數學初中教案15篇
作為一名人民教師,常常要寫一份優(yōu)秀的教案,編寫教案有利于我們科學、合理地支配課堂時間。那么寫教案需要注意哪些問題呢?下面是小編幫大家整理的數學初中教案,希望能夠幫助到大家。
數學初中教案1
教材分析
1.本節(jié)在引言中的方程基礎上,首先通過兩個實際問題,進一步引出一元二次方程的具體例子,然后引導學生觀察出它們的共同點,得出一元二次方程的定義。
2.書中的定義是以未知數的個數和次數為標準,用文字的形式給出的。一元二次方程都可以整理為ax2+bx+c=0(a≠0)的形式,即一元二次方程的一般形式。
3、本節(jié)始終都有列方程的內容,這樣安排一方面是分散列方程這一教學難點,化整為零地培養(yǎng)由實際問題抽象出方程模型的能力;另一方面是為由一些具體的方程歸納出一元二次方程的概念。
學情分析
1、通過課堂練習,大部分學生對概念基本理解,能夠找出各項系數,但有少數學困生對于系數符號沒有掌握。
2、部分學生由于基礎較薄弱,用一元二次方程解決實際問題有一定的難度,解決這問題要以多練為主。
3、學生認知障礙點:一元二次方程與不等式和整式的綜合運用能力有待提高。
教學目標
1、從實際問題引出一元二次方程,使學生進一步體會方程是刻畫現實世界中數量關系的`一個有效數學模型,培養(yǎng)學生分析問題和解決問題的能力及用數學的意識。
2、使學生正確理解一元二次方程的概念,掌握一元二次方程的一般形式,并能將一元二次方程轉化為一般形式,正確識別二次項系數、一次項系數及常數項。
3、通過概念教學,培養(yǎng)學生的觀察、類比、歸納能力,同時通過變式練習,使學生對概念理解具備完整性和深刻性。
教學重點和難點
1、重點:概念的形成及一般形式。
2、難點:從實際問題引出一元二次方程;正確識別一般形式中的“項”及“系數”。
數學初中教案2
教學目標
1.使學生認識字母表示數的意義,了解字母表示數是數學的一大進步;
2.了解代數式的概念,使學生能說出一個代數式所表示的數量關系;
3.通過對用字母表示數的講解,初步培養(yǎng)學生觀察和抽象思維的能力;
4.通過本節(jié)課的教學,使學生深刻體會從特殊到一般的的數學思想方法。
教學建議
1. 知識結構:本小節(jié)先回顧了小學學過的字母表示的兩種實例,一是運算律,二是公式,從中看出字母表示數的優(yōu)越性,進而引出代數式的概念。
2.教學重點分析:教科書,介紹了小學用字母表示數的實例,一個是運算律,一個是常用公式,上述兩種例子應用廣泛,且能很好地體現用字母表示數所具有的簡明、普遍的優(yōu)越性,用字母表示是數學從算術到代數的一大進步,是代數的顯著特點。運用算術的方法解決問題,是小學學生的思維方法 ,現在,從具體的數過渡到用字母表示數,滲透了抽象概括的思維方法,在認識上是一個質的飛躍。對代數式的概念課文沒有直接給出,而是用實例形象地說明了代數式的概念。對代數式的概念可以從三個方面去理解:
(1)從具體的數到用字母表示數,是抽象思維的開始,體現了特殊與一般的辨證關系,用字母表示數具有簡明、普遍的優(yōu)越性.
(2)代數式中并不要求數和表示數的字母同時出現,單獨的一個數和字母也是代數式.如:2,m都是代數式.
等都不是代數式.
3.教學難點分析:能正確說出一個代數式的數量關系,即用語言表達代數式的意義,一定要理清代數式中含有的各種運算及其順序。用語言表達代數式的意義,具體說法沒有統一規(guī)定,以簡明而不引起誤會為出發(fā)點。
如:說出代數式7(a-3)的意義。
分析 7(a-3)讀成7乘a減3,這樣就產生歧義,究竟是7a-3呢?還是7(a-3)呢?有模棱兩可之感。代數式7(a-3)的最后運算是積,應把a-3作為一個整體。所以,7(a-3)的意義是7與(a-3)的積。
4.書寫代數式的注意事項:
(1)代數式中數字與字母或者字母與字母相乘時,通常把乘號簡寫作“·”或省略不寫,同時要求數字應寫在字母前面.
如3×a ,應寫作3.a 或寫作3a ,a×b 應寫作3.a 或寫作ab .帶分數與字母相乘,應把帶分數化成假分數,
#FormatImgID_0#
.數字與數字相乘一般仍用“×”號.
(2)代數式中有除法運算時,一般按照分數的寫法來寫.
(3)含有加減運算的代數式需注明單位時,一定要把整個式子括起來.
5.對本節(jié)例題的分析:
例1是用代數式表示幾個比較簡單的數量關系,這些小學都學過.比較復雜一些的數量關系的代數式表示,課文安排在下一節(jié)中專門介紹.
例2是說出一些比較簡單的代數式的意義.因為代數式中用字母表示數,所以把字母也看成數,一種特殊的數,就可以像看待原來比較熟悉的數式一樣,說出一個代數式所表示的數量關系,只是另外還要考慮乘號可能省略等新規(guī)定而已.
6.教法建議
(1)因為這一章知識大部分在小學學習過,講授新課之前要先復習小學學過的運算律,在學生原有的認知結構上,提出新的問題。這樣即復習了舊知識,又引出了新知識,能激發(fā)學生的學習興趣。在教學中,一定要注意發(fā)揮本章承上啟下的作用,搞好小學數學與初中代數的銜接,使學生有一個良好的開端。
(2)在本節(jié)的學習過程中,要使學生理解代數式的概念,首先要給學生多舉例子(學生比較熟悉、貼近現實生活的例子),使學生從感性上認識什么是代數式,理清代數式中的運算和運算順序,才能正確說出一個代數式所表示的數量關系,從而認識字母表示數的意義——普遍性、簡明性,也為列代數式做準備。
(3)條件比較好的學校,老師可選用一些多媒體課件,激發(fā)學生的學習興趣,增強學生自主學習的能力。
(4)老師在講解第一節(jié)之前,一定要對全章內容和課時安排有一個了解,注意前后知識的銜接,只有這樣,我們老師才能教給學生系統的而不是一些零散的知識,久而久之,學生頭腦中自然會形成一個完整的知識體系。
(5)因為是新學期代數的第一節(jié)課,老師一定要給學生一個好印象,好的開端等于成功了一半。那么,怎么才能給學生留下好印象呢?首先,你要盡量在學生面前展示自己的才華。比,英語口語好的老師,可以用英語做一個自我介紹,然后為學生說一段祝福語。第二,上課時盡量使用多種語言與學生交流,其中包括情感語言(眉目語言、手勢語言等),讓學生感受到老師對他的關心。
7.教學重點、難點:
重點:用字母表示數的意義
難點:學會用字母表示數及正確說出一個代數式所表示的數量關系。
教學設計示例
課堂教學過程設計
一、從學生原有的認知結構提出問題
1在小學我們曾學過幾種運算律?都是什么?如可用字母表示它們?
(通過啟發(fā)、歸納最后師生共同得出用字母表示數的五種運算律)
(1)加法交換律 a+b=b+a;
(2)乘法交換律 a·b=b·a;
(3)加法結合律 (a+b)+c=a+(b+c);
(4)乘法結合律 (ab)c=a(bc);
(5)乘法分配律 a(b+c)=ab+ac
指出:(1)“×”也可以寫成“·”號或者省略不寫,但數與數之間相乘,一般仍用“×”;
(2)上面各種運算律中,所用到的字母a,b,c都是表示數的字母,它代表我們過去學過的一切數
2(投影)從甲地到乙地的路程是15千米,步行要3小時,騎車要1小時,乘汽車要0.25小時,試問步行、騎車、乘汽車的速度分別是多少?
3若用s表示路程,t表示時間,ν表示速度,你能用s與t表示ν嗎?
4(投影)一個正方形的邊長是a厘米,則這個正方形的周長是多少?面積是多少?
(用I厘米表示周長,則I=4a厘米;用S平方厘米表示面積,則S=a2平方厘米)
此時,教師應指出:(1)用字母表示數可以把數或數的關系,簡明的表示出來;(2)在公式與中,用字母表示數也會給運算帶來方便;(3)像上面出現的a,5,15÷3,4a,a+b,s/t 以及a2等等都叫代數式.那么究竟什么叫代數式呢?代數式的意義又是什么呢?這正是本節(jié)課我們將要學習的內容.
三、講授新課
1代數式
單獨的一個數字或單獨的一個字母以及用運算符號把數或表示數的字母連接而成的式子叫代數式.學習代數,首先要學習用代數式表示數量關系,明確代數上的意義
2舉例說明
例1 填空:
(1)每包書有12冊,n包書有__________冊;
(2)溫度由t℃下降到2℃后是_________℃;
(3)棱長是a厘米的正方體的體積是_____立方厘米;
(4)產量由m千克增長10%,就達到_______千克
(此例題用投影給出,學生口答完成)
解:(1)12n; (2)(t-2); (3)a3; (4)(1+10%)m
例2 說出下列代數式的意義:
解:(1)2a+3的意義是2a與3的和;(2)2(a+3)的意義是2與(a+3)的積;
(5)a2+b2的.意義是a,b的平方的和;(6)(a+b)2的意義是a與b的和的平方
說明:(1)本題應由教師示范來完成;
(2)對于代數式的意義,具體說法沒有統一規(guī)定,以簡明而不致引起誤會為出發(fā)點如第(1)小題也可以說成“a的2倍加上3”或“a的2倍與3的和”等等
例3 用代數式表示:
(1)m與n的和除以10的商;
(2)m與5n的差的平方;
(3)x的2倍與y的和;
(4)ν的立方與t的3倍的積
分析:用代數式表示用語言敘述的數量關系要注意:①弄清代數式中括號的使用;②字母與數字做乘積時,習慣上數字要寫在字母的前面
四、課堂練習
1填空:(投影)
(1)n箱蘋果重p千克,每箱重_____千克;
(2)甲身高a厘米,乙比甲矮b厘米,那么乙的身高為_____厘米;
(3)底為a,高為h的三角形面積是______;
(4)全校學生人數是x,其中女生占48%?則女生人數是____,男生人數是____
2說出下列代數式的意義:(投影)
3用代數式表示:(投影)
(1)x與y的和; (2)x的平方與y的立方的差;
(3)a的60%與b的2倍的和; (4)a除以2的商與b除3的商的和
五、師生共同小結
首先,提出如下問題:
1本節(jié)課學習了哪些內容?2用字母表示數的意義是什么?
3什么叫代數式?
教師在學生回答上述問題的基礎上,指出:①代數式實際上就是算式,字母像數字一樣也可以進行運算;②在代數式和運算結果中,如有單位時,要正確地使用括號
六、作業(yè)
1一個三角形的三條邊的長分別的a,b,c,求這個三角形的周長
2張強比王華大3歲,當張強a歲時,王華的年齡是多少?
3飛機的速度是汽車的40倍,自行車的速度是汽車的1/3 ,若汽車的速度是ν千米/時,那么,飛機與自行車的速度各是多少?
4a千克大米的售價是6元,1千克大米售多少元?
5圓的半徑是R厘米,它的面積是多少?
6用代數式表示:
(1)長為a,寬為b米的長方形的周長;
(2)寬為b米,長是寬的2倍的長方形的周長;
(3)長是a米,寬是長的1/3 的長方形的周長;
(4)寬為b米,長比寬多2米的長方形的周長
數學初中教案3
教學目標
1.會通過列方程解決“配套問題”;
2.掌握列方程解決實際問題的一般步驟;
3.通過列方程解決實際問題的過程,體會建模思想。
教學重點 建立模型解決實際問題的一般方法。
教學難點 建立模型解決實際問題的一般方法。
學情分析
1、 在前面已學過一元一次方程的解法,能夠簡單的運用一元一次方程解決實際問題。
2、 培養(yǎng)學生分析、解決問題的能力及邏輯思維能力。
學法指導 自學互幫導學法
教 學過程
教學內容 教師活動 學生活動 效果預測( 可能出現的問題) 補救措施 修改意見
一、復習與回顧
問題1:之前我們通過列方程解應用問題的過程中,大致包含哪些步驟?
1. 審:審題,分析題目中的`數量關系;
2. 設:設適當的未知數,并表示未知量;
3. 列:根據題目中的數量關系列方程;
4. 解:解這個方程;
5. 答:檢驗 并答話。
二、應用與探究
問題2:應用回顧的步驟解決以下問題。
例1 某車間有22名工人,每人每天可以生產1 200個螺釘或2 000個螺母。 1個螺釘 需要配 2個螺母,為使每天生產的螺釘和螺母剛好配套,應安排生產螺釘和螺母的工人 各多少名?
三、課堂練習
1:一套儀器由一個A部件和三個B部件構成。 用1 m3鋼材可以做40個A部件或240個B部件。 現要用6 m3鋼材制作這種儀器,應用多少鋼材做A部件,多少鋼材 做B部件,恰好配成這種儀器多少套?
2:某糕點廠中秋節(jié)前要制作一批盒裝月餅,每盒中裝2塊大月餅和4塊小月餅。制作1塊大月餅要用0.05kg面粉,1塊小月餅要用0.02kg面粉。 現共有面粉4500kg,制作兩種月餅 應各用多少面粉,才能生產最多的盒裝月餅?
四、小結與歸納
問題4:用一元一次方程解決實際問題的基本過程有幾個步驟? 分別是什么?
五、課后作業(yè)
教科書第106頁習題3.4 第2、3、7題;
1、教師利用復習提問的方式導入,幫助學生掌握列方程解應用題的步驟。
2、教師展示例題,并 巡視學生獨立完成情況,引導學生分析問題并解決問題。
3、教師展示練習題,引導學生分析問題并解決問題,并巡視。
4、教師通過提問,讓學生進行歸納小結。
1、學生回憶并獨立回答。
2、學生先觀看課件,先獨立思考,再合作交流解決問題 。
3、學生先觀看課件并解決問題。
4、學生自主歸納本節(jié)課所學內容。
不能解決問題。
教師展示解答過程。
數學初中教案4
教學目標:
知識與技能:會用計算器進行數的加、減、乘、除、乘方運算。
過程與方法:了解計算器的性能,并會操作和使用,能運用計算器進行較為復雜的運算。
情感態(tài)度與價值觀:使學生能運用計算器探索一些有趣的數學規(guī)律。
教學重點:用計算器進行數的加、減、乘、除、乘方的運算。
教學難點:能用計算器進行數的乘方的運算。
教材分析:在日常生活中,經常會出現一些較為復雜的混合運算,這就要求使用科學計算器。因此,使學生會用計算器進行數加、減、乘、除、乘方的運算就成為本節(jié)的重點和難 點。
教學方法:師生互動法。
課時安排:1課時。
教具:Powerpoint幻燈片、科學計算器。
環(huán)節(jié) 教 師 活 動 學 生 活 動 設 計 意 圖
創(chuàng)設情境 一、從問題情境入手,揭示課題。
。ǔ鍪净脽粢唬
在棋盤上放米,第一格放1粒米,第二格放2粒米,第三格放22粒米,然后是23粒、24粒、25!恢钡64格,你能計算第64格應放多少粒米?有簡單的計算方法嗎
教師對學生的回答給予點評,并帶著問題引入本節(jié)課題:
板書:3.4 用計算器進行數的`計算 在教師的引導下,學生仔細觀察、思考,積極回答。 通過師生的相互探討,使學生認識到學會使用計算器的必要性,并激發(fā)學生的 求知欲。
探究活動一 一、 介紹計算器的使用方法。
。ǔ鍪净脽舳
。滦陀嬎闫鞯拿姘迨疽鈭D如下:
教師結合示意圖介紹按鍵的使用方法。
學生根據教師的介紹,使用計算器進行實際操作。 通過訓練,使學生掌握計算器 的按鍵操作,熟悉計算器的程序設計模式。
探究活動二 二、用計算器進行加、減、乘、除、乘方運算
。ǔ鍪净脽羧
例1 用計算器求下列各式的值
(1)(-3.75)+(-22.5)
(2)51.7(-7.2)
解:(1)
(-3.75)+(-22.5)=-26.25
學生相互交流,并用計算器進行實際操作。 通過計算,使學生熟悉計算器的用法。
探究活動二 (2)
51.7(-7.2)=-372.24
學生相互交流,并用計算器進行實際操作。
通過計算,使學生會用計算器進行有理數的加、減、乘、除運算。
探究活動二 例2 用計算器計算(精確到0.001)
(-0.45)5
(-0.45)5-0.018
相互討論,并進行實際操作。 通過計算,使學生會用計算器進行有理數的乘方運算。
探究活動二
例3 用計算器求值
(1)(-6)2(2)-62
解:
思考:
注意觀察它們的按鍵順序有什么不同?
學生認真觀察、討論,得出結論。
通過對比,使學生能區(qū)分兩種按鍵的不同,靈活運用計算器進行計算。
探究活動三 三、隨堂練習
。ǔ鍪净脽羲模
用計算器求值
1.9.23+10.2
2 . (-2.35)(-0.46)
3.( -3.45)3
4.-2.082
學生獨立操作完成。 通過訓練,使學生能熟練地用計算器進行數的運算。
探究活動四 四、實際應用,能力提高。
1.用計算器解決“創(chuàng)設情境”中提出的問題。
(出示幻燈五)
2.張老師在銀行貸月息為0.456%的住房 貸款50 000元,滿5年時共需付款50 000(1+600.456%)元,其中包括貸款本金和貸款利息。張老師共需付利息多少元? 在教師的引導下,分組討論,互相交流,回答有關的信息,學生互評。 通過實際應用,進一步提高學生運用計算器解決實際問題的能力。
學習總結 五、學習總結
這節(jié)課你有哪些收獲?有什么體會?
教師簡要點評:
。1)由于受計算器顯示數位的限制,計算結果是一個近似數。
(2)當計算結果很大時,計算器能將計算結果自動轉化為科學記數法的形式來顯示。
學生相互交流自己的 收獲和體會,教師參與互動并給予鼓勵 性的評價。 學生自由發(fā)表學習心得,能鍛煉學生的語言表達能力和歸納概括能力。
課堂反饋
1.用計算器進行計算(略)
2.(1)用計算器計算下列各式:
1111,111111,1 1111 111,11 11111 111 。
(2)根據 (1)的計算結果,你發(fā)現了什么規(guī)律?
(3)如果不用計算器,你能直接寫出1 111 1111 111 1 11的結果嗎? 讓學生熟練運用計算器進行操作,學以致用。 及時反饋,并使學生能運用計算器探究一些有趣的數學規(guī)律。
附:板書設計:
。常从糜嬎闫鬟M行數的計算
。保榻B計算器的使用方法;
。玻\用計算器進行數的運算;
3.運用計算器探究數學規(guī)律。
教學反思:
。保煌A粼趐owerpoint的使用上,有一定的局限性,如能演示使用計算器的方法,效果會更好。
。玻陆虒W觀念,最好以學生自學使用計算器的方法為主,使學生主動參與探索,培養(yǎng)學生的創(chuàng)新精神。
。常處熤鲗дn堂,忽視學生的學習主體作用,不利于創(chuàng)新思維及個性化發(fā)展。而通過網絡或多媒體的教學過程中,往往易忽視教師的作用,過分的 依賴于學習者的主觀能動性,教學成本也大幅度提高。
數學初中教案5
教學目標:
1、理解并掌握三角形中位線的概念、性質,會利用三角形中位線的性質解決有關問題。
2、經歷探索三角形中位線性質的過程,讓學生實現動手實踐、自主探索、合作交流的學習過程。
3、通過對問題的探索研究,培養(yǎng)學生分析問題和解決問題的'能力以及思維的靈活性。
4、培養(yǎng)學生大膽猜想、合理論證的科學精神。
教學重點:
探索并運用三角形中位線的性質。
教學難點:
運用轉化思想解決有關問題。
教學方法:
創(chuàng)設情境——建立數學模型——應用——拓展提高
教學過程:
情境創(chuàng)設:測量不可達兩點距離。
探索活動:
活動一:剪紙拼圖。
操作:怎樣將一張三角形紙片剪成兩部分,使分成的兩部分能拼成一個平行四邊形。
觀察、猜想: 四邊形BCFD是什么四邊形。
探索: 如何說明四邊形BCFD是平行四邊形?
活動二:探索三角形中位線的性質。
應用
練習及解決情境問題。
例題教學
操作——猜想——驗證
拓展:數學實驗室
小結:布置作業(yè)。
數學初中教案6
教學目標
1.知識與技能: 了解命題、公理、定理的含義;理解證明的必要性.
2.過程與方法:結合實例讓學生意識到證明的必要性,培養(yǎng)學生說理有據,有條 理地表達自己想法的良好意識.
3.情感、態(tài)度與價值觀:初步感受公理化方法對數學發(fā)展和人類文明的價值.
重點與難點
1.重點:知道什么是公理,什么是定理
2.難點:理解證明的必要性.
教學過程
一、復習引入
教師講解:前一節(jié)課 我們講過,要證明一個命題是假命題,只要舉 出 一個反例就行了.這節(jié)課,我們將探究怎樣證明一個命題是真命題.
二、探究新知
。ㄒ唬┕斫處熤v解:數學中有些命題的正確性是人們在 長期實踐中總結出來的,并把它們作為判斷其他命題真假的原始依據,這樣的.真命題叫做公理.
我們已經知道下列命題是真命題:
一條直線截兩條平行直線所得的同位角相等;
兩條直線被第三條直線所截,如果同位角相等,那么這兩條直線平行;
全等三角形的對應邊、對應角相等.
在本書中我們將這些真命題均作為公理.
。ǘ┒ɡ斫處熞龑W生通過舉反例來說明下面兩題中歸納出的結論是錯誤的.從而說明證明的重要性.
1、教師講解:請大家看下面的例子:
當n=1時,(n2-5n+5)2=1;
當n=2時,(n2-5n+5)2=1;
當n=3時,(n2-5n +5)2=1.
我們能不能就此下這樣的結論:對于任意的正整數(n2-5n+5)2的值都是1呢?
實際上我們的猜 測是錯誤的,因為當n=5時 ,(n2-5n+5)2=25.
2、教師再提出一個問題讓學生回答:如果a=b,那么a2=b2.由此我們猜想:當a> b時,a2>b2.這個命題是真命題嗎?
。鄞鸢福翰徽_,因為3>-5,但32<(-5)2]
教師總結:在前面的學習過程中,我們用觀察、驗證、歸納、類比等方法,發(fā)現了很多幾何圖形的性質.但由前面兩題我們又知道, 這些方法得到 的結論有 時不具有一般性.也就是說,由這些方法得到的命 題可能是真命題,也可能 是假命題.
教師講解:數學中有些命題可以從公理出發(fā)用邏輯推理的方 法證明它們是正確的,并且可以進一步作為推斷其他命題真假的依據,這 樣的真命題叫 做定理.
(三)例題與證明
例如,有了“三角形的內角和等于1 80”這 條定 理后,我們還可以證明刻畫直角三角形的兩個銳角之間的數量關系的命題:直角 三角形的兩個銳角互余.
教師板書證明過程.
教師講解:此命題可以用來作為判斷其他命題真假的依據,因此我們把它也作為定理.
定理的作用不僅在于它揭示了客觀事物的本質屬性,而且可以作為進一步確認其他命題真假的依據.
三、隨堂練習
課本P66練習第1、2題.
四、課時總結
1、在長期實踐中總結出來為 真命 題的命題叫做公理.
2、用邏輯推理的方法證明它們是正確的命題叫做定理
五、布置作業(yè)
數學初中教案7
教學目標:
1、能利用反比例函數的相關的知識分析和解決一些簡單的實際問題
2、能根據實際問題中的條件確定反比例函數的解析式。
3、在解決實際問題的過程中,進一步體會和認識反比例函數是刻畫現實世界中數量關系的一種數學模型。
教學重點、難點:
重點:能利用反比例函數的相關的知識分析和解決一些簡單的實際問題
難點:根據實際問題中的條件確定反比例函數的解析式
教學過程:
一、情景創(chuàng)設:
為了預防“非典”,某學校對教室采用藥熏消毒法進行消毒, 已知藥物燃燒時,室內每立方米空氣中的含藥量y(mg)與時間x(min)成正比例.藥物燃燒后,y與x成反比例(如圖所示),現測得藥物8min燃畢,此時室內空氣中每立方米的含藥量為6mg,請根據題中所提供的信息,解答下列問題:
(1)藥物燃燒時,y關于x 的函數關系式為: ________, 自變量x 的取值范圍是:_______,藥物燃燒后y關于x的函數關系式為_______.
(2)研究表明,當空氣中每立方米的含藥量低于1.6mg時學生方可進教室,那么從消毒開始,至少需要經過______分鐘后,學生才能回到教室;
(3)研究表明,當空氣中每立方米的含藥量不低于3mg且持續(xù)時間不低于10min時,才能有效殺滅空氣中的病菌,那么此次消毒是否有效?為什么?
二、新授:
例1、小明將一篇24000字的社會調查報告錄入電腦,打印成文。
。1)如果小明以每分種120字的速度錄入,他需要多少時間才能完成錄入任務?
(2)錄入文字的速度v(字/min)與完成錄入的.時間t(min)有怎樣的函數關系?
(3)小明希望能在3h內完成錄入任務,那么他每分鐘至少應錄入多少個字?
例2某自來水公司計劃新建一個容積為 的長方形蓄水池。
。1)蓄水池的底部S 與其深度 有怎樣的函數關系?
。2)如果蓄水池的深度設計為5m,那么蓄水池的底面積應為多少平方米?
。3)由于綠化以及輔助用地的需要,經過實地測量,蓄水池的長與寬最多只能設計為100m和60m,那么蓄水池的深度至少達到多少才能滿足要求?(保留兩位小數)
三、課堂練習
1、一定質量的氧氣,它的密度 (kg/m3)是它的體積V( m3) 的反比例函數, 當V=10m3時,=1.43kg/m3. (1)求與V的函數關系式;(2)求當V=2m3時求氧氣的密度.
2、某地上年度電價為0.8元度,年用電量為1億度.本年度計劃將電價調至0.55元至0.75元之間.經測算,若電價調至x元,則本年度新增用電量y(億度)與(x-0.4)(元)成反比例,當x=0.65時,y=-0.8.
(1)求y與x之間的函數關系式;
(2)若每度電的成本價為0.3元,則電價調至多少元時,本年度電力部門的收益將比上年度增加20%? [收益=(實際電價-成本價)(用電量)]
3、如圖,矩形ABCD中,AB=6,AD=8,點P在BC邊上移動(不與點B、C重合),設PA=x,點D到PA的距離DE=y.求y與x之間的函數關系式及自變量x的取值范圍.
四、小結
五、作業(yè)
30.31、2、3
數學初中教案8
教學目標
1.了解公式的意義,使學生能用公式解決簡單的實際問題;
2.初步培養(yǎng)學生觀察、分析及概括的能力;
3.通過本節(jié)課的教學,使學生初步了解公式來源于實踐又反作用于實踐。
教學建議
一、教學重點、難點
重點:通過具體例子了解公式、應用公式。
難點:從實際問題中發(fā)現數量之間的關系并抽象為具體的公式,要注意從中反應出來的歸納的思想方法。
二、重點、難點分析
人們從一些實際問題中抽象出許多常用的、基本的數量關系,往往寫成公式,以便應用。如本課中梯形、圓的面積公式。應用這些公式時,首先要弄清楚公式中的字母所表示的意義,以及這些字母之間的數量關系,然后就可以利用公式由已知數求出所需的未知數。具體計算時,就是求代數式的值了。有的公式,可以借助運算推導出來;有的公式,則可以通過實驗,從得到的反映數量關系的一些數據(如數據表)出發(fā),用數學方法歸納出來。用這些抽象出的具有一般性的公式解決一些問題,會給我們認識和改造世界帶來很多方便。
三、知識結構
本節(jié)一開始首先概述了一些常見的公式,接著三道例題循序漸進的講解了公式的直接應用、公式的先推導后應用以及通過觀察歸納推導公式解決一些實際問題。整節(jié)內容滲透了由一般到特殊、再由特殊到一般的辨證思想。
四、教法建議
1.對于給定的可以直接應用的公式,首先在給出具體例子的前提下,教師創(chuàng)設情境,引導學生清晰地認識公式中每一個字母、數字的意義,以及這些數量之間的對應關系,在具體例子的基礎上,使學生參與挖倔其中蘊涵的思想,明確公式的'應用具有普遍性,達到對公式的靈活應用。
2.在教學過程中,應使學生認識有時問題的解決并沒有現成的公式可套,這就需要學生自己嘗試探求數量之間的關系,在已有公式的基礎上,通過分析和具體運算推導新公式。
3.在解決實際問題時,學生應觀察哪些量是不變的,哪些量是變化的,明確數量之間的對應變化規(guī)律,依據規(guī)律列出公式,再根據公式進一步地解決問題。這種從特殊到一般、再從一般到特殊認識過程,有助于提高學生分析問題、解決問題的能力。
數學初中教案9
教學目的
1.通過用相同的正多邊形拼地板活動,鞏固多邊形的內角和與外角和公式。
2.通過“拼地板”和有關計算,使學生從中發(fā)現能拼成一個不留空隙,又不重疊的平面圖形的關鍵是幾個多邊形的內角相加要等于 360°。
3.使學生進一步認識圖形在日常生活中的應用。
重點、難點
1.重點:通過操作使學生發(fā)現能拼成一個平面圖形的關鍵。
2.難點:同上。
教學過程
一、復習提問
1.多邊形的內角和公式是什么?外角和?
2.什么叫正多邊形?
二、新授
本章開頭已提出關于瓷磚的鋪設問題,今天我們來探究用什么樣的正多邊形能拼成一個既不留下一絲空白,又不相互重疊的'平面圖形。
請同學們拿出預先準備好的若干張正三角形、正方形、正五邊形、正六邊形、正八邊形。
先用正三角形拼圖,你能拼出既不留空隙,又不重疊的平面圖形?再依次用正方形、正五邊形、正六邊形,正八邊形試一試,哪些可以,哪些不可以,你從中發(fā)現了什么?
通過學生親自動手拼圖,使他們發(fā)現能拼成既不留空隙,又不重疊的平面圖形的關鍵是圍繞一點拼在一起的幾個多邊形的內角相加恰好等于360°。
下面我們再通過用計算器計算,看看哪些正多邊形能拼成符合以上條件的圖形。
讓學生填教科書表9.3.1
每個內角為多少度時能拼成符合以上條件的平面圖呢?
因為60°×6=360° 用6個正三角形瓷磚就可以鋪滿地面
90°×4=360° 即用4個正方形瓷磚就可以鋪滿地面。
為什么用正五邊形瓷磚不能鋪滿地面呢?正八邊形也不行?
(因為360°÷108°,360°÷154°得數都不是整數)
這就是說,當(360°÷ (n-2)180°n )為正整數時
即2nn-2 為正整數時,用這樣的正n邊形就可以鋪滿地面。
請同學們看教科書,看圖9.3.1中(1)、(2)、(3)分別是用正三角形、正方形、正六邊形拼成的。
三、鞏固練習
你能用正三角形和正六邊形兩個結合在一起鋪滿地面嗎?
四、作業(yè)
教科書練習。
數學初中教案10
學習目標:
1.經歷探索直角三角形中邊角關系的過程.理解正切的意義和與現實生活的聯系.
2.能夠用tanA表示直角三角形中兩邊的比,表示生活中物體的傾斜程度、坡度等,外能夠用正切進行簡單的計算.
學習重點:
1.從現實情境中探索直角三角形的邊角關系.
2.理解正切、傾斜程度、坡度的數學意義,密切數學與生活的聯系.
學習難點:
理解正切的意義,并用它來表示兩邊的比.
學習方法:
引導—探索法. 更多免費教案下載綠色圃中
學習過程:
一、生活中的數學問題:
1、你能比較兩個梯子哪個更陡嗎?你有哪些辦法?
2、生活問題數學化:
、湃鐖D:梯子AB和EF哪個更陡?你是怎樣判斷的?
、埔韵氯M中,梯子AB和EF哪個更陡?你是怎樣判斷的?
二、直角三角形的邊與角的關系(如圖,回答下列問題)
、臨t△AB1C1和Rt△AB2C2有什么關系?
⑵ 有什么關系?
、侨绻淖傿2在梯子上的位置(如B3C3)呢?
、扔纱四愕贸鍪裁唇Y論?
三、例題:
例1、如圖是甲,乙兩個自動扶梯,哪一個自動扶梯比較陡?
例2、在△ABC中,∠C=90°,BC=12cm,AB=20cm,求tanA和tanB的值.
四、隨堂練習:
1、如圖,△ABC是等腰直角三角形,你能根據圖中所給數據求出tanC嗎?
2、如圖,某人從山腳下的點A走了200m后到達山頂的點B,已知點B到山腳的`垂直距離為55m,求山的坡度.(結果精確到0.001)
3、若某人沿坡度i=3:4的斜坡前進10米,則他所在的位置比原來的位置升高________米.
4、菱形的兩條對角線分別是16和12.較長的一條對角線與菱形的一邊的夾角為θ,則tanθ=______.
5、如圖,Rt△ABC是一防洪堤背水坡的橫截面圖,斜坡AB的長為12 m,它的坡角為45°,為了提高該堤的防洪能力,現將背水坡改造成坡比為1:1.5的斜坡AD,求DB的長.(結果保留根號)
五、課后練習:
1、在Rt△ABC中,∠C=90°,AB=3,BC=1,則tanA= _______.
2、在△ABC中,AB=10,AC=8,BC=6,則tanA=_______.
3、在△ABC中,AB=AC=3,BC=4,則tanC=______.
4、在Rt△ABC中,∠C是直角,∠A、∠B、∠C的對邊分別是a、b、c,且a=24,c= 25,求tanA、tanB的值.
5、若三角形三邊的比是25:24:7,求最小角的正切值.
6、如圖,在菱形ABCD中,AE⊥BC于E,EC=1,tanB= , 求菱形的邊長和四邊形AECD的周長.
7、已知:如圖,斜坡AB的傾斜角a,且tanα= ,現有一小球從坡底A處以20cm/s 的速度向坡頂B處移動,則小球以多大的速度向上升高?
8、探究:
、拧克糖水中有b克糖(a>b>0),則糖的質量與糖水質量的比為_______; 若再添加c克糖(c>0),則糖的質量與糖水的質量的比為________.生活常識告訴我們: 添加的糖完全溶解后,糖水會更甜,請根據所列式子及這個生活常識提煉出一個不等式: ____________.
、、我們知道山坡的坡角越大,則坡越陡,聯想到課本中的結論:tanA的值越大, 則坡越陡,我們會得到一個銳角逐漸變大時,它的正切值隨著這個角的變化而變化的規(guī)律,請你寫出這個規(guī)律:_____________.
⑶、如圖,在Rt△ABC中,∠B=90°,AB=a,BC=b(a>b),延長BA、BC,使AE=CD=c, 直線CA、DE交于點F,請運用(2) 中得到的規(guī)律并根據以上提供的幾何模型證明你提煉出的不等式.
§1.1從梯子的傾斜程度談起(第二課時)
學習目標:
1.經歷探索直角三角形中邊角關系的過程,理解正弦和余弦的意義.
2.能夠運用sinA、cosA表示直角三角形兩邊的比. 3.能根據直角三角形中的邊角關系,進行簡單的計算.
4.理解銳角三角函數的意義.
學習重點:
1.理解銳角三角函數正弦、余弦的意義,并能舉例說明.
2.能用sinA、cosA表示直角三角形兩邊的比.
3.能根據直角三角形的邊角關系,進行簡單的計算.
學習難點:
用函數的觀點理解正弦、余弦和正切.
學習方法:
探索——交流法.
學習過程:
一、正弦、余弦及三角函數的定義
想一想:如圖
(1)直角三角形AB1C1和直角三角形AB2C2有什么關系?
(2)有什么關系?呢?
(3)如果改變A2在梯子A1B上的位置呢?你由此可得出什么結論?
(4)如果改變梯子A1B的傾斜角的大小呢?你由此又可得出什么結論?
請討論后回答.
二、由圖討論梯子的傾斜程度與sinA和cosA的關系:
三、例題:
例1、如圖,在Rt△ABC中,∠B=90°,AC=200.sinA=0.6,求BC的長.
例2、做一做:
如圖,在Rt△ABC中,∠C=90°,cosA= ,AC=10,AB等于多少?sinB呢?cosB、sinA呢?你還能得出類似例1的結論嗎?請用一般式表達.
四、隨堂練習:
1、在等腰三角形ABC中,AB=AC=5,BC=6,求sinB,cosB,tanB.
2、在△ABC中,∠C=90°,sinA= ,BC=20,求△ABC的周長和面積.
3、在△ABC中.∠C=90°,若tanA=
數學初中教案11
教學目標:
會用待定系數法求二次函數的解析式,能結合二次函數的圖象掌握二次函數的性質,能較熟練地利用函數的性質解決函數與圓、三角形、四邊形以及方程等知識相結合的綜合題。
重點難點:
重點;用待定系數法求函數的解析式、運用配方法確定二次函數的特征。
難點:會運用二次函數知識解決有關綜合問題。
教學過程:
一、例題精析,強化練習,剖析知識點
用待定系數法確定二次函數解析式.
例:根據下列條件,求出二次函數的解析式。
。1)拋物線y=ax2+bx+c經過點(0,1),(1,3),(-1,1)三點。
。2)拋物線頂點P(-1,-8),且過點A(0,-6)。
。3)已知二次函數y=ax2+bx+c的圖象過(3,0),(2,-3)兩點,并且以x=1為對稱軸。
。4)已知二次函數y=ax2+bx+c的圖象經過一次函數y=-3/2x+3的圖象與x軸、y軸的交點;且過(1,1),求這個二次函數解析式,并把它化為y=a(x-h(huán))2+k的形式。
學生活動:學生小組討論,題目中的四個小題應選擇什么樣的函數解析式?并讓學生闡述解題方法。
教師歸納:二次函數解析式常用的有三種形式:(1)一般式:y=ax2+bx+c(a≠0)
。2)頂點式:y=a(x-h(huán))2+k(a≠0)(3)兩根式:y=a(x-x1)(x-x2)(a≠0)
當已知拋物線上任意三點時,通常設為一般式y=ax2+bx+c形式。
當已知拋物線的頂點與拋物線上另一點時,通常設為頂點式y=a(x-h(huán))2+k形式。
當已知拋物線與x軸的`交點或交點橫坐標時,通常設為兩根式y=a(x-x1)(x-x2)
強化練習:已知二次函數的圖象過點A(1,0)和B(2,1),且與y軸交點縱坐標為m。
。1)若m為定值,求此二次函數的解析式;
。2)若二次函數的圖象與x軸還有異于點A的另一個交點,求m的取值范圍。
二、知識點串聯,綜合應用
例:如圖,拋物線y=ax2+bx+c過點A(-1,0),且經過直線y=x-3與坐標軸的兩個交
數學初中教案12
教學目標:
1、知識與技能:
、、在具體的現實情境中,認識一個角的余角和補角,掌握余角和補角的性質。
、、了解方位角,能確定具體物體的方位。
2、過程與方法:
進一步提高學生的抽象概括能力,發(fā)展空間觀念和知識運用能力,學會簡單的邏輯推理,并能對問題的結論進行合理的猜想。
3、情感態(tài)度與價值觀:
體會觀察、歸納、推理對數學知識中獲取數學猜想和論證的重要作用,初步數學中推理的嚴謹性和結論的確定性,能在獨立思考和小組交流中獲益。
重、難點及關鍵:
1、重點:認識角的互余、互補關系及其性質,確定方位是本節(jié)課的重點。
2、難點:通過簡單的推理,歸納出余角、補角的性質,并能用規(guī)范的語言描述性質是難點。
3、關鍵:了解推理的意義和推理過程是掌握性質的關鍵。
教學過程:
一、引入新課:
讓學生觀察意大利著名建筑比薩斜塔。
比薩斜塔建于1173年,工程曾間斷了兩次很長的時間,歷經約二百年才完工。設計為垂直建造,但是在工程開始后不久便由于地基不均勻和土層松軟而傾斜。
二、新課講解:
1、探究互為余角的定義:
如果兩個角的和是90(直角),那么這兩個角叫做互為余角,其中一個角是另一個角的余角。即:1是2的余角或2是1的余角。
2、練習⑴:
圖中給出的各角,那些互為余角?
3、探究互為補角的定義:
如果兩個角的和是180(平角),那么這兩個角叫做互為補角,其中一個角是另一個角的補角。即:3是4的補角或4是3的補角。
4、練習⑵:
。1)圖中給出的各角,那些互為補角?
。2)填下列表:
a的余角 a的補角
5
32
45
77
6223
x
結論:同一個銳角的補角比它的余角大90。
。3)填空:
①70的余角是 ,補角是 。
、赼(90)的它的余角是 ,它的補角是 。
重要提醒:ⅰ(如何表示一個角的余角和補角)
銳角a的余角是(90a )
a的補角是(180a )
、⒒ビ嗪突パa是兩個角的數量關系,與它們的位置無關。
5、講解例題:
例1:若一個角的補角等于它的余角4倍,求這個角的度數。
解: 設這個角是x ,則它的補角是( 180-x),余角是(90-x) 。
根據題意得:
。180-x)= 4 (90-x)
解之得: x =60
答:這個角的度數是60 。
6、練習⑶:
一個角的補角是它的`3倍,這個角是多少度?
7、探究補角的性質:
如圖1 與2互補,3 與4互補 ,如果1=3,那么2與4相等嗎?為什么?
教師活動:操作多媒體演示。
學生活動:觀察圖形的運動,得出結果:4
補角性質:同角或等角的補角相等
教師活動:向學生說明,以上從觀察圖形得到的結論,還可以從理論上說明其理由。
∵ 1 +2=180, 3 +4=180
2=180-1 , 4=180- 3
∵ 1 =3
180-1 =180- 3
即:2 =4
8、探究余角的性質:
如圖1 與2互余,3 與4互余 ,如果1=3,那么2與4相等嗎?為什么?
教師活動:操作多媒體演示。
學生活動:觀察圖形的運動,得出結果:4
余角性質:同角或等角的余角相等
教師活動:向學生說明,以上從觀察圖形得到的結論,還可以從理論上說明其理由。
∵ 1 +2=90, 3 +4=90
2=90-1 , 4=90- 3
∵ 1 =3
90-1 =90- 3
即:2 =4
9、講解例題:
例2:如圖,AOB=90COD=EOD=90,C,O,E在一條直線上,且4,請說出1與3之間的關系?并試著說明理由?
解:3
∵ 2= COD=90
3+2= AOB=90
3 (等角的余角相等)
10、練習⑷:
如圖AOB = 90 COD = 90 則1與2是什么關系?
11、講解方位角:
(1)認識方位:
正東、正南、正西、正北、東南、
西南、西北、東北。
。2)找方位角:
、∫业貙椎氐姆轿唤 ⅱ甲地對乙地的方位角
12、講解例題:
例3:選擇題:
(1)A看B的方向是北偏東21,那么B看A的方向( )
A:南偏東69 B:南偏西69 C:南偏東21 D:南偏西21
(2)如圖,下列說法中錯誤的是( )
A: OC的方向是北偏東60
B: OC的方向是南偏東60
C: OB的方向是西南方向
D: OA的方向是北偏西22
(3)在點O 北偏西60的某處有一點A,在點O南偏西20的某處有一點B,則AOB的度數是( )
A:100 B:70 C:180 D:140
例4:如圖.貨輪O在航行過程中,發(fā)現燈塔A在它南偏東60的方向上,同時,在它北偏東40,南偏西10,西北(即北偏西45)方向上又分別發(fā)現了客輪B,貨輪C和海島D.仿照表示燈塔方位的方法畫出表示客輪B,貨輪C和海島D方向的射線.
三、課堂小結:
1、本節(jié)課學習了余角和補角,并通過簡單的推理,得到出了余角和補角的性質。
2、了解方位角,學會了確定物體運動的方向。
四、課外作業(yè):
1、課本第114頁:9、11、12題。
2、學習指要第78-79頁:訓練二和訓練三。
課后反思:
數學初中教案13
一 、教學目標
(一)基礎知識目標:
1。理解方程的概念,掌握如何判斷方程。
2。理解用字母表示數的好處。
。ǘ┠芰δ繕
體會字母表示數的好處,畫示意圖有利于分析問題,找相等關系是列方程的重要一步,從算式到方程(從算術到代數)是數學的一大進步。
。ㄈ┣楦心繕
增強用數學的意識,激發(fā)學習數學的熱情。
二、教學重點
知道什么是方程、一元一次方程,找相等關系列方程。
三、教學難點
如何找相等關系列方程
四、教學過程
我們知道方程是一個含有未知數的等式,而等式表示了一個相等關系。因此對于
任何一個應用題中提供的條件,應首先從中找出一個相等關系,然后再將這個相等關系表示成方程。
本節(jié)課,我們就通過實例來說明怎樣尋找一個相等的關系和把這個相等關系轉化為方程的方法和步驟。
師生共同分析、研究一元一次方程解簡單應用題的方法和步驟
例1 某面粉倉庫存放的面粉運出 15%后,還剩余42 500千克,這個倉庫 原來有多少面粉?
師生共同分析:
1。本題中給出的已知量和未知量各是什么?
2。已知量與未知量之間存在著怎樣的相等關系?(原來重量—運出重量=剩余重量)
若設原來面粉有x千克,則運出面粉可表示為多少千克?利用上述相等關系,如何布列方程?
上述分析過程可列表如下:
解:設原來有x千克面粉,那么運出了15%x千克,由題意,得
x—15%x=42 500,
此時,讓學生討論:本題的相等關系除了上述表達形式以外,是否還有其他表達形式?若有,是什么?
。ㄟ有,原來重量=運出重量+剩余重量;原來重量—剩余重量=運出重量)
教師應指出:(1)這兩種相等關系的表達形式與“原來重量—運出重量=剩余重量”,雖形式上不同,但實質是一樣的,可以任意選擇其中的一個相等關系來列方程;
依據例2的分析與解答過程,首先請同學們思考列一元一次方程解應用題的方法和步驟;然后,采取提問的方式,進行反饋;最后,根據學生總結的情況,教師總結如下:
(1)仔細審題,透徹理解題意。即弄清已知量、未知量及其相互關系,并用字母(如x)表示題中的`一個合理未知數;
(2)根據題意找出能夠表示應用題全部含義的一個相等關系。(這是關鍵一步);
。3)根據相等關系,正確列出方程。即所列的方程應滿足兩邊的量要相等;
例3 (投影)初一2班第一小組同學去蘋果園參加勞動,休息時工人師傅摘蘋果
分給同學,若每人3個還剩余9個;若每人5個還有一個人分4個,試問第一
小組有多少學生,共摘了多少個蘋果?
(仿照例2的分析方法分析本題,如學生在某處感到困難,教師應做適當點撥。解答過程請一名學生板演,教師巡視,及時糾正學生在書寫本題時可能出現的各種錯誤。并嚴格規(guī)范書寫格式)
解:設第一小組有x個學生,依題意,得
3x+9=5x—(5—4),
解這個方程: 2x=10,
所以 x=5。
其蘋果數為 3× 5+9=24。
答:第一小組有5名同學,共摘蘋果24個。
學生板演后,引導學生探討此題是否可有其他解法,并列出方程。
。ㄔO第一小組共摘了x個蘋果,則依題意,得 )
課堂練習:
1。買4本練習本與3支鉛筆一共用了1。24元,已知鉛筆每支0。12元,問 練習本每本多少元?
2某工廠女工人占全廠總人數的 35%,男工比女工多 252人,求全廠總人數。
五、課堂小結
首先,讓學生回答如下問題:
1。本節(jié)課學習了哪些內容?
2。列一元一次方程方法和步驟是什么?
3。在運用上述方法和步驟時應注意什么?
依據學生的回答情況,教師總結如下:
(1)代數方法的基本步驟是:全面掌握題意;恰當選擇變數;找出相等關系;
布列方程)
。2)以上步驟同學應在理解的基礎上記憶。
六、作業(yè)布置
1。買3千克蘋果,付出10元,找回3角4分。問每千克蘋果多少錢?
2。用76厘米長的鐵絲做一個長方形的教具,要使寬是16厘米,那么長是多少厘米?
數學初中教案14
教學目標
1.使學生在了解直線概念的基礎上,理解射線和線段的概念,并能理解它們的區(qū)別與聯系.
2.通過直線、射線、線段概念的教學,培養(yǎng)學生的幾何想象能力和觀察能力,用運動的觀點看待幾何圖形.
3.培養(yǎng)學生對幾何圖形的興趣,提高學習幾何的積極性.
教學重點和難點
直線、射線、線段的概念是重點.對直線的“無限延伸”性的理解是難點.
教學過程設計
一、聯系實際,提出問題
1.讓學生舉出實際生活中所見到的直線的實例(可請5~6位學生發(fā)言).
2.教師總結:鉛筆、尺子、桌子邊沿等都有長度,是可以度量的,它們都是直線的一部分,此時給出直線的概念“直線是向兩個方向無限延伸著的.”繼而提問“無限延伸”怎樣解釋,教師可形象的歸納出“直線是無頭無尾、要多長有多長.”讓學生閉起眼睛想象一下.
再提問:在我們以前學過的知識中有沒有真正是直線的例子?(數軸)
3.通過前面學生所舉的例子,給出線段定義“直線上兩個點和它們之間的部分叫做線段.”
4.教師畫出一條直線,并在直線上標出一條線段,然后擦掉一部分,只剩下一條射線,先看它與直線、線段的'區(qū)別,后給出射線的定義:“直線上的一點和它一旁的部分叫做射線.”
二、正確表示直線、射線和線段
1.直線的表示有兩種:一個小寫字母或兩個大寫字母.但前面必須加“直線”兩字,如:直線l;直線m,直線AB;直線CD.(板書表示出來)
2.線段的表示也有兩種:一個小寫字母或用端點的兩個大寫字母.但前面必須加“線段”兩字.如:線段a;線段AB.(板書表示出來)
3.射線的表示同樣有兩種:一個小寫字母或端點的大寫字母和射線上的一個大寫字母,前面必須加“射線”兩字.如:射線a;射線OA.(板書表示出來)
三、運動變化,找出聯系
1.讓學生找出三者之間的區(qū)別:端點的個數,0個,1個,2個.
2.教師通過圖示將線段變化為射線、直線.指出事物之間都不是孤立的,靜止的,而是互相聯系的,變化的.
(1)先畫出線段AB,然后向一方延長,成為一條射線,再向相反的方向延長,成為一條直線.告訴學生:線段向一方延長就會成為射線,向兩方延長就會成為直線.因此,直線、射線都可以看作是由線段運動而成的.
(2)再畫出一條直線,在直線上任找一點,擦掉一點一旁的部分,就成為一條射線,在射線上再找一點,兩點之間的部分就成為一條線段.
四、回到實際,鞏固概念
1.讓學生舉出生活中的直線、射線和線段的事例.如:手電筒的光線,燈泡發(fā)出的光線等.
2.練習:
(1)如圖1-1,A,B,C,D為直線l上的四個點.
問:圖中共有幾條線段?以C為端點的射線有哪幾條?
(2)如圖1-2,A,B,C為平面上的三個點,分別畫出過點A,B;點A,C;點B,C的三條直線.
(3)如圖1-3,P是直線l外一點,A是直線L上一點.過P,A作一條直線;過A作一條射線.
(4)如圖1-4,圖中共有多少條線段?
五、小結
1.教師提問:(1)本節(jié)課你掌握了幾個幾何概念?
(2)直線、射線和線段三者之間的關系是什么?
(3)本節(jié)課應該理解哪幾個關鍵詞?
(4)在表示直線、射線和線段時應注意什么?
在學生回答的基礎上教師給以完善和補充,并進一步強調三者之間的關系.同時指出這三個概念是平面幾何的基礎.
2.再設問:直線還有什么性質呢?為下節(jié)課講直線的性質埋下伏筆.
六、作業(yè) p.11,1;p.12,3;p.14,1.2.
板書設計
課堂教學設計說明
1.本課的教學時間為1課時45分鐘.
2.本設計對教材順序稍加改動,先將直線、射線和線段的概念給出,然后再講它們的性質.這樣對于學生建構知識結構較為有利.
3.由于這節(jié)課為幾何的起始課,從感性認識出發(fā),在學生熟悉的實際生活中,抽象出幾何的概念,便于認知結構的形成.
4.建議:本課時也可以將課型設計為“自學輔導式”,由學生自己討論直線、射線和線段的概念,并尋找它們之間的區(qū)別與聯系,這樣更有利于發(fā)揮學生自己的主觀能動性,參與意識更強,課堂更加活躍.
5.在有條件的地方,對三者關系的變化過程,應用計算機輔助教學更為生動有趣,“變”的意義更為明顯.
數學初中教案15
第一課時
素質教育目標
。ㄒ唬┲R教學點
1.使學生初步了解統計知識是應用廣泛的數學內容 .
2.了解平均數的意義,會計算一組數據的平均數 .
3.當一組數據的數值較大時,會用簡算公式計算一組數據的平均數 .
。ǘ┠芰τ柧汓c
培養(yǎng)學生的觀察能力、計算能力 .
。ㄈ┑掠凉B透點
1.培養(yǎng)學生認真、耐心、細致的學習態(tài)度和學習習慣 .
2.滲透數學來源于實踐,反地來又作用于實踐的觀點 .
。ㄋ模┟烙凉B透點
通過本課的學習,滲透數學公式的簡單美和結構的嚴謹美,展示了寓深奧于淺顯,寓紛繁于嚴謹的辯證統一的數學美 .
重點·難點·疑點及解決辦法
1.教學重點:平均數的概念及其計算 .
2.教學難點:平均數的簡化計算 .
3.教學疑點:平均數簡化公式的應用,a如何選擇 .
4.解決辦法:分清兩個公式,公式②的運用要選擇一個適當的a .
教學步驟
。ㄒ唬┟鞔_目標
在日常生活中,我們常與數據打交道,例如,電視臺每天晚上都要預報第二天當地的最低氣溫與最高氣溫,商店每天都要結算一下當天的營業(yè)額,每個班次的飛機都要統計一下乘客的人數等.這些都涉及數據的計算問題.請同學們思考下面問題.(教師出示幻燈片)
為了從甲乙兩名學生中選拔一人參加射擊比賽,對他們的射擊水平進行了測驗.兩人在相同條件下各射靶10次,命中的環(huán)數如下:
甲 7 8 6 8 6 5 9 10 7 4
乙 9 5 7 8 7 6 8 6 7 7
1.怎樣比較兩個人的成績?2.應選哪一個人參加射擊比賽?
教師要引導學生觀察,給學生充分的時間去思考,并可以分成小組討論解決辦法.
對于這個問題,部分學生可能感到無從下手,部分學生可能想到去比較兩組數據的平均,讓學生動手具體算一下兩組數據的平均數結果它們相等在學生無法解決此問題的情況下,教師說明,這正是本章要解決的問題之一(寫出課題).這樣做的目的是教師有意創(chuàng)設問題情境、制造懸念,這不僅能激發(fā)學生學習的積極性和自覺性,引起學生對所學課程的注意,還能誘發(fā)學生探求新知識的濃厚興趣.
。ǘ┱w感知
解決類似上述的問題要用到統計學的知識,統計學是一門研究如何收集、整理、分析數據并據之做出推斷的科學,它以概率論為基礎,著重研究如何根據樣本的性質去推測總體的性質.在當今的信息時代,統計學的應用非常廣泛,以至于它已滲透到整個社會生活的各個方面.本章我們將學習統計學的一些初步知識.
(三)教學過程
這節(jié)課我們首先來學習平均數.
1.(出示幻燈片)請同學看下面問題:
某班第一小組一次數學測驗的成績如下:
86 91 100 72 93 89 90 85 75 95
這個小組的平均成績是多少?
教師引導學生動筆計算,并找一名學生到黑板板演,講完引例后,引導學生歸納出求平均數方法,這樣做使學生對平均數的計算公式能有深刻的認識 .
2.平均數的概念及計算公式
一般地,如果有n個數 .
那么 ①
叫做這n個數的平均數, 讀作“x撥” .
這是在初中數學課本中第一次出現帶有省略號的用字母表示的n個數相加的`一般寫法 .學生對此可能會感到比較抽象,不太習慣,要向學生強調,采用這種寫法是簡化表示,是為了使問題的討論具有一般性 .教師應通過對公式的剖析,使學生正確理解公式,并掌握公式中各元素的意義 .
3.平均數計算公式①的應用
例1 一個地區(qū)某年1月上旬各天的最低氣溫依次是(單位:℃):
。6,-5,-7,-6,-4,-5,-7,-8,-7
求它們的平均氣溫 .
讓學生動手計算,以鞏固平均數計算公式(一名學生板演)
教師應強調:①解題格式 .②在統計學里處理的數據包括負數 .③在本章中,如無特殊說明,平均數計算結果保留的位數與原數據相同 .
例2 從一批機器零件毛坯中取出20件,稱得它們的質量如下(單位:千克):
210 208 200 205 202 218 206 214 215 207 195 207 218 192 202 216 185 227 187 215
計算它們的平均質量 .(用投影儀打出)
引導學生兩人一組完成計算,然后一起對答案 .由于數據較大,計算較繁,可能會出現不同的答案 .正好為下面提出簡化計算公式作好鋪墊 .
教師提出問題:像例2這樣,數據較大,計算較繁,因而容易出錯,有沒有較為簡便的算法呢?引導學生觀察數據有什么特點?都接近于哪一個數?啟發(fā)學生討論,尋找簡便算法 .
學生回答:數據都在200左右波動,可將各數據同時減去200,轉而計算一組數值較小的新數據的平均數,至此讓學生再一次兩人一組用簡便方法計算例2,并與前面計算的結果相比較是否一樣 .
講完例2后,教師指出幾點:常數a的取法不是惟一的; 讀作“x——撇——撥”;;簡化計算的結果與前面毛算的結果相同 .
通過學生的動手計算,若產生困難或錯誤,教師及時點撥,引導學生尋找解決問題的方法,這不僅可以激發(fā)學生學習的興趣,更培養(yǎng)了學生的發(fā)散思維能力,同時也使學生對公式②的推導更容易接受 .
3.推導公式②
一般地,當一組數據 的各個數值較大時,可將各數據同時減去一個適當的常數a,得到,
那么 ,
因此,
即 ②
為了加深學生對公式②的認識,再讓學生指出例2的 、 、 各是什么?(學生回答)
課堂練習:
教材P148中~P149中1,2,3
(四)總結、擴展
知識小結:1.統計學是一門與數據打交道的學問,應用十分廣泛 .本章將要學習的是統計學的初步知識 .
2.求n個數據的平均數的公式① .
3.平均數的簡化計算公式② .這個公式很重要,要學會運用 .
方法小結:通過本節(jié)課我們學到了示一組數據平均數的方法 .當數據比較小時,可用公式①直接計算 .當數據比較大,而且都在某一個數左右波動時,可選用公式②進行計算 .
八、布置作業(yè)
教材P153中1、2、3、4 .
【數學初中教案】相關文章:
初中數學 教案02-24
數學初中教案11-06
初中數學命題教案02-23
初中數學圓教案04-17
初中數學實數教案01-06
初中數學矩形教案12-30
初中數學《圓 》教案12-30
初中數學《梯形》教案08-26
初中數學教案08-12
初中數學教育教案03-31