一级毛片免费不卡在线视频,国产日批视频免费在线观看,菠萝菠萝蜜在线视频免费视频,欧美日韩亚洲无线码在线观看,久久精品这里精品,国产成人综合手机在线播放,色噜噜狠狠狠综合曰曰曰,琪琪视频

初中七年級數(shù)學教案

時間:2023-03-17 11:40:21 初中數(shù)學教案 我要投稿

初中七年級數(shù)學教案(集錦8篇)

  作為一名優(yōu)秀的教育工作者,時常要開展教案準備工作,教案有助于順利而有效地開展教學活動。那么優(yōu)秀的教案是什么樣的呢?下面是小編精心整理的初中七年級數(shù)學教案,供大家參考借鑒,希望可以幫助到有需要的朋友。

初中七年級數(shù)學教案(集錦8篇)

初中七年級數(shù)學教案1

  一、教學內容分析

  1.2有理數(shù)1.2.2數(shù)軸。這一節(jié)是初中數(shù)學中非常重要的內容,從知識上講,數(shù)軸是數(shù)學學習和研究的重要工具,它主要應用于絕對值概念的理解,有理數(shù)運算法則的推導,及不等式的求解。同時,也是學習直角坐標系的基礎,從思想方法上講,數(shù)軸是數(shù)形結合的起點,而數(shù)形結合是學生理解數(shù)學、學好數(shù)學的重要思想方法。日常生活中帶見的用溫度計度量溫度,已為學習數(shù)軸概念打下了一定的基礎。通過問題情境類比得到數(shù)軸的概念,是這節(jié)課的主要學習方法。同時,數(shù)軸又能將數(shù)的分類直觀的表現(xiàn)出來,是學生領悟分類思想的基礎。

  二、學生學習情況分析

 。1)知識掌握上,七年級的學生剛剛學習有理數(shù)中的正負數(shù),對正負數(shù)的概念理解不一定很深刻,許多學生容易造成知識遺忘,所以應全面系統(tǒng)的去講述;

 。2)學生學習本節(jié)課的知識障礙。學生對數(shù)軸概念和數(shù)軸的三要素,學生不易理解,容易造成畫圖中掉三落四的現(xiàn)象,所以教學中教師應予以簡單明白、深入淺出的分析;

 。3)由于七年級學生的理解能力和思維特征和生理特征,學生的好動性,注意力容易分散,愛發(fā)表見解,希望得到老師的表揚等特點,所以在教學中應抓住學生這一生理心理特點,一方面要運用直觀生動的形象,一發(fā)學生的興趣,使他們的注意力始終集中在課堂上;另一方面要創(chuàng)造條件和機會,讓學生發(fā)表見解,發(fā)揮學生的主動性。

  三、設計思想

  從學生已有知識、經(jīng)驗出發(fā)研究新問題,是我們組織教學的一個重要原則。小學里曾學過利用射線上的點來表示數(shù),為此我們可引導學生思考:把射線怎樣做些改進就可以用來表示有理數(shù)?伴以溫度計為模型,引出數(shù)軸的概念。教學中,數(shù)軸的三要素中的每一要素都要認真分析它的作用,使學生從直觀認識上升到理性認識。直線、數(shù)軸都是非常抽象的數(shù)學概念,當然對初學者不宜講的過多,但適當引導學生進行抽象的思維活動還是可行的。例如,向學生提問:在數(shù)軸上對應一億萬分之一的點,你能畫出來嗎?它是不是存在等。

  四、教學目標

 。ㄒ唬┲R與技能

  1、掌握數(shù)軸的三要素,能正確畫出數(shù)軸。

  2、能將已知數(shù)在數(shù)軸上表示出來,能說出數(shù)軸上已知點所表示的數(shù)。

 。ǘ┻^程與方法

  1、使學生受到把實際問題抽象成數(shù)學問題的訓練,逐步形成應用數(shù)學的意識。

  2、對學生滲透數(shù)形結合的思想方法。

  (三)情感、態(tài)度與價值觀

  1、使學生初步了解數(shù)學來源于實踐,反過來又服務于實踐的辯證唯物主義觀點。

  2、通過畫數(shù)軸,給學生以圖形美的教育,同時由于數(shù)形的結合,學生會得到和諧美的享受。

  五、教學重點及難點

  1、重點:正確掌握數(shù)軸畫法和用數(shù)軸上的點表示有理數(shù)。

  2、難點:有理數(shù)和數(shù)軸上的點的對應關系。

  六、教學建議

  1、重點、難點分析

  本節(jié)的重點是初步理解數(shù)形結合的思想方法,正確掌握數(shù)軸畫法和用數(shù)軸上的點表示有理數(shù),并會比較有理數(shù)的大小.難點是正確理解有理數(shù)與數(shù)軸上點的對應關系。數(shù)軸的'概念包含兩個內容,一是數(shù)軸的三要素:原點、正方向、單位長度缺一不可,二是這三個要素都是規(guī)定的。另外應該明確的是,所有的有理數(shù)都可用數(shù)軸上的點表示,但數(shù)軸上的點所表示的數(shù)并不都是有理數(shù)。通過學習,使學生初步掌握用數(shù)軸解決問題的方法,為今后充分利用“數(shù)軸”這個工具打下基礎。

  2、知識結構

  有了數(shù)軸,數(shù)和形得到了初步結合,這有利于對數(shù)學問題的研究,數(shù)形結合是理解數(shù)學、學好數(shù)學的重要思想方法,本課知識要點如下:

  定義規(guī)定了原點、正方向、單位長度的直線叫數(shù)軸

  三要素原點正方向單位長度

  應用數(shù)形結合

  七、學法引導

  1、教學方法:根據(jù)教師為主導,學生為主體的原則,始終貫穿“激發(fā)情趣—手腦并用—啟發(fā)誘導—反饋矯正”的教學方法。

  2、學生學法:動手畫數(shù)軸,動腦概括數(shù)軸的三要素,動手、動腦做練習。

  八、課時安排

  1課時

  九、教具學具準備

  電腦、投影儀、三角板

  十、師生互動活動設計

  講授新課

 。ǔ鍪就队1)

  問題1:三個溫度計.其中一個溫度計的液面在0上2個刻度,一個溫度計的液面在0下5個刻度,一個溫度計的液面在0刻度.

  師:三個溫度計所表示的溫度是多少?

  生:2℃,-5℃,0℃.

  問題2:在一條東西向的馬路上,有一個汽車站,汽車站東3m和7.5m處分別有一棵柳樹和一棵楊樹,汽車站西3m和4.8m處分別有一棵槐樹和一根電線桿,試畫圖表示這一情境.(小組討論,交流合作,動手操作)

  師:我們能否用類似的圖形表示有理數(shù)呢?

  師:這種表示數(shù)的圖形就是今天我們要學的內容—數(shù)軸(板書課題).

  師:與溫度計類似,我們也可以在一條直線上畫出刻度,標上讀

  數(shù),用直線上的點表示正數(shù)、負數(shù)和零.具體方法如下

  (邊說邊畫):

  1.畫一條水平的直線,在這條直線上任取一點作為原點(通常取適中的位置,如果所需的都是正數(shù),也可偏向左邊)用這點表示0(相當于溫度計上的0℃);

  2.規(guī)定直線上從原點向右為正方向(箭頭所指的方向),那么從原點向左為負方向(相當于溫度計上0℃以上為正,0℃以下為負);

  3.選取適當?shù)拈L度作為單位長度,在直線上,從原點向右,每隔一個長度單位取一點,依次表示為1,2,3,…從原點向左,每隔一個長度單位取一點,依次表示為-1,-2,-3,…

  師問:我們能不能用這條直線表示任何有理數(shù)?(可列舉幾個數(shù))

  讓學生觀察畫好的直線,思考以下問題:

 。ǔ鍪就队2)

  (1)原點表示什么數(shù)?

 。2)原點右方表示什么數(shù)?原點左方表示什么數(shù)?

 。3)表示+2的點在什么位置?表示-1的點在什么位置?

 。4)原點向右0.5個單位長度的A點表示什么數(shù)?

  原點向左1.5個單位長度的B點表示什么數(shù)?

  根據(jù)老師畫圖的步驟,學生思考在一條水平的直線上都畫出什么?然后歸納出數(shù)軸的定義.

  師:在此基礎上,給出數(shù)軸的定義,即規(guī)定了原點、正方向和單

  位長度的直線叫做數(shù)軸.

  進而提問學生:在數(shù)軸上,已知一點P表示數(shù)-5,如果數(shù)軸上的原點不選在原來位置,而改選在另一位置,那么P對應的數(shù)是否還是-5?如果單位長度改變呢?如果直線的正方向改變呢?

  通過上述提問,向學生指出:數(shù)軸的三要素——原點、正方向和單位長度,缺一不可.

  【教法說明】

  通過“觀察—類比—思考—概括—表達”展現(xiàn)知識的形成是從感性認識上升到理性認識的過程,讓學生在獲取知識的過程中,領會數(shù)學思想和思維方法,并有意識地訓練學生歸納概括和口頭表達能力.

  師生同步畫數(shù)軸,學生概括數(shù)軸三要素,師出示投影,生動手動腦練習

  嘗試反饋,鞏固練習

 。ǔ鍪就队3).畫出數(shù)軸并表示下列有理數(shù):

  1、1.5,-2.2,-2.5,,,0.

  2.寫出數(shù)軸上點A,B,C,D,E所表示的數(shù):

  請大家回答下列問題:

 。ǔ鍪就队4)

 。1)有人說一條直線是一條數(shù)軸,對不對?為什么?

  (2)下列所畫數(shù)軸對不對?如果不對,指出錯在哪里?

  【教法說明】

  此組練習的目的是鞏固數(shù)軸的概念.

  十一、小結

  本節(jié)課要求同學們能掌握數(shù)軸的三要素,正確地畫出數(shù)軸,在此還要提醒同學們,所有的有理數(shù)都可用數(shù)軸上的點來表示,但是反過來不成立,即數(shù)軸上的點并不是都表示有理數(shù),至于數(shù)軸上的哪些點不能表示有理數(shù),這個問題以后再研究.

  十二、課后練習

  習題1.2第2題

  十三、教學反思

  1、數(shù)軸是數(shù)形轉化、結合的重要媒介,情境設計的原型來源于生活實際,學生易于體驗和接受,讓學生通過觀察、思考和自己動手操作、經(jīng)歷和體驗數(shù)軸的形成過程,加深對數(shù)軸概念的理解,同時培養(yǎng)學生的抽象和概括能力,也體出了從感性認識,到理性認識,到抽象概括的認識規(guī)律。

  2、教學過程突出了情竟到抽象到概括的主線,教學方法體了特殊到一般,數(shù)形結合的數(shù)學思想方法。

  3、注意從學生的知識經(jīng)驗出發(fā),充分發(fā)揮學生的主體意識,讓學生主動參與學習活,并引導學生在課堂上感悟知識的生成,發(fā)展與變化,培養(yǎng)學生自主探索的學習方法。

初中七年級數(shù)學教案2

  教學目標

  1, 掌握有理數(shù)的概念,會對有理數(shù)按照一定的標準進行分類,培養(yǎng)分類能力;

  2, 了解分類的標準與分類結果的相關性,初步了解“集合”的含義;

  3, 體驗分類是數(shù)學上的常用處理問題的方法。

  教學難點 正確理解分類的標準和按照一定的標準進行分類

  知識重點 正確理解有理數(shù)的概念

  教學過程(師生活動) 設計理念

  探索新知 在前兩個學段,我們已經(jīng)學習了很多不同類型的數(shù),通過上兩節(jié)課的學習,又知道了現(xiàn)在的數(shù)包括了負數(shù),現(xiàn)在請同學們在草稿紙上任意寫出3個數(shù)(同時請3個同學在黑板上寫出).

  問題1:觀察黑板上的9個數(shù),并給它們進行分類.

  學生思考討論和交流分類的情況.

  學生可能只給出很粗略的分類,如只分為“正數(shù)”和“負數(shù)”或“零”三類,此時,教師應給予引導和鼓勵.

  例如,

  對于數(shù)5,可這樣問:5和5. 1有相同的類型嗎?5可以表示5個人,而5. 1可以表示人數(shù)嗎?(不可以)所以它們是不同類型的數(shù),數(shù)5是正數(shù)中整個的數(shù),我們就稱它為“正整數(shù)”,而5. 1不是整個的數(shù),稱為“正分數(shù),,.…(由于小數(shù)可化為分數(shù),以后把小數(shù)和分數(shù)都稱為分數(shù))

  通過教師的引導、鼓勵和不斷完善,以及學生自己的概括,最后歸納出我們已經(jīng)學過的5類不同的數(shù),它們分別是“正整數(shù),零,負整數(shù),正分數(shù),負分數(shù),’.

  按照書本的說法,得出“整數(shù)”“分數(shù)”和“有理數(shù)”的概念.

  看書了解有理數(shù)名稱的由來.

  “統(tǒng)稱”是指“合起來總的名稱”的意思.

  試一試:按照以上的分類,你能作出一張有理數(shù)的分類表嗎?你能說出以上有理數(shù)的分類是以什么為標準的嗎?(是按照整數(shù)和分數(shù)來劃分的) 分類是數(shù)學中解決問題的常用手段,這個引入具有開放的特點,學生樂于參與

  學生自己嘗試分類時,可能會很粗略,教師給予引導和鼓勵,劃分數(shù)的類型要從文字所表示的意義上去引導,這樣學生易于理解。

  有理數(shù)的分類表要在黑板或媒體上展示,分類的標準要引導學生去體會

  練一練 1,任意寫出三個有理數(shù),并說出是什么類型的數(shù),與同伴進行交流.

  2,教科書第10頁練習.

  此練習中出現(xiàn)了集合的概念,可向學生作如下的說明.

  把一些數(shù)放在一起,就組成了一個數(shù)的集合,簡稱“數(shù)集”,所有有理數(shù)組成的數(shù)集叫做有理數(shù)集.類似地,所有整數(shù)組成的數(shù)集叫做整數(shù)集,所有負數(shù)組成的'數(shù)集叫做負數(shù)集……;

  數(shù)集一般用圓圈或大括號表示,因為集合中的數(shù)是無限的,而本題中只填了所給的幾個數(shù),所以應該加上省略號.

  思考:上面練習中的四個集合合并在一起就是全體有理數(shù)的集合嗎?

  也可以教師說出一些數(shù),讓學生進行判斷。

  集合的概念不必深入展開。

  創(chuàng)新探究 問題2:有理數(shù)可分為正數(shù)和負數(shù)兩大類,對嗎?為什么?

  教學時,要讓學生總結已經(jīng)學過的數(shù),鼓勵學生概括,通過交流和討論,教師作適當?shù)闹笇,逐步得到如下的分類表?/p>

  有理數(shù) 這個分類可視學生的程度確定是否有必要教學。

  應使學生了解分類的標準不一樣時,分類的結果也是不同的,所以分類的標準要明確,使分類后每一個參加分類的象屬于其中的某一類而只能屬于這一類,教學中教師可舉出通俗易懂的例子作些說明,可以按年齡,也可以按性別、地域來分等

  小結與作業(yè)

  課堂小結 到現(xiàn)在為止我們學過的數(shù)都是有理數(shù)(圓周率除外),有理數(shù)可以按不同的標準進行分類,標準不同,分類的結果也不同。

  本課作業(yè)

  1, 必做題:教科書第18頁習題1.2第1題

  2, 教師自行準備

  本課教育評注(課堂設計理念,實際教學效果及改進設想)

  1,本課在引人了負數(shù)后對所學過的數(shù)按照一定的標準進行分類,提出了有理數(shù)的概念.分類是數(shù)學中解決問題的常用手段,通過本節(jié)課的學習使學生了解分類的思想并進行簡單的分類是數(shù)學能力的體現(xiàn),教師在教學中應引起足夠的重視.關于分類標準與分類結果的關系,分類標準的確定可向學生作適當?shù)臐B透,集合的概念比較抽象,學生真正接受需要很長的過程,本課不要過多展開。

  2,本課具有開放性的特點,給學生提供了較大的思維空間,能促進學生積極主動地參加學習,親自體驗知識的形成過程,可避免直接進行分類所帶來的枯燥性;同時還體現(xiàn)合作學習、交流、探究提高的特點,對學生分類能力的養(yǎng)成有很好的作用。

  3,兩種分類方法,應以第一種方法為主,第二種方法可視學生的情況進行。

初中七年級數(shù)學教案3

  問:你會解這個方程嗎?你能否從小敏同學的解法中得到啟發(fā)?

  這個方程不像例l中的方程(1)那樣容易求出它的解,小敏同學的方法啟發(fā)了我們,可以用嘗試,檢驗的方法找出方程(2)的解。也就是只要將x=1,2,3,4,……代人方程(2)的兩邊,看哪個數(shù)能使兩邊的值相等,這個數(shù)就是這個方程的解。

  把x=3代人方程(2),左邊=13+3=16,右邊=(45+3)=48=16,

  因為左邊=右邊,所以x=3就是這個方程的解。

  這種通過試驗的方法得出方程的解,這也是一種基本的數(shù)學思想方法。也可以據(jù)此檢驗一下一個數(shù)是不是方程的解。

  問:若把例2中的“三分之一”改為“二分之一”,那么答案是多少?

  同學們動手試一試,大家發(fā)現(xiàn)了什么問題?

  同樣,用檢驗的方法也很難得到方程的解,因為這里x的值很大。另外,有的方程的解不一定是整數(shù),該從何試起?如何試驗根本無法人手,又該怎么辦?

  這正是我們本章要解決的問題。

  三、鞏固練習

  1、教科書第3頁練習1、2。

  2、補充練習:檢驗下列各括號內的數(shù)是不是它前面方程的解。

 。1)x-3(x+2)=6+x(x=3,x=-4)

 。2)2y(y-1)=3(y=-1,y=2)

 。3)5(x-1)(x-2)=0(x=0,x=1,x=2)

  四、小結。本節(jié)課我們主要學習了怎樣列方程解應用題的方法,解決一些實際問題。談談你的學習體會。

  五、作業(yè)。教科書第3頁,習題6。1第1、3題。

  解一元一次方程

  1、方程的簡單變形

  教學目的

  通過天平實驗,讓學生在觀察、思考的基礎上歸納出方程的兩種變形,并能利用它們將簡單的方程變形以求出未知數(shù)的值。

  重點、難點

  1、重點:方程的兩種變形。

  2、難點:由具體實例抽象出方程的兩種變形。

  教學過程

  一、引入

  上一節(jié)課我們學習了列方程解簡單的.應用題,列出的方程有的我們不會解,我們知道解方程就是把方程變形成x=a形式,本節(jié)課,我們將學習如何將方程變形。

  二、新授

  讓我們先做個實驗,拿出預先準備好的天平和若干砝碼。

  測量一些物體的質量時,我們將它放在天干的左盤內,在右盤內放上砝碼,當天平處于平衡狀態(tài)時,顯然兩邊的質量相等。

  如果我們在兩盤內同時加入相同質量的砝碼,這時天平仍然平衡,天平兩邊盤內同時拿去相同質量的砝碼,天平仍然平衡。

  如果把天平看成一個方程,課本第4頁上的圖,你能從天平上砝碼的變化聯(lián)想到方程的變形嗎?

  讓同學們觀察圖6.2.1的左邊的天平;天平的左盤內有一個大砝碼和2個小砝碼,右盤上有5個小砝碼,天平平衡,表示左右兩盤的質量相等。如果我們用x表示大砝碼的質量,1表示小砝碼的質量,那么可用方程x+2=5表示天平兩盤內物體的質量關系。

初中七年級數(shù)學教案4

  平行線的判定(1)

  課型:新課: 備課人:韓賀敏 審核人:霍紅超

  學習目標

  1.經(jīng)歷觀察、操作、想像、推理、交流等活動,進一步發(fā)展推理能力和有條理表達能力.

  2.掌握直線平行的條件,領悟歸納和轉化的數(shù)學思想

  學習重難點:探索并掌握直線平行的條件是本課的重點也是難點.

  一、探索直線平行的條件

  平行線的判定方法1:

  二、練一練1、判斷題

  1.兩條直線被第三條直線所截,如果同位角相等,那么內錯角也相等.( )

  2.兩條直線被第三條直線所截,如果內錯角互補,那么同旁內角相等.( )

  2、填空1.如圖1,如果∠3=∠7,或______,那么______,理由是__________;如果∠5=∠3,或筆________,那么________, 理由是______________; 如果∠2+ ∠5= ______ 或者_______,那么a∥b,理由是__________.

  (2)

  (3)

  2.如圖2,若∠2=∠6,則______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.

  三、選擇題

  1.如圖3所示,下列條件中,不能判定AB∥CD的是( )

  A.AB∥EF,CD∥EF B.∠5=∠A; C.∠ABC+∠BCD=180° D.∠2=∠3

  2.右圖,由圖和已知條件,下列判斷中正確的是( )

  A.由∠1=∠6,得AB∥FG;

  B.由∠1+∠2=∠6+∠7,得CE∥EI

  C.由∠1+∠2+∠3+∠5=180°,得CE∥FI;

  D.由∠5=∠4,得AB∥FG

  四、已知直線a、b被直線c所截,且∠1+∠2=180°,試判斷直線a、b的位置關系,并說明理由.

  五、作業(yè)課本15頁-16頁練習的1、2、3、

  5.2.2平行線的判定(2)

  課型:新課: 備課人:韓賀敏 審核人:霍紅超

  學習目標

  1.經(jīng)歷觀察、操作、想像、推理、交流等活動,進一步發(fā)展空

  間觀念,推理能力和有條理表達能力.

  毛2.分析題意說理過程,能靈活地選用直線平行的方法進行說理.

  學習重點:直線平行的條件的應用.

  學習難點:選取適當判定直線平行的'方法進行說理是重點也是難點.

  一、學習過程

  平行線的判定方法有幾種?分別是什么?

  二.鞏固練習:

  1.如圖2,若∠2=∠6,則______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.

  (第1題) (第2題)

  2.如圖,一個合格的變形管道ABCD需要AB邊與CD邊平行,若一個拐角∠ABC=72°,則另一個拐角∠BCD=_______時,這個管道符合要求.

  二、選擇題.

  1.如圖,下列判斷不正確的是( )

  A.因為∠1=∠4,所以DE∥AB

  B.因為∠2=∠3,所以AB∥EC

  C.因為∠5=∠A,所以AB∥DE

  D.因為∠ADE+∠BED=180°,所以AD∥BE

  2.如圖,直線AB、CD被直線EF所截,使∠1=∠2≠90°,則( )

  A.∠2=∠4 B.∠1=∠4 C.∠2=∠3 D.∠3=∠4

  三、解答題.

  1.你能用一張不規(guī)則的紙(比如,如圖1所示的四邊形的紙)折出兩條平行的直線嗎?與同伴說說你的折法.

  2.已知,如圖2,點B在AC上,BD⊥BE,∠1+∠C=90°,問射線CF與BD平行嗎?試用兩種方法說明理由.

初中七年級數(shù)學教案5

  一、教學目標

  1、知識目標:掌握數(shù)軸三要素,會畫數(shù)軸。

  2、能力目標:能將已知數(shù)在數(shù)軸上表示,能說出數(shù)軸上的點表示的數(shù),知道有理數(shù)都可以用數(shù)軸上的點表示;

  3、情感目標:向學生滲透數(shù)形結合的思想。

  二、教學重難點

  教學重點:數(shù)軸的三要素和用數(shù)軸上的點表示有理數(shù)。

  教學難點:有理數(shù)與數(shù)軸上點的對應關系。

  三、教法

  主要采用啟發(fā)式教學,引導學生自主探索去觀察、比較、交流。

  四、教學過程

 。ㄒ唬﹦(chuàng)設情境激活思維

  1.學生觀看鐘祥二中相關背景視頻

  意圖:吸引學生注意力,激發(fā)學生自豪感。

  2.聯(lián)系實際,提出問題。

  問題1:鐘祥二中學校大門南75米是鐘祥市統(tǒng)計局,100米是中國建設銀行,在她北75米是海韻藝術學校,200米處是中百倉儲,請同學們畫圖表示這一情景。

  師生活動:學生思考解決問題的方法,學生代表畫圖演示。

  學生畫圖后提問:

  1.馬路用什么幾何圖形代表?(直線)

  2.文中相關地點用什么代表?(直線上的點)

  3.學校大門起什么作用?(基準點、參照物)

  4.你是如何確定問題中各地點的位置的?(方向和距離)

  設計意圖:“三要素”為定向,用直線、點、方向、距離等幾何符號表示實際問題,這是實際問題的第一次數(shù)學抽象。

  問題2:上面的問題中,“南”和“北”具有相反意義。我們知道,正數(shù)和負數(shù)可以表示兩種具有相反意義的量,我們能不能直接用數(shù)來表示這些地理位置和學校大門的相對位置關系呢?

  師生活動:

  學生思考后回答解決方法,學生代表畫圖。

  學生畫圖后提問:

  1.0代表什么?

  2.數(shù)的符號的實際意義是什么?

  3.-75表示什么?100表示什么?

  設計意圖:繼續(xù)以三要素為定向,將點用數(shù)表示,實現(xiàn)第二次抽象,為定義數(shù)軸概念提供直觀基礎。

  問題3:生活中常見的溫度計,你能描述一下它的結構嗎?

  設計意圖:借助生活中的常用工具,說明正數(shù)和負數(shù)的作用,引導學生用三要素表達,為定義數(shù)軸的概念提供直觀基礎。

  問題4:你能說說上述2個實例的共同點嗎?

  設計意圖:進一步明確“三要素”的意義,體會“用點表示數(shù)”和“用數(shù)表示點的思想方法,為定義數(shù)軸概念提供又一個直觀基礎。

 。ǘ┳灾鲗W習探究新知

  學生活動:帶著以下問題自學課本第8頁:

  1.什么樣的直線叫數(shù)軸?它具備什么條件。

  2.如何畫數(shù)軸?

  3.根據(jù)上述實例的經(jīng)驗,“原點”起什么作用?

  4.你是怎么理解“選取適當?shù)拈L度為單位長度”的?

  師生活動:

  學生自學完后,請代表上黑板畫一條數(shù)軸,講解畫數(shù)軸的一般步驟。

  設計意圖:明確畫數(shù)軸的步驟,使數(shù)軸的三要素在同學們的頭腦中留下更深刻的印象,同時得到數(shù)軸的.定義。

  至此,學生已會畫數(shù)軸,師生共同歸納總結(板書)

 、贁(shù)軸的定義。

 、跀(shù)軸三要素。

  練習:(媒體展示)

  1.判斷下列圖形是否是數(shù)軸。

  2.口答:數(shù)軸上各點表示的數(shù)。

  3.在數(shù)軸上描出下列各點:1.5,-2,-2.5,2,2.5,0,-1.5。

 。ㄈ┬〗M合作交流展示

  問題:觀察數(shù)軸上的點,你有什么發(fā)現(xiàn)?

  數(shù)軸上表示3的點在原點的哪一側?與原點的距離是多少個單位長度?表示-2的點在原點的哪一側?與原點的距離是多少個單位長度?設a是一個正數(shù),對表示a的點和-a的點進行同樣的討論。

  設計意圖:通過從特殊到一般的方法歸納出數(shù)軸上不同位置點的特點,培養(yǎng)學生的抽象概括能力。

 。ㄋ模w納總結反思提高

  師生共同回顧本節(jié)課所學主要內容,回答以下問題:

  1.什么是數(shù)軸?

  2.數(shù)軸的“三要素”各指什么?

  3.數(shù)軸的畫法。

  設計意圖:梳理本節(jié)課內容,掌握本節(jié)課的核心――數(shù)軸“三要素”。

 。ㄎ澹┠繕藱z測設計

  1.下列命題正確的是()

  A.數(shù)軸上的點都表示整數(shù)。

  B.數(shù)軸上表示4與-4的點分別在原點的兩側,并且到原點的距離都等于4個單位長度。

  C.數(shù)軸包括原點與正方向兩個要素。

  D.數(shù)軸上的點只能表示正數(shù)和零。

  2.畫數(shù)軸,在數(shù)軸上標出-5和+5之間的所有整數(shù),列舉到原點的距離小于3的所有整數(shù)。

  3.畫數(shù)軸,表示下列有理數(shù)數(shù)的點中,觀察數(shù)軸,在原點左邊的點有XXXXXXX個。4.在數(shù)軸上點A表示-4,如果把原點O向負方向移動1.5個單位,那么在新數(shù)軸上點A表示的數(shù)是XXXXXXXX。

  五、板書

  1.數(shù)軸的定義。

  2.數(shù)軸的三要素(圖)。

  3.數(shù)軸的畫法。

  4.性質。

  六、課后反思

  附:活動單

  活動一:畫一畫

  鐘祥二中學校大門南75米是鐘祥市統(tǒng)計局,100米是中國建設銀行,在她北75米是海韻藝術學校,200米處是中百倉儲,請同學們畫圖表示這一情景。

  思考:如何簡明地用數(shù)表示這些地理位置與學校大門的相對位置關系?

  活動二:讀一讀

  帶著以下問題閱讀教科書P8頁:

  1.什么樣的直線叫數(shù)軸?

  定義:規(guī)定了XXXXXXXXX、XXXXXXXX、XXXXXXXXX的直線叫數(shù)軸。

  數(shù)軸的三要素:XXXXXXXXX、XXXXXXXXX、XXXXXXXXXX。

  2.畫數(shù)軸的步驟是什么?

  3.“原點”起什么作用?XXXXXXXXXX

  4.你是怎么理解“選取適當?shù)拈L度為單位長度”的?

  練習:

  1.畫一條數(shù)軸

  2.在你畫好的數(shù)軸上表示下列有理數(shù):1.5,-2,-2.5,2,2.5,0,-1.5

  活動三:議一議

  小組討論:觀察你所畫的數(shù)軸上的點,你有什么發(fā)現(xiàn)?

  歸納:一般地,設a是一個正數(shù),則數(shù)軸上表示數(shù)a在原點的XXXX邊,與原點的距離是XXXX個單位長度;表示數(shù)-a的點在原點的XXXX邊,與原點的距離是XXXX個單位長度.

  練習:

  1.數(shù)軸上表示-3的點在原點的XXXXXXX側,距原點的距離是XXXXXX;表示6的點在原點的XXXXXX側,距原點的距離是XXXXXX;兩點之間的距離為XXXXXXX個單位長度。

  2.距離原點距離為5個單位的點表示的數(shù)是XXXXXXXX。

  3.在數(shù)軸上,把表示3的點沿著數(shù)軸負方向移動5個單位長度,到達點B,則點B表示的數(shù)是XXXXXXXX。

  附:目標檢測

  1.下列命題正確的是()

  A.數(shù)軸上的點都表示整數(shù)。

  B.數(shù)軸上表示4與-4的點分別在原點的兩側,并且到原點的距離都等于4個單位長度。

  C.數(shù)軸包括原點與正方向兩個要素。

  D.數(shù)軸上的點只能表示正數(shù)和零。

  2.畫數(shù)軸,在數(shù)軸上標出-5和+5之間的所有整數(shù).列舉到原點的距離小于3的所有整數(shù)。

  3.畫數(shù)軸,觀察數(shù)軸,在原點左邊的點有XXXXXXX個。

  4.在數(shù)軸上點A表示-4,如果把原點O向負方向移動1.5個單位,那么在新數(shù)軸上點A表示的數(shù)是XXXXXXXX。

初中七年級數(shù)學教案6

  一元一次不等式組

  教學目標

  1、熟練掌握一元一次不等式組的解法,會用一元一次不等式組解決有關的實際問題;

  2、理解一元一次不等式組應用題的'一般解題步驟,逐步形成分析問題和解決問題的能力;

  3、體驗數(shù)學學習的樂趣,感受一元一次不等式組在解決實際問題中的價值。

  教學難點

  正確分析實際問題中的不等關系,列出不等式組。

  知識重點

  建立不等式組解實際問題的數(shù)學模型。

  探究實際問題

  出示教科書第145頁例2(略)

  問:(1)你是怎樣理解“不能完成任務”的數(shù)量含義的?

  (2)你是怎樣理解“提前完成任務”的數(shù)量含義的?

  (3)解決這個問題,你打算怎樣設未知數(shù)?列出怎樣的不等式?

  師生一起討論解決例2.

  歸納小結

  1、教科書146頁“歸納”(略).

  2、你覺得列一元一次不等式組解應用題與列二元一次方程組解應用題的步驟一樣嗎?

  在討論或議論的基礎上老師揭示:

  步法一致(設、列、解、答);本質有區(qū)別.(見下表)一元一次不等式組應用題與二元一次方程組應用題解題步驟異同表。

初中七年級數(shù)學教案7

  一、教學目標

  【知識與技能】

  了解數(shù)軸的概念,能用數(shù)軸上的點準確地表示有理數(shù)。

  【過程與方法】

  通過觀察與實際操作,理解有理數(shù)與數(shù)軸上的點的對應關系,體會數(shù)形結合的思想。

  【情感、態(tài)度與價值觀】

  在數(shù)與形結合的過程中,體會數(shù)學學習的樂趣。

  二、教學重難點

  【教學重點】

  數(shù)軸的三要素,用數(shù)軸上的點表示有理數(shù)。

  【教學難點】

  數(shù)形結合的思想方法。

  三、教學過程

  (一)引入新課

  提出問題:通過實例溫度計上數(shù)字的意義,引出數(shù)學中也有像溫度計一樣可以用來表示數(shù)的軸,它就是我們今天學習的數(shù)軸。

  (二)探索新知

  學生活動:小組討論,用畫圖的形式表示東西向馬路上楊樹,柳樹,汽車站牌三者之間的關系:

  提問1:上面的問題中,“東”與“西”、“左”與“右”都具有相反意義。我們知道,正數(shù)和負數(shù)可以表示具有相反意義的量,那么,如何用數(shù)表示這些樹、電線桿與汽車站牌的相對位置呢?

  學生活動:畫圖表示后提問。

  提問2:“0”代表什么?數(shù)的符號的實際意義是什么?對照體溫計進行解答。

  教師給出定義:在數(shù)學中,可以用一條直線上的'點表示數(shù),這條直線叫做數(shù)軸,它滿足:任取一個點表示數(shù)0,代表原點;通常規(guī)定直線上向右(或上)為正方向,從原點向左(或下)為負方向;選取合適的長度為單位長度。

  提問3:你是如何理解數(shù)軸三要素的?

  師生共同總結:“原點”是數(shù)軸的“基準”,表示0,是表示正數(shù)和負數(shù)的分界點,正方向是人為規(guī)定的,要依據(jù)實際問題選取合適的單位長度。

  (三)課堂練習

  如圖,寫出數(shù)軸上點A,B,C,D,E表示的數(shù)。

  (四)小結作業(yè)

  提問:今天有什么收獲?

  引導學生回顧:數(shù)軸的三要素,用數(shù)軸表示數(shù)。

  課后作業(yè):

  課后練習題第二題;思考:到原點距離相等的兩個點有什么特點?

初中七年級數(shù)學教案8

  教學目標

  1. 使學生在了解代數(shù)式概念的基礎上,能把簡單的與數(shù)量有關的詞語用代數(shù)式表示出來;

  2. 初步培養(yǎng)學生觀察、分析和抽象思維的能力.

  教學重點和難點

  重點:列代數(shù)式.

  難點:弄清楚語句中各數(shù)量的意義及相互關系.

  課堂教學過程設計

  一、從學生原有的認知結構提出問題

  1?用代數(shù)式表示乙數(shù):(投影)

  (1)乙數(shù)比x大5;(x+5)

  (2)乙數(shù)比x的2倍小3;(2x-3)

  (3)乙數(shù)比x的倒數(shù)小7;( -7)

  (4)乙數(shù)比x大16%?((1+16%)x)

  (應用引導的方法啟發(fā)學生解答本題)

  2?在代數(shù)里,我們經(jīng)常需要把用數(shù)字或字母敘述的一句話或一些計算關系式,列成代數(shù)式,正如上面的練習中的問題一樣,這一點同學們已經(jīng)比較熟悉了,但在代數(shù)式里也常常需要把用文字敘述的一句話或計算關系式(即日常生活語言)列成代數(shù)式?本節(jié)課我們就來一起學習這個問題?

  二、講授新課

  例1 用代數(shù)式表示乙數(shù):

  (1)乙數(shù)比甲數(shù)大5; (2)乙數(shù)比甲數(shù)的2倍小3;

  (3)乙數(shù)比甲數(shù)的倒數(shù)小7; (4)乙數(shù)比甲數(shù)大16%?

  分析:要確定的乙數(shù),既然要與甲數(shù)做比較,那么就只有明確甲數(shù)是什么之后,才能確定乙數(shù),因此寫代數(shù)式以前需要把甲數(shù)具體設出來,才能解決欲求的乙數(shù)?

  解:設甲數(shù)為x,則乙數(shù)的代數(shù)式為

  (1)x+5 (2)2x-3; (3) -7; (4)(1+16%)x?

  (本題應由學生口答,教師板書完成)

  最后,教師需指出:第4小題的答案也可寫成x+16%x?

  例2 用代數(shù)式表示:

  (1)甲乙兩數(shù)和的2倍;

  (2)甲數(shù)的 與乙數(shù)的 的差;

  (3)甲乙兩數(shù)的平方和;

  (4)甲乙兩數(shù)的和與甲乙兩數(shù)的差的積;

  (5)乙甲兩數(shù)之和與乙甲兩數(shù)的差的積?

  分析:本題應首先把甲乙兩數(shù)具體設出來,然后依條件寫出代數(shù)式?

  解:設甲數(shù)為a,乙數(shù)為b,則

  (1)2(a+b); (2) a- b; (3)a2+b2;

  (4)(a+b)(a-b); (5)(a+b)(b-a)或(b+a)(b-a)?

  (本題應由學生口答,教師板書完成)

  此時,教師指出:a與b的和,以及b與a的和都是指(a+b),這是因為加法有交換律?但a與b的差指的是(a-b),而b與a的差指的是(b-a)?兩者明顯不同,這就是說,用文字語言敘述的句子里應特別注意其運算順序?

  例3 用代數(shù)式表示:

  (1)被3整除得n的數(shù);

  (2)被5除商m余2的數(shù)?

  分析本題時,可提出以下問題:

  (1)被3整除得2的數(shù)是幾?被3整除得3的數(shù)是幾?被3整除得n的數(shù)如何表示?

  (2)被5除商1余2的數(shù)是幾?如何表示這個數(shù)?商2余2的數(shù)呢?商m余2的數(shù)呢?

  解:(1)3n; (2)5m+2?

  (這個例子直接為以后讓學生用代數(shù)式表示任意一個偶數(shù)或奇數(shù)做準備)?

  例4 設字母a表示一個數(shù),用代數(shù)式表示:

  (1)這個數(shù)與5的和的3倍;(2)這個數(shù)與1的差的 ;

  (3)這個數(shù)的5倍與7的和的一半;(4)這個數(shù)的平方與這個數(shù)的 的和?

  分析:啟發(fā)學生,做分析練習?如第1小題可分解為“a與5的和”與“和的3倍”,先將“a與5的和”例成代數(shù)式“a+5”再將“和的3倍”列成代數(shù)式“3(a+5)”?

  解:(1)3(a+5); (2) (a-1); (3) (5a+7); (4) a2+ a?

  (通過本例的講解,應使學生逐步掌握把較復雜的數(shù)量關系分解為幾個基本的數(shù)量關系,培養(yǎng)學生分析問題和解決問題的能力?)

  例5 設教室里座位的行數(shù)是m,用代數(shù)式表示:

  (1)教室里每行的座位數(shù)比座位的行數(shù)多6,教室里總共有多少個座位?

  (2)教室里座位的行數(shù)是每行座位數(shù)的 ,教室里總共有多少個座位?

  分析本題時,可提出如下問題:

  (1)教室里有6行座位,如果每行都有7個座位,那么這個教室總共有多少個座位呢?

  (2)教室里有m行座位,如果每行都有7個座位,那么這個教室總共有多少個座位呢?

  (3)通過上述問題的解答結果,你能找出其中的規(guī)律嗎?(總座位數(shù)=每行的座位數(shù)×行數(shù))

  解:(1)m(m+6)個; (2)( m)m個?

  三、課堂練習

  1?設甲數(shù)為x,乙數(shù)為y,用代數(shù)式表示:(投影)

  (1)甲數(shù)的2倍,與乙數(shù)的 的和; (2)甲數(shù)的 與乙數(shù)的3倍的差;

  (3)甲乙兩數(shù)之積與甲乙兩數(shù)之和的差;(4)甲乙的差除以甲乙兩數(shù)的積的商?

  2?用代數(shù)式表示:

  (1)比a與b的和小3的數(shù); (2)比a與b的差的一半大1的數(shù);

  (3)比a除以b的商的3倍大8的數(shù); (4)比a除b的商的3倍大8的數(shù)?

  3?用代數(shù)式表示:

  (1)與a-1的和是25的'數(shù); (2)與2b+1的積是9的數(shù);

  (3)與2x2的差是x的數(shù); (4)除以(y+3)的商是y的數(shù)?

  〔(1)25-(a-1); (2) ; (3)2x2+2; (4)y(y+3)?〕

  四、師生共同小結

  首先,請學生回答:

  1?怎樣列代數(shù)式?2?列代數(shù)式的關鍵是什么?

  其次,教師在學生回答上述問題的基礎上,指出:對于較復雜的數(shù)量關系,應按下述規(guī)律列代數(shù)式:

  (1)列代數(shù)式,要以不改變原題敘述的數(shù)量關系為準(代數(shù)式的形式不唯一);

  (2)要善于把較復雜的數(shù)量關系,分解成幾個基本的數(shù)量關系;

  (3)把用日常生活語言敘述的數(shù)量關系,列成代數(shù)式,是為今后學習列方程解應用題做準備?要求學生一定要牢固掌握?

  五、作業(yè)

  1?用代數(shù)式表示:

  (1)體校里男生人數(shù)占學生總數(shù)的60%,女生人數(shù)是a,學生總數(shù)是多少?

  (2)體校里男生人數(shù)是x,女生人數(shù)是y,教練人數(shù)與學生人數(shù)之比是1∶10,教練人數(shù)是多?

  2?已知一個長方形的周長是24厘米,一邊是a厘米,

  求:(1)這個長方形另一邊的長;(2)這個長方形的面積.

  學法探究

  已知圓環(huán)內直徑為acm,外直徑為bcm,將100個這樣的圓環(huán)一個接著一個環(huán)套環(huán)地連成一條鎖鏈,那么這條鎖鏈拉直后的長度是多少厘米?

  分析:先深入研究一下比較簡單的情形,比如三個圓環(huán)接在一起的情形,看 有沒有規(guī)律.

  當圓環(huán)為三個的時候,如圖:

  此時鏈長為,這個結論可以繼續(xù)推廣到四個環(huán)、五個環(huán)、…直至100個環(huán),答案不難得到:

  解:

  =99a+b(cm)

【初中七年級數(shù)學教案】相關文章:

初中七年級的數(shù)學教案02-02

七年級初中數(shù)學教案12-02

初中七年級數(shù)學教案12-30

初中七年級下冊數(shù)學教案01-13

七年級初中數(shù)學教案(6篇)12-04

七年級初中數(shù)學教案6篇12-03

初中七年級數(shù)學教案8篇03-14

初中七年級數(shù)學教案5篇02-27

初中七年級數(shù)學教案(5篇)03-02

初中七年級數(shù)學教案(8篇)03-15