- 相關推薦
數(shù)學教案-直角三角形全等的判定
教學建議
直角三角形全等的判定
知識結構
重點與難點分析:
本節(jié)課教學方法主要是“自學輔導與發(fā)現(xiàn)探究法”。力求體現(xiàn)知識結構完整、知識理解完整;注重學生的參與度,在師生共同參與下,探索問題、動手試驗、發(fā)現(xiàn)規(guī)律、做出歸納。讓學生直接參加課堂活動,將教與學融為一體。具體說明如下:
(1)由“先教后學”轉向“先學后教
本節(jié)課開始,讓同學們自己思考問題:判定三角形全等的方法有四種,如果這兩個三角形是直角三角形,那么判定它們?nèi)鹊姆椒ㄓ心男┠?學生展開討論,初步形成意見,然后由教師答疑。這樣促進了學生學習,體現(xiàn)了以“學生為主體”的教育思想。
(2)在層次教學中培養(yǎng)學生的思維能力
本節(jié)課的層次主要表現(xiàn)為兩個方面:一是對公理的多層次理解;二是綜合練習的多層次變化。
公理的多層次理解包括:明確公理的條件及結論;公理的文字語言、圖形語言、符號語言的理解及掌握;公理的作用。這里特別強調(diào)三個方面:1、特殊三角形的特殊性;2、歸納總結判定直角三角形全等的方法。
綜合練習的多層次變化:首先給出直接應用公理證明三角形全等的題目;然后給出變式題目;最后給出綜合應用題目。這里注意兩點:一是給出題目后先讓學生獨立思考,并按教材的形式嚴格書寫。二是給出的綜合題目有一定的難度,教學時,要注意引導學生分析問題解決問題的思考方法。
教法建議:
由“先教后學”轉向“先學后教”
本節(jié)課開始,讓同學們自己思考問題:判定三角形全等的方法有四種,如果這兩個三角形是直角三角形,那么判定它們?nèi)鹊姆椒ㄓ心男┠兀繉W生展開討論,初步形成意見,然后由教師答疑。這樣促進了學生學習,體現(xiàn)了以“學生為主體”的教育思想。
(2)在層次教學中培養(yǎng)學生的思維能力
本節(jié)課的層次主要表現(xiàn)為兩個方面:一是對公理的多層次理解;二是綜合練習的多層次變化。
公理的多層次理解包括:明確公理的條件及結論;公理的文字語言、圖形語言、符號語言的理解及掌握;公理的作用。這里特別強調(diào)三個方面:1、特殊三角形的特殊性;2、歸納總結判定直角三角形全等的方法。
綜合練習的多層次變化:首先給出直接應用公理證明三角形全等的題目;然后給出變式題目;最后給出綜合應用題目。這里注意兩點:一是給出題目后先讓學生獨立思考,并按教材的形式嚴格書寫。二是給出的綜合題目有一定的難度,教學時,要注意引導學生分析問題解決問題的思考方法。
教學目標 :
1、知識目標:
(1)掌握已知斜邊、直角邊畫直角三角形的畫圖方法;
(2)掌握斜邊、直角邊公理;
(3)能夠運用HL公理及其他三角形全等的判定方法進行證明和計算.
2、能力目標:
(1)通過尺規(guī)作圖使學生得到技能的訓練;
(2)通過公理的初步應用,初步培養(yǎng)學生的邏輯推理能力.
3、情感目標:
(1)在公理的形成過程中滲透:實驗、觀察、歸納;
(2)通過知識的縱橫遷移感受數(shù)學的系統(tǒng)特征。
教學重點:SSS公理、靈活地應用學過的各種判定方法判定三角形全等。
教學難點 :靈活應用五種方法(SAS、ASA、AAS、SSS、HL)來判定直角三角形全等。
教學用具:直尺,微機
教學方法:自學輔導
教學過程 :
1、新課引入
投影顯示
問題:判定三角形全等的方法有四種,若這兩個三角形是直角三角形,那么判定它們?nèi)鹊姆椒ㄓ心男┠兀?/p>
這個問題讓學生思考分析討論后回答,教師補充完善。
2、公理的獲得
讓學生概括出HL公理。然后和學生一起畫圖做實驗,根據(jù)三角形全等定義對公理進行驗證。(這里用尺規(guī)畫圖法)
公理:有斜邊和一條直角邊對應相等的兩個直角三角形全等。
應用格式: (略)
強調(diào)說明:
(1)、格式要求:先指出在哪兩個三角形中證全等;再按公理順序列出三個條件,并用括號把它們括在一起;寫出結論。
(2)、判定兩個直角三角形全等的方法。
(3)特殊三角形研究思想。
3、公理的應用
(1)講解例1(投影例1)
例1求證:有一條直角邊和斜邊上的高對應相等的兩個直角三角形全等。
學生思考、分析、討論,教師巡視,適當參與討論。找學生代表口述證明思路。
分析:首先要分清題設和結論,然后按要求畫出圖形,根據(jù)題意寫出、已知求證后,再寫出證明過程。
證明:(略)
(2)講解例2。學生分析完成,教師注重完成后的點評。)
例2:如圖2,△ABC中,AD是它的角平分線,且BD=CD,DE、DF分別垂直于AB、AC,垂足為E、F.
求證:BE=CF
分析: BE和CF分別在△BDE和△CDF中,由條件不能直接證其全等,但可先證明△AED≌△AFD,由此得到DE=DF
證明:(略)
(3)講解例3(投影例3)
例3:如圖3,已知△ABC中,∠BAC=,AB=AC,AE是過A的一條直線,且B、C在AE的異側,BD⊥AE于D,CE⊥AE于E,求證:
(1)BD=DE+CE
(2)若直線AE繞A點旋轉到圖4位置時(BD<CE),其余條件不變,問BD與DE、CE的關系如何,請證明;
(3)若直線AE繞A點旋轉到圖5時(BD>CE),其余條件不變,BD與DE、CE的關系怎樣?請直接寫出結果,不須證明
學生口述證明思路,教師強調(diào)說明:閱讀問題的思考方法及思想。
4、課堂小結:
(1)判定直角三角形全等的方法:5個(SAS、ASA、AAS、SSS、HL)在這些方法的條件中都至少包含一條邊。
(2)直角三角形判定方法的綜合運用
讓學生自由表述,其它學生補充,自己將知識系統(tǒng)化,以自己的方式進行建構。
5、布置作業(yè) :
a、書面作業(yè) P79#7、9
b、上交作業(yè) P80#5、6
板書設計 :
探究活動
直角形全等的判定
如圖(1)A、E、F、C在一條直線上,AE=CF,過E、F分別作DE⊥AC,BF⊥AC,
若AB=CD求證:BD平分EF。若將△DEC的邊EC沿AC方向移動變?yōu)槿鐖D(2)時,其余條件不變,上述結論是否成立,請說明理由。
數(shù)學教案-直角三角形全等的判定
【數(shù)學教案-直角三角形全等的判定】相關文章:
數(shù)學課文-直角三角形全等判定教學反思與自評04-30
三角形全等的判定教案08-31
全等三角形判定教學反思04-30
全等三角形的判定定理05-01
三角形全等的判定說課04-30
直角三角形全等的條件 習題04-28
三角形全等的判定(SAS)教學反思05-01
數(shù)學三角形全等的判定3教案06-27