一级毛片免费不卡在线视频,国产日批视频免费在线观看,菠萝菠萝蜜在线视频免费视频,欧美日韩亚洲无线码在线观看,久久精品这里精品,国产成人综合手机在线播放,色噜噜狠狠狠综合曰曰曰,琪琪视频

數(shù)學(xué)教案-切線長定理

時間:2023-05-02 02:31:13 初中數(shù)學(xué)教案 我要投稿
  • 相關(guān)推薦

數(shù)學(xué)教案-切線長定理

1、教材分析

數(shù)學(xué)教案-切線長定理

(1)知識結(jié)構(gòu)

(2)重點、難點分析

重點:切線長定理及其應(yīng)用.因切線長定理再次體現(xiàn)了圓的軸對稱性,它為證明線段相等、角相等、弧相等、垂直關(guān)系等提供了理論依據(jù),它屬于工具知識,經(jīng)常應(yīng)用,因此它是本節(jié)的重點.

難點:與切線長定理有關(guān)的證明和計算問題.如120頁練習(xí)題中第3題,它不僅應(yīng)用切線長定理,還用到解方程組的知識,是代數(shù)與幾何的綜合題,學(xué)生往往不能很好的把知識連貫起來.

2、教法建議

本節(jié)內(nèi)容需要一個課時.

(1)在教學(xué)中,組織學(xué)生自主觀察、猜想、證明,并深刻剖析切線長定理的基本圖形;對重要的結(jié)論及時總結(jié);

(2)在教學(xué)中,以“觀察——猜想——證明——剖析——應(yīng)用——歸納”為主線,開展在教師組織下,以學(xué)生為主體,活動式教學(xué).

教學(xué)目標(biāo) 

1.理解切線長的概念,掌握切線長定理;

2.通過對例題的分析,培養(yǎng)學(xué)生分析總結(jié)問題的習(xí)慣,提高學(xué)生綜合運用知識解題的能力,培養(yǎng)數(shù)形結(jié)合的思想.

3.通過對定理的猜想和證明,激發(fā)學(xué)生的學(xué)習(xí)興趣,調(diào)動學(xué)生的學(xué)習(xí)積極性,樹立科學(xué)的學(xué)習(xí)態(tài)度.

教學(xué)重點:

切線長定理是教學(xué)重點

教學(xué)難點 :

切線長定理的靈活運用是教學(xué)難點 

教學(xué)過程 設(shè)計:

(一)觀察、猜想、證明,形成定理

1、切線長的概念.

如圖,P是⊙O外一點,PA,PB是⊙O的兩條切線,我們把線段PA,PB叫做點P到⊙O的切線長.

引導(dǎo)學(xué)生理解:切線和切線長是兩個不同的概念,切線是直線,不能度量;切線長是線段的長,這條線段的兩個端點分別是圓外一點和切點,可以度量.

2、觀察

利用電腦變動點P 的位置,觀察圖形的特征和各量之間的關(guān)系.

3、猜想

引導(dǎo)學(xué)生直觀判斷,猜想圖中PA是否等于PB. PA=PB.

4、證明猜想,形成定理.

猜想是否正確。需要證明.

組織學(xué)生分析證明方法.關(guān)鍵是作出輔助線OA,OB,要證明PA=PB.

想一想:根據(jù)圖形,你還可以得到什么結(jié)論?

∠OPA=∠OPB(如圖)等.

切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角.

5、歸納:

把前面所學(xué)的切線的5條性質(zhì)與切線長定理一起歸納切線的性質(zhì)

6、切線長定理的基本圖形研究

如圖,PA,PB是⊙O的兩條切線,A,B為切點.直線OP交⊙O于點D,E,交AP于C

(1)寫出圖中所有的垂直關(guān)系;

(2)寫出圖中所有的全等三角形;

(3)寫出圖中所有的相似三角形;

(4)寫出圖中所有的等腰三角形.

說明:對基本圖形的深刻研究和認(rèn)識是在學(xué)習(xí)幾何中關(guān)鍵,它是靈活應(yīng)用知識的基礎(chǔ).

(二)應(yīng)用、歸納、反思

例1、已知:如圖,P為⊙O外一點,PA,PB為⊙O的切線,

A和B是切點,BC是直徑.

求證:AC∥OP.

分析:從條件想,由P是⊙O外一點,PA、PB為⊙O的切線,A,B是切點可得PA=PB,∠APO=∠BPO,又由條件BC是直徑,可得OB=OC,由此聯(lián)想到與直徑有關(guān)的定理“垂徑定理”和“直徑所對的圓周角是直角”等.于是想到可能作輔助線AB.

從結(jié)論想,要證AC∥OP,如果連結(jié)AB交OP于O,轉(zhuǎn)化為證CA⊥AB,OP ⊥AB,或從OD為△ABC的中位線來考慮.也可考慮通過平行線的判定定理來證,可獲得多種證法.

證法一.如圖.連結(jié)AB.

PA,PB分別切⊙O于A,B

∴PA=PB∠APO=∠BPO

∴ OP ⊥AB

又∵BC為⊙O直徑

∴AC⊥AB

∴AC∥OP (學(xué)生板書)

證法二.連結(jié)AB,交OP于D

PA,PB分別切⊙O于A、B

∴PA=PB∠APO=∠BPO  

∴AD=BD

又∵BO=DO

∴OD是△ABC的中位線

∴AC∥OP

證法三.連結(jié)AB,設(shè)OP與AB弧交于點E

PA,PB分別切⊙O于A、B

∴PA=PB

∴ OP ⊥AB

∴ =

∴∠C=∠POB

∴AC∥OP

反思:教師引導(dǎo)學(xué)生比較以上證法,激發(fā)學(xué)生的學(xué)習(xí)興趣,培養(yǎng)學(xué)生靈活應(yīng)用知識的能力.

例2、 圓的外切四邊形的兩組對邊的和相等.

(分析和解題略)

反思:(1)例3事實上是圓外切四邊形的一個重要性質(zhì),請學(xué)生記住結(jié)論.(2)圓內(nèi)接四邊形的性質(zhì):對角互補.

P120練習(xí):

練習(xí)1 填空

如圖,已知⊙O的半徑為3厘米,PO=6厘米,PA,PB分別切⊙O于A,B,則PA=_______,∠APB=________

練習(xí)2 已知:在△ABC中,BC=14厘米,AC=9厘米,AB=13厘米,它的內(nèi)切圓分別和BC,AC,AB切于點D,E,F(xiàn),求AF,AD和CE的長.

分析:設(shè)各切線長AF,BD和CE分別為x厘米,y厘米,z厘米.后列出關(guān)于x , y,z的方程組,解方程組便可求出結(jié)果.

(解略)

反思:解這個題時,除了要用三角形內(nèi)切圓的概念和切線長定理之外,還要用到解方程組的知識,是一道綜合性較強的計算題.通過對本題的研究培養(yǎng)學(xué)生的綜合應(yīng)用知識的能力.

(三)小結(jié)

1、提出問題學(xué)生歸納

(1)這節(jié)課學(xué)習(xí)的具體內(nèi)容;

(2)學(xué)習(xí)用的數(shù)學(xué)思想方法;

(3)應(yīng)注意哪些概念之間的區(qū)別?

2、歸納基本圖形的結(jié)論

3、學(xué)習(xí)了用代數(shù)方法解決幾何問題的思想方法.

(四)作業(yè) 

教材P131習(xí)題7.4A組1.(1),2,3,4.B組1題.

探究活動

圖中找錯

你能找出(圖1)與(圖2)的錯誤所在嗎?

在圖2中,P1A為⊙O1和⊙O3的切線、P1B為⊙O1和⊙O2的切線、P2C為⊙O2和⊙O3的切線.

提示:在圖1中,連結(jié)PC、PD,則PC、PD都是圓的直徑,從圓上一點只能作一條直徑,所以此圖是一張錯圖,點O應(yīng)在圓上.

在圖2中,設(shè)P1A=P1B=a,P2B=P2C=b,P3A=P3C=c,則有

a=P1A=P1P3+P3A=P1P3+ c ①

c=P3C=P2P3+P3A=P2P3+ b ②

a=P1B=P1P2+P2B=P1P2+ b ③

將②代人①式得

a =P1P3+(P2P3+ b)=P1P3+P2P3+ b,

∴a-b=P1P3+P2P3

由③得a-b=P1P2得

∴P1P2=P2P3+ P1P3

∴P1、P 2 、P3應(yīng)重合,故圖2是錯誤的.

數(shù)學(xué)教案-切線長定理

【數(shù)學(xué)教案-切線長定理】相關(guān)文章:

數(shù)學(xué)切線長定理的教案設(shè)計04-27

勾股定理的逆定理數(shù)學(xué)教案02-10

《切線長定理及三角形的內(nèi)切圓》導(dǎo)學(xué)案05-01

定理04-30

初中數(shù)學(xué)《勾股定理的逆定理》教案11-05

逆定理04-29

勾股定理證明04-29

正弦定理的證明04-29

勾股定理教案05-30

趣談勾股定理05-02