一级毛片免费不卡在线视频,国产日批视频免费在线观看,菠萝菠萝蜜在线视频免费视频,欧美日韩亚洲无线码在线观看,久久精品这里精品,国产成人综合手机在线播放,色噜噜狠狠狠综合曰曰曰,琪琪视频

推薦文檔列表

數(shù)學(xué)教案-二次根式的混合運(yùn)算

時(shí)間:2021-09-29 18:57:08 初中數(shù)學(xué)教案 我要投稿

數(shù)學(xué)教案-二次根式的混合運(yùn)算

教學(xué)建議

數(shù)學(xué)教案-二次根式的混合運(yùn)算

知識(shí)結(jié)構(gòu)

重難點(diǎn)分析

本節(jié)課的重點(diǎn)是二次根式的加、減、乘、除、乘方、開方的混合運(yùn)算及分母有理化。它是以二次根式的概念和性質(zhì)為基礎(chǔ),同時(shí)又緊密地聯(lián)系著整式、分式的運(yùn)算,也可以說它是運(yùn)算問題在初中階段一次總結(jié)性,提高性綜合學(xué)習(xí);二次根式的運(yùn)算和有理化的方法與技巧,能夠進(jìn)一步開拓學(xué)生的解題思路,提高學(xué)生的解題能力。

本節(jié)課的難點(diǎn)是把分母中含有兩個(gè)二次根式的式子進(jìn)行分母有理化。分母有理化,實(shí)際上二次根式的除法與混合運(yùn)算的綜合運(yùn)用。分母有理化的過程,一般地,先確定分母的有理化因式,然后再根據(jù)分式的基本性質(zhì)把分子、分母都乘以這個(gè)有理化因式,就可使分母有理化。所以對(duì)初學(xué)者來說,這一過程容易出現(xiàn)找錯(cuò)有理化因式和計(jì)算出錯(cuò)的問題。

教法建議

1.在知識(shí)的引入上,可采取復(fù)習(xí)引入方式,比如復(fù)習(xí)有理數(shù)的混合運(yùn)算或整式的運(yùn)算。

2.在二次根式的加減、乘法混合運(yùn)算中,要注意由淺入深的層次安排,從單項(xiàng)式與多項(xiàng)式相乘、多項(xiàng)式與多項(xiàng)式到乘法公式的應(yīng)用,逐漸從數(shù)過渡到帶有字母的式。

3.在有理化因式教學(xué)中,要多出幾組題目從不同角度要求學(xué)生辨別,并及時(shí)總結(jié)。

學(xué)生特點(diǎn):實(shí)驗(yàn)班的A層學(xué)生(數(shù)學(xué)實(shí)施分層教學(xué)),主動(dòng)學(xué)習(xí)積極性高,基礎(chǔ)扎實(shí),思維活躍, ,并具有一定的獨(dú)立分析問題,探索問題,歸納概括問題的能力,有較好的思考、質(zhì)疑的習(xí)慣。

教材特點(diǎn):本節(jié)課是在學(xué)習(xí)了二次根式的三個(gè)重要概念(最簡二次根式、同類二次根式、分母有理化)和二次根式的有關(guān)運(yùn)算(二次根式的乘法、二次根式的除法、二次根式的加減法)基礎(chǔ)上,將加、減、乘、除、乘方、開方運(yùn)算綜合在一起的混合運(yùn)算的學(xué)習(xí)。

鑒于學(xué)生的特點(diǎn)及教材的特點(diǎn),本節(jié)課主要采用“互動(dòng)式”的課堂教學(xué)模式及“談話式”的教學(xué)方法,以此實(shí)現(xiàn)生生互動(dòng)、師生互動(dòng)、學(xué)生與教材之間的互動(dòng)。具體說明如下:

(一)在師生互動(dòng)方面,教師注重問題設(shè)計(jì),注重引導(dǎo)、點(diǎn)撥及提高性總結(jié)。使學(xué)生學(xué)中有思、思中有獲。如本節(jié)課開始,出示書中例題1:

讓學(xué)生先進(jìn)行思考,解答。然后同學(xué)說出怎樣進(jìn)行二次根式的混合運(yùn)算。

強(qiáng)調(diào):運(yùn)算順序及運(yùn)算律和有理數(shù)相同。

(二)在學(xué)生與學(xué)生的互動(dòng)上,教師注重活動(dòng)設(shè)計(jì),使學(xué)生學(xué)中有樂,樂中悟道。教師設(shè)計(jì)一組題目,讓學(xué)生以競賽的形式解答,然后以記成績的方法讓其它同學(xué)說出優(yōu)點(diǎn)(簡便方法及靈活之處)與錯(cuò)誤。由于本節(jié)課主要以計(jì)算為主,對(duì)運(yùn)算法則及規(guī)律性的基礎(chǔ)知識(shí),學(xué)生很容易掌握而且從意識(shí)上認(rèn)為本節(jié)課太簡單,不會(huì)很感興趣,所以為了提高學(xué)生的學(xué)習(xí)興趣及更好的抓好基礎(chǔ),提高學(xué)生的運(yùn)算能力,如此這般設(shè)計(jì)。

(三)在個(gè)體與群體的互動(dòng)方式上,教師注重合作設(shè)計(jì),使學(xué)生學(xué)中有辯,辯中求同。如本節(jié)課中對(duì)重點(diǎn)問題:“分母有理化”的教學(xué),出示一個(gè)題目,讓學(xué)生思考,找個(gè)別學(xué)生說出自己的想法,然后其它同學(xué)補(bǔ)充完成。

學(xué)生的主體意識(shí)和自主能力不是生來就有的,主要靠教師的激勵(lì)和主導(dǎo),才能達(dá)到彼此互動(dòng)。正是在這一教育思想的指導(dǎo)下,追求學(xué)生的認(rèn)知活動(dòng)與情感活動(dòng)的協(xié)調(diào)發(fā)展,有效地喚起學(xué)生的主體意識(shí),在和諧、愉快的情境中達(dá)到師生互動(dòng),生生互動(dòng);(dòng)式教學(xué)模式的目的是讓教師樂教、會(huì)教、善教,促使學(xué)生樂學(xué)、會(huì)學(xué)、善學(xué),從而優(yōu)化課堂教學(xué)、提高教學(xué)質(zhì)量,在和諧、愉快的情景中實(shí)現(xiàn)教與學(xué)的共振。

對(duì)二次根式混合運(yùn)算新課引入的建議

復(fù)習(xí):

1.計(jì)算:(1) ; (2) .

解:(1) (2)

==

=; =.

2.在整式乘法中,單項(xiàng)式與多項(xiàng)式相乘的法則是什么?多項(xiàng)式與多項(xiàng)式的乘法法則是什么?什么是完全平方式?分別用式子表示出來。

答:單項(xiàng)式與多項(xiàng)式相乘的法則是,用單項(xiàng)式去乘多項(xiàng)式的每一項(xiàng),再把所得的積相加。用式子表示為

m(a+b+c)=ma+mb+mc

多項(xiàng)式與多項(xiàng)式相乘的法則是,先用一個(gè)多項(xiàng)式的每一項(xiàng)乘以另一個(gè)多項(xiàng)式的每項(xiàng),再把所得的積相加。用式子表示為

(a+b)(m+n)=am+an+bm+bn,

其中a,b,m,n都是單項(xiàng)式。

完全平方式是

; 。

在實(shí)數(shù)范圍內(nèi),整式中的乘法法則及乘法公式仍然適用,運(yùn)用乘法法則及乘法公式可以進(jìn)行二次根式的混合運(yùn)算。引入新課。

對(duì)二次根式混合運(yùn)算學(xué)法的建議

在進(jìn)行二次根式的混合運(yùn)算時(shí),也有一個(gè)與分式運(yùn)算相比較的問題,有的時(shí)候,加上團(tuán)式分解、約分等技巧,可以大大簡化計(jì)算過程,這是要靈活運(yùn)用的.因此,在本節(jié)學(xué)習(xí)時(shí),可以適當(dāng)結(jié)合11.1節(jié)的內(nèi)容,復(fù)習(xí)一下在實(shí)數(shù)范圍內(nèi)分解因式的問題,如

這里再順便提一下,如

這種變形不是原來意義上的因式分解,否則就無法進(jìn)行到底了.可以說是借助因式分解的方法,或具體說成提出 ,等等.

一、教學(xué)目標(biāo) 

1.掌握二次根式的混合運(yùn)算.

2.掌握乘法公式在混合運(yùn)算的應(yīng)用.

3.通過二次根式的混合運(yùn)算,培養(yǎng)學(xué)生的運(yùn)算能力.

4.通過例題由淺入深,層層深入,激發(fā)學(xué)生求知的欲望

二、教學(xué)設(shè)計(jì)

小結(jié)、歸納、提高

三、重點(diǎn)、難點(diǎn)解決辦法

1.教學(xué)重點(diǎn):二次根式的混合運(yùn)算.

2.教學(xué)難點(diǎn) :混合運(yùn)算的應(yīng)用.

四、課時(shí)安排

1課時(shí)

五、教具學(xué)具準(zhǔn)備

投影儀、膠片、多媒體

六、師生互動(dòng)活動(dòng)設(shè)計(jì)

1.復(fù)習(xí),運(yùn)算律及乘法分式,引導(dǎo)學(xué)生口答,并強(qiáng)調(diào)數(shù)的運(yùn)算律在根式運(yùn)算中的適用,引入例題.

2.通過例題由淺入深,層層深入,既提高學(xué)生學(xué)習(xí)的興趣又激發(fā)學(xué)生求知的欲望;從例題的講解中幫助尋找解題的方法,規(guī)律及注意點(diǎn).

3.通過大量的練習(xí),以期形成自己所掌握的知識(shí).

七、教學(xué)步驟 

(-)明確目標(biāo)

前面學(xué)過二次根式的加減法的簡單運(yùn)算,但二次根式未必全是加減混合運(yùn)算,它同樣會(huì)出現(xiàn)二次根式的加、減、乘、除方等混合運(yùn)算那么二次根式的混合運(yùn)算的法則是什么?又將怎樣運(yùn)用它進(jìn)行化簡計(jì)算,這就是本節(jié)課所要研究的問題—二次根式的混合運(yùn)算.

(二)整體感知

二次根式的混合運(yùn)算中,應(yīng)注意運(yùn)算的次序.這是進(jìn)行二次根式混合運(yùn)算的前提條件;通過適當(dāng)?shù)貜?fù)習(xí)乘法分式,分母有理化知識(shí),然后再進(jìn)行二次根式的混合運(yùn)算的教學(xué)工作,將有助于更好地學(xué)習(xí)它;同樣為了更好地理解二次根式的混合運(yùn)算還可以將它與數(shù)的運(yùn)算律和運(yùn)算方法進(jìn)行對(duì)比,以幫助學(xué)生更好地理解并準(zhǔn)確地掌握好該知識(shí),達(dá)到事半功倍的作用.

第一課時(shí)

(-)教學(xué)過程 

【復(fù)習(xí)】

運(yùn)算律在二次根式混合運(yùn)算中仍適用.

各種整式乘法的法則.

乘法公式: .

提問:加法的交換律、結(jié)合律各是怎樣的?乘法的交換律、結(jié)合律、分配津各是什么?

強(qiáng)調(diào)數(shù)的運(yùn)算律在根式運(yùn)算中仍適用后,可引入例題.

【例題】

例1 計(jì)算:

(1) ;

(2) .

解:略.

注:①加法與乘法的混合運(yùn)算,可分解為兩個(gè)步驟完成,一是進(jìn)行乘法運(yùn)算,二是進(jìn)行加法運(yùn)算,使難點(diǎn)分散,易于學(xué)生理解和掌握.②在運(yùn)算過程中,對(duì)于各個(gè)根式不一定要先化簡,而是先乘除,進(jìn)行約分,達(dá)到化簡的目的,但最后結(jié)果一定要化簡.例如 ,沒有對(duì) 先進(jìn)行化簡的必要,使計(jì)算繁瑣,而是應(yīng)先進(jìn)行乘法運(yùn)算 ,通過約分達(dá)到化簡的目的.

例2 計(jì)算:

(1) ;

(2) ;

(3) .

解:略.

注:①由學(xué)生觀察算式,找出特征:兩個(gè)數(shù)的和與這兩個(gè)數(shù)差的積;兩個(gè)數(shù)的和或差的平方,聯(lián)想乘法公式,與多項(xiàng)式的乘法相類似,二次根式的和相乘,適用乘法公式時(shí),運(yùn)用乘法公式.

②復(fù)習(xí)乘法公式,可選做幾個(gè)小題.如 , 等.

例3 計(jì)算:

(1) ;

(2) .

解:略.

③引入有理化因式的概念

例如, 與 , 與 .

注:互為有理化因式是指兩個(gè)代數(shù)式,其乘積不再含有二次根式.

可適當(dāng)再舉例說明,如 與 , 與 、 與 ,但 與 就不是互為有理化因式.

(二)隨堂練習(xí)

計(jì)算:

(1) ; (2) ;

(3) ; (4) ;

(5) ; (6) ;

(7) ; (8) ;

(9) .

解:(1) .

(2)

(3)

(4)

(5)

(6)

  .

(7) .

(8)

(9)

(三)總結(jié)、擴(kuò)展

對(duì)二次根式的混合運(yùn)算與整式的混合運(yùn)算及數(shù)的混合運(yùn)算比較,要注意運(yùn)算的順序及運(yùn)算律在計(jì)算過程中的作用.

有理化因式的概念需強(qiáng)調(diào)乘積的結(jié)果不再含有二次根式.

練習(xí):教材P198中1、2;教材P199中3.

(四)布置作業(yè) 

教材P204中1、2、3.

(五)板書設(shè)計(jì) 

標(biāo)    題

1.復(fù)習(xí)內(nèi)容 例3……

2.例題 3.有理化因式

例1…… 4.練習(xí)題

例2……

 

數(shù)學(xué)教案-二次根式的混合運(yùn)算