- 相關(guān)推薦
數(shù)學(xué)教案-一次函數(shù)
一、目的要求
1、使學(xué)生初步理解一次函數(shù)與正比例函數(shù)的概念。
2、使學(xué)生能夠根據(jù)實(shí)際問題中的條件,確定一次函數(shù)與正比例函數(shù)的解析式。
二、內(nèi)容分析
1、初中主要是通過幾種簡(jiǎn)單的函數(shù)的初步介紹來(lái)學(xué)習(xí)函數(shù)的,前面三小節(jié),先學(xué)習(xí)函數(shù)的概念與表示法,這是為學(xué)習(xí)后面的幾種具體的函數(shù)作準(zhǔn)備的,從本節(jié)開始,將依次學(xué)習(xí)一次函數(shù)(包括正比例函數(shù))、二次函數(shù)與反比例函數(shù)的有關(guān)知識(shí),大體上,每種函數(shù)是按函數(shù)的解析式、圖象及性質(zhì)這個(gè)順序講述的,通過這些具體函數(shù)的學(xué)習(xí),學(xué)生可以加深對(duì)函數(shù)意義、函數(shù)表示法的認(rèn)識(shí),并且,結(jié)合這些內(nèi)容,學(xué)生還會(huì)逐步熟悉函數(shù)的知識(shí)及有關(guān)的數(shù)學(xué)思想方法在解決實(shí)際問題中的應(yīng)用。
2、舊教材在講幾個(gè)具體的函數(shù)時(shí),是按先講正反比例函數(shù),后講一次、二次函數(shù)順序編排的,這是適當(dāng)照顧了學(xué)生在小學(xué)數(shù)學(xué)中學(xué)了正反比例關(guān)系的知識(shí),注意了中小學(xué)的銜接,新教材則是安排先學(xué)習(xí)一次函數(shù),并且,把正比例函數(shù)作為一次函數(shù)的特例予以介紹,而最后才學(xué)習(xí)反比例函數(shù),為什么這樣安排呢?第一,這樣安排,比較符合學(xué)生由易到難的認(rèn)識(shí)規(guī)津,從函數(shù)角度看,一次函數(shù)的解析式、圖象與性質(zhì)都是比較簡(jiǎn)單的,相對(duì)來(lái)說,反比例函數(shù)就要復(fù)雜一些了,特別是,反比例函數(shù)的圖象是由兩條曲線組成的,先學(xué)習(xí)反比例函數(shù)難度可能要大一些。第二,把正比例函數(shù)作為一次函數(shù)的特例介紹,既可以提高學(xué)習(xí)效益,又便于學(xué)生了解正比例函數(shù)與一次函數(shù)的關(guān)系,從而,可以更好地理解這兩種函數(shù)的概念、圖象與性質(zhì)。
3、“函數(shù)及其圖象”這一章的重點(diǎn)是一次函數(shù)的概念、圖象和性質(zhì),一方面,在學(xué)生初次接觸函數(shù)的有關(guān)內(nèi)容時(shí),一定要結(jié)合具體函數(shù)進(jìn)行學(xué)習(xí),因此,全章的主要內(nèi)容,是側(cè)重在具體函數(shù)的講述上的。另一方面,在大綱規(guī)定的幾種具體函數(shù)中,一次函數(shù)是最基本的,教科書對(duì)一次函數(shù)的討論也比較全面。通過一次函數(shù)的學(xué)習(xí),學(xué)生可以對(duì)函數(shù)的研究方法有一個(gè)初步的認(rèn)識(shí)與了解,從而能更好地把握學(xué)習(xí)二次函數(shù)、反比例函數(shù)的學(xué)習(xí)方法。
三、教學(xué)過程
復(fù)習(xí)提問:
1、什么是函數(shù)?
2、函數(shù)有哪幾種表示方法?
3、舉出幾個(gè)函數(shù)的例子。
新課講解:
可以選用提問時(shí)學(xué)生舉出的例子,也可以直接采用教科書中的四個(gè)函數(shù)的例子。然后讓學(xué)生觀察這些例子(實(shí)際上均是一次函數(shù)的解析式),y=x,s=3t等。觀察時(shí),可以按下列問題引導(dǎo)學(xué)生思考:
(1)這些式子表示的是什么關(guān)系?(在學(xué)生明確這些式子表示函數(shù)關(guān)系后,可指出,這是函數(shù)。)
(2)這些函數(shù)中的自變量是什么?函數(shù)是什么?(在學(xué)生分清后,可指出,式子中等號(hào)左邊的y與s是函數(shù),等號(hào)右邊是一個(gè)代數(shù)式,其中的字母x與t是自變量。)
(3)在這些函數(shù)式中,表示函數(shù)的自變量的式子,分別是關(guān)于自變量的什么式呢?(這題牽扯到有關(guān)整式的基本概念,表示函數(shù)的自變量的式子也就是等號(hào)右邊的式子,都是關(guān)于自變量的一次式。)
(4)x的一次式的一般形式是什么?(結(jié)合一元一次方程的有關(guān)知識(shí),可以知道,x的一次式是kx+b(k≠0)的形式。)
由以上的層層設(shè)問,最后給出一次函數(shù)的定義。
一般地,如果y=kx+b(k,b是常數(shù),k≠0)那么,y叫做x的一次函數(shù)。
對(duì)這個(gè)定義,要注意:
(1)x是變量,k,b是常數(shù);
(2)k≠0 (當(dāng)k=0時(shí),式子變形成y=b的形式。b是x的0次式,y=b叫做常數(shù)函數(shù),這點(diǎn),不一定向?qū)W生講述。)
由一次函數(shù)出發(fā),當(dāng)常數(shù)b=0時(shí),一次函數(shù)kx+b(k≠0)就成為:y=kx(k是常數(shù),k≠0)我們把這樣的函數(shù)叫正比例函數(shù)。
在講述正比例函數(shù)時(shí),首先,要注意適當(dāng)復(fù)習(xí)小學(xué)學(xué)過的正比例關(guān)系,小學(xué)數(shù)學(xué)是這樣陳述的:
兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對(duì)應(yīng)的兩個(gè)數(shù)的比值(也就是商)一定,這兩種量就叫做成正比例的量,它們的關(guān)系叫做正比例關(guān)系。
寫成式子是
【數(shù)學(xué)教案-一次函數(shù)】相關(guān)文章:
《一次函數(shù)》教案04-30
一次函數(shù)教案11-02
一次函數(shù)的的教案04-25
一次函數(shù)教法的分析與研究04-29
《一次函數(shù)解析式》教案04-25
《一次函數(shù)》教案,課件,試題04-25
一次函數(shù)復(fù)習(xí)課教學(xué)反思10-18
《一次函數(shù)》教學(xué)點(diǎn)滴04-29
《一次函數(shù)》復(fù)習(xí)課教學(xué)反思10-15
一次函數(shù)教案范例【15篇】07-07