使學(xué)生在輕松愉快的氛圍中接受知識(shí)?傮w來(lái)看比較成功,這些現(xiàn)象都是可喜的。主要體現(xiàn)在以下幾方面;

  一、整個(gè)課堂設(shè)計(jì)完整、結(jié)構(gòu)緊湊、邏輯嚴(yán)密、前后呼應(yīng),準(zhǔn)備得比較充分,能引導(dǎo)學(xué)生循序漸進(jìn),思路很清晰,講解也很到位。

  二、不搞題海戰(zhàn)術(shù),精講精練,舉一反三、觸類(lèi)旁通。題型設(shè)計(jì)選題有針對(duì)性、典型性、層次性,亦有梯度,兩位老師都設(shè)計(jì)了分層練習(xí),作業(yè)分層設(shè)計(jì)精巧,適合滿足不同層次學(xué)生的要求。

  三、兩位老師引入新課都很自然,兩位老師都能從學(xué)生的實(shí)際水平出發(fā),面向全體學(xué)生,因材施教,分層次開(kāi)展教學(xué)工作,全面提高學(xué)習(xí)效率。

  教師在整個(gè)教學(xué)過(guò)程中老師敢于讓學(xué)生探索、體驗(yàn),給了學(xué)生以最大的自由運(yùn)用和探索規(guī)律的開(kāi)闊的地帶。特別是新塘三中的曾老師在教學(xué)中,通過(guò)教師有序的導(dǎo)、學(xué)生積極的.學(xué)習(xí)參與、體驗(yàn)、討論與交流,培養(yǎng)學(xué)生具有主動(dòng)、負(fù)責(zé)、開(kāi)拓、創(chuàng)新的個(gè)性特征和科學(xué)的思維方式。將知識(shí)與技能,過(guò)程與方法,情感態(tài)度和價(jià)值觀完美結(jié)合。在整個(gè)教學(xué)活動(dòng)中始終面對(duì)全體學(xué)生,讓每一個(gè)學(xué)生都有收獲,都得到成功的體驗(yàn),充分體現(xiàn)了全面育人的新課標(biāo)精神。建議新塘二中老師盡量少講,讓學(xué)生多思,多想,多做。 ......

【八年級(jí)數(shù)學(xué)的教案】相關(guān)文章:

數(shù)學(xué)八年級(jí)上冊(cè)教案03-02

八年級(jí)數(shù)學(xué)的教案12-30

有關(guān)八年級(jí)數(shù)學(xué)教案八年級(jí)數(shù)學(xué)教案全套10-03

八年級(jí)數(shù)學(xué)教案03-05

八年級(jí)數(shù)學(xué)復(fù)習(xí)教案01-06

八年級(jí)數(shù)學(xué)下冊(cè)教案05-16

八年級(jí)數(shù)學(xué)下冊(cè)教案01-10

八年級(jí)數(shù)學(xué)教案12-04

初中數(shù)學(xué)八年級(jí)上冊(cè)教案02-06