初中數(shù)學(xué)優(yōu)秀教案[范例15篇]
作為一位不辭辛勞的人民教師,時(shí)常要開展教案準(zhǔn)備工作,教案是教學(xué)活動(dòng)的總的組織綱領(lǐng)和行動(dòng)方案。怎樣寫教案才更能起到其作用呢?以下是小編整理的初中數(shù)學(xué)優(yōu)秀教案,歡迎大家借鑒與參考,希望對(duì)大家有所幫助。
初中數(shù)學(xué)優(yōu)秀教案1
一、 教學(xué)目標(biāo)
1、 知識(shí)與技能目標(biāo)
掌握有理數(shù)乘法法則,能利用乘法法則正確進(jìn)行有理數(shù)乘法運(yùn)算。
2、 能力與過程目標(biāo)
經(jīng)歷探索、歸納有理數(shù)乘法法則的過程,發(fā)展學(xué)生觀察、歸納、猜測(cè)、驗(yàn)證等能力。
3、 情感與態(tài)度目標(biāo)
通過學(xué)生自己探索出法則,讓學(xué)生獲得成功的喜悅。
二、 教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):運(yùn)用有理數(shù)乘法法則正確進(jìn)行計(jì)算。
難點(diǎn):有理數(shù)乘法法則的探索過程,符號(hào)法則及對(duì)法則的理解。
三、 教學(xué)過程
1、 創(chuàng)設(shè)問題情景,激發(fā)學(xué)生的求知欲望,導(dǎo)入新課。
教師:由于長(zhǎng)期干旱,水庫(kù)放水抗旱。每天放水2米,已經(jīng)放了3天,現(xiàn)在水深20米,問放水抗旱前水庫(kù)水深多少米?
學(xué)生:26米。
教師:能寫出算式嗎?學(xué)生:……
教師:這涉及有理數(shù)乘法運(yùn)算法則,正是我們今天需要討論的問題
2、 小組探索、歸納法則
。1)教師出示以下問題,學(xué)生以組為單位探索。
以原點(diǎn)為起點(diǎn),規(guī)定向東的方向?yàn)檎较颍蛭鞯姆较驗(yàn)樨?fù)方向。
① 2 ×3
2看作向東運(yùn)動(dòng)2米,×3看作向原方向運(yùn)動(dòng)3次。
結(jié)果:向 運(yùn)動(dòng) 米
2 ×3=
、 -2 ×3
-2看作向西運(yùn)動(dòng)2米,×3看作向原方向運(yùn)動(dòng)3次。
結(jié)果:向 運(yùn)動(dòng) 米
-2 ×3=
、 2 ×(-3)
2看作向東運(yùn)動(dòng)2米,×(-3)看作向反方向運(yùn)動(dòng)3次。
結(jié)果:向 運(yùn)動(dòng) 米
2 ×(-3)=
、 (-2) ×(-3)
-2看作向西運(yùn)動(dòng)2米,×(-3)看作向反方向運(yùn)動(dòng)3次。
結(jié)果:向 運(yùn)動(dòng) 米
。-2) ×(-3)=
。2)學(xué)生歸納法則
、俜(hào):在上述4個(gè)式子中,我們只看符號(hào),有什么規(guī)律?
。+)×(+)=( ) 同號(hào)得
(-)×(+)=( ) 異號(hào)得
。+)×(-)=( ) 異號(hào)得
。-)×(-)=( ) 同號(hào)得
②積的.絕對(duì)值等于 。
、廴魏螖(shù)與零相乘,積仍為 。
(3)師生共同用文字?jǐn)⑹鲇欣頂?shù)乘法法則。
3、 運(yùn)用法則計(jì)算,鞏固法則。
(1)教師按課本P75 例1板書,要求學(xué)生述說(shuō)每一步理由。
。2)引導(dǎo)學(xué)生觀察、分析例子中兩因數(shù)的關(guān)系,得出兩個(gè)有理數(shù)互為倒數(shù),它們的積為 。
。3)學(xué)生做練習(xí),教師評(píng)析。
。4)教師引導(dǎo)學(xué)生做例題,讓學(xué)生說(shuō)出每步法則,使之進(jìn)一步熟悉法則,同時(shí)讓學(xué)生總結(jié)出多因數(shù)相乘的符號(hào)法則。
初中數(shù)學(xué)優(yōu)秀教案2
教學(xué)目的
1.通過對(duì)多個(gè)實(shí)際問題的分析,使學(xué)生體會(huì)到一元一次方程作為實(shí)際問題的數(shù)學(xué)模型的作用。
2.使學(xué)生會(huì)列一元一次方程解決一些簡(jiǎn)單的應(yīng)用題。
3.會(huì)判斷一個(gè)數(shù)是不是某個(gè)方程的解。
重點(diǎn)、難點(diǎn)
1.重點(diǎn):會(huì)列一元一次方程解決一些簡(jiǎn)單的應(yīng)用題。
2.難點(diǎn):弄清題意,找出“相等關(guān)系”。
教學(xué)過程
一、復(fù)習(xí)提問
一本筆記本1.2元。小紅有6元錢,那么她最多能買到幾本這樣的筆記本呢?
解:設(shè)小紅能買到工本筆記本,那么根據(jù)題意,得
1.2x=6
因?yàn)?.2×5=6,所以小紅能買到5本筆記本。
二、新授:
問題1:某校初中一年級(jí)328名師生乘車外出春游,已有2輛校車可以乘坐64人,還需租用44座的客車多少輛? (讓學(xué)生思考后,回答,教師再作講評(píng))
算術(shù)法:(328-64)÷44=264÷44=6(輛)
列方程:設(shè)需要租用x輛客車,可得。
44x+64=328 (1)
解這個(gè)方程,就能得到所求的結(jié)果。
問:你會(huì)解這個(gè)方程嗎?試試看?
問題2:在課外活動(dòng)中,張老師發(fā)現(xiàn)同學(xué)們的年齡大多是13歲,就問同學(xué):“我今年45歲,幾年以后你們的年齡是我年齡的三分之一?”
通過分析,列出方程:13+x=(45+x)
問:你會(huì)解這個(gè)方程嗎?你能否從小敏同學(xué)的`解法中得到啟發(fā)?
把x=3代人方程(2),左邊=13+3=16,右邊=(45+3)=×48=16,
因?yàn)樽筮叄接疫,所以x=3就是這個(gè)方程的解。
這種通過試驗(yàn)的方法得出方程的解,這也是一種基本的數(shù)學(xué)思想方法。也可以據(jù)此檢驗(yàn)一下一個(gè)數(shù)是不是方程的解。
問:若把例2中的“三分之一”改為“二分之一”,那么答案是多少?動(dòng)手試一試,大家發(fā)現(xiàn)了什么問題?
同樣,用檢驗(yàn)的方法也很難得到方程的解,因?yàn)檫@里x的值很大。另外,有的方程的解不一定是整數(shù),該從何試起?如何試驗(yàn)根本無(wú)法人手,又該怎么辦?
三、鞏固練習(xí)
教科書第3頁(yè)練習(xí)1、2。
四、小結(jié)。
本節(jié)課我們主要學(xué)習(xí)了怎樣列方程解應(yīng)用題的方法,解決一些實(shí)際問題。談?wù)勀愕膶W(xué)習(xí)體會(huì)。
五、作業(yè) 。
教科書第3頁(yè),習(xí)題6.1第1、3題。
初中數(shù)學(xué)優(yōu)秀教案3
教學(xué)目標(biāo):
1、掌握一元二次方程的根與系數(shù)的關(guān)系并會(huì)初步應(yīng)用。
2、培養(yǎng)學(xué)生分析、觀察、歸納的能力和推理論證的能力。
3、滲透由特殊到一般,再由一般到特殊的認(rèn)識(shí)事物的規(guī)律。
4、培養(yǎng)學(xué)生去發(fā)現(xiàn)規(guī)律的積極性及勇于探索的精神。
教學(xué)重點(diǎn)與難點(diǎn):
重點(diǎn)
根與系數(shù)的關(guān)系及其推導(dǎo)
難點(diǎn)
正確理解根與系數(shù)的關(guān)系。一元二次方程根與系數(shù)的關(guān)系是指一元二次方程兩根的和、兩根的積與系數(shù)的關(guān)系。
教學(xué)過程:
一、復(fù)習(xí)引入
1、已知方程x2-ax-3a=0的一個(gè)根是6,則求a及另一個(gè)根的值。
2、由上題可知一元二次方程的系數(shù)與根有著密切的關(guān)系。其實(shí)我們已學(xué)過的求根公式也反映了根與系數(shù)的關(guān)系,這種關(guān)系比較復(fù)雜,是否有更簡(jiǎn)潔的關(guān)系?
3、由求根公式可知,一元二次方程ax2+bx+c=0(a≠0)的兩根為x1=-b+b2-4ac2a,x2=-b-b2-4ac2a.觀察兩式右邊,分母相同,分子是-b+b2-4ac與-b-b2-4ac.兩根之間通過什么計(jì)算才能得到更簡(jiǎn)潔的關(guān)系?
二、探索新知
解下列方程,并填寫表格:
方程x1 x2 x1+x2 x1x2
x2-2x=0
x2+3x-4=0
x2-5x+6=0
觀察上面的表格,你能得到什么結(jié)論?
。1)關(guān)于x的方程x2+px+q=0(p,q為常數(shù),p2-4q≥0)的兩根x1,x2與系數(shù)p,q之間有什么關(guān)系?
(2)關(guān)于x的方程ax2+bx+c=0(a≠0)的兩根x1,x2與系數(shù)a,b,c之間又有何關(guān)系呢?你能證明你的猜想嗎?
解下列方程,并填寫表格:
方程x1 x2 x1+x2 x1x2
2x2-7x-4=0
3x2+2x-5=0
5x2-17x+6=0
小結(jié):根與系數(shù)關(guān)系:
。1)關(guān)于x的方程x2+px+q=0(p,q為常數(shù),p2-4q≥0)的兩根x1,x2與系數(shù)p,q的關(guān)系是:x1+x2=-p,x1x2=q(注意:根與系數(shù)關(guān)系的'前提條件是根的判別式必須大于或等于零。)
。2)形如ax2+bx+c=0(a≠0)的方程,可以先將二次項(xiàng)系數(shù)化為1,再利用上面的結(jié)論。
即:對(duì)于方程ax2+bx+c=0(a≠0)
∵a≠0,∴x2+bax+ca=0
∴x1+x2=-ba,x1x2=ca
。ǹ梢岳们蟾浇o出證明)
例1不解方程,寫出下列方程的兩根和與兩根積:
(1)x2-3x-1=0 (2)2x2+3x-5=0
(3)13x2-2x=0 (4)2x2+6x=3
(5)x2-1=0 (6)x2-2x+1=0
例2不解方程,檢驗(yàn)下列方程的解是否正確?
(1)x2-22x+1=0 (x1=2+1,x2=2-1)
(2)2x2-3x-8=0 (x1=7+734,x2=5-734)
例3已知一元二次方程的兩個(gè)根是-1和2,請(qǐng)你寫出一個(gè)符合條件的方程。(你有幾種方法?)
例4已知方程2x2+kx-9=0的一個(gè)根是-3,求另一根及k的值。
變式一:已知方程x2-2kx-9=0的兩根互為相反數(shù),求k;
變式二:已知方程2x2-5x+k=0的兩根互為倒數(shù),求k.
三、課堂小結(jié)
1、根與系數(shù)的關(guān)系。
2、根與系數(shù)關(guān)系使用的前提是:(1)是一元二次方程;(2)判別式大于等于零。
四、作業(yè)布置
1、不解方程,寫出下列方程的兩根和與兩根積。
(1)x2-5x-3=0 (2)9x+2=x2 (3)6x2-3x+2=0
(4)3x2+x+1=0
2、已知方程x2-3x+m=0的一個(gè)根為1,求另一根及m的值。
3、已知方程x2+bx+6=0的一個(gè)根為-2,求另一根及b的值
初中數(shù)學(xué)優(yōu)秀教案4
教學(xué)目標(biāo):
1、知識(shí)與技能:使學(xué)生經(jīng)歷相似多邊形概念的形成過程,了解相似多邊形的定義,并能根據(jù)定義判斷兩個(gè)多邊形是否相似。
2、過程與方法:在探索相似多邊形本質(zhì)特征的過程中,進(jìn)一步發(fā)展學(xué)生歸納、類比、反思、交流等方面的能力,體會(huì)反例的作用。
3、情感態(tài)度與價(jià)值觀:通過觀察、推斷得到數(shù)學(xué)猜想、獲得數(shù)學(xué)結(jié)論的過程,體驗(yàn)數(shù)學(xué)活動(dòng)充滿了探索性和創(chuàng)造性。
教學(xué)重點(diǎn):探索相似多邊形的定義過程,以及用定義去判斷兩個(gè)多邊形是否相似。
教學(xué)難點(diǎn):探索相似多邊形的定義過程。
教學(xué)過程:
(一)創(chuàng)設(shè)情景,導(dǎo)入新課。(3分鐘)
由于學(xué)生已經(jīng)學(xué)習(xí)了形狀相同的圖形,在這里我向?qū)W生展示一組圖片(課件),引導(dǎo)學(xué)生從中找出形狀相同的圖形。學(xué)生回答后,利用課件演示抽象出多邊形。
大多數(shù)學(xué)生可能會(huì)指出黑板邊框的內(nèi)外邊緣所圍成的矩形的形狀也相同。我緊接著創(chuàng)設(shè)懸念:這兩個(gè)矩形的形狀相同嗎?
利用課件演示,把內(nèi)邊緣的矩形的長(zhǎng)和寬按相同比例放大后不能與外邊緣矩形重合。此時(shí)的學(xué)生肯定倍感疑惑,急切想探個(gè)究竟。教師順勢(shì)導(dǎo)入新課:
那么滿足什么條件的多邊形才是形狀相同的多邊形呢?今天我們一起來(lái)探究相似多邊形。
(二)自主學(xué)習(xí),合作探究。(15分鐘)
1、動(dòng)手實(shí)驗(yàn),初步感知定義。
課前發(fā)給每個(gè)小組一套相似多邊形的圖片(其中包括兩個(gè)相似三角形、一個(gè)等邊三角形、兩個(gè)相似四邊形),組織學(xué)生按形狀相同給多邊形找朋友。然后引導(dǎo)學(xué)生以小組為單位從中選擇一組多邊形探究解決下面問題。
(1)在這兩個(gè)多邊形中,是否有相等的內(nèi)角?設(shè)法驗(yàn)證你的猜想。
(2)在這兩個(gè)多邊形中,相等的內(nèi)角的兩邊是否成比例?
(設(shè)計(jì)意圖:引導(dǎo)學(xué)生分組討論、探究、驗(yàn)證、交流,并進(jìn)行演示,著重引導(dǎo)學(xué)生說(shuō)明驗(yàn)證的方法,無(wú)論學(xué)生提出什么樣的驗(yàn)證方式,只要有道理,教師都應(yīng)給予充分肯定和鼓勵(lì)。)
對(duì)相等內(nèi)角的兩邊是否對(duì)應(yīng)成比例這個(gè)問題學(xué)生可能會(huì)感到困難,由于學(xué)生已經(jīng)學(xué)習(xí)了成比例線段,我會(huì)利用這一點(diǎn)啟發(fā)學(xué)生運(yùn)用測(cè)量、計(jì)算的方法解決這一難點(diǎn)。
利用多媒體演示形狀相同的六邊形的對(duì)應(yīng)角相等,然后讓學(xué)生觀察計(jì)算得到,相等的內(nèi)角的兩邊成比例。然后給出對(duì)應(yīng)角、對(duì)應(yīng)邊的概念,引導(dǎo)學(xué)生明確對(duì)應(yīng)角、對(duì)應(yīng)邊的含義。
2、特例探究,進(jìn)一步體驗(yàn)定義。 (課件出示問題)
例:下列每組圖形形狀相同,它們的對(duì)應(yīng)角有怎樣的關(guān)系?對(duì)應(yīng)邊呢?
(1)三角形ABC與正三角形DEF;
(2)正方形ABCD與正方形EFGH.
(設(shè)計(jì)意圖:引導(dǎo)學(xué)生通過自主探究解決這個(gè)問題后進(jìn)行適當(dāng)引申,使學(xué)生認(rèn)識(shí)到:邊數(shù)相同的`正多邊形都相似。)
3、歸納總結(jié),形成概念。
教師設(shè)問:回憶一下我們剛才探究過的每一組多邊形,你能發(fā)現(xiàn)它們的共同特點(diǎn)嗎?(課件出示四組圖形)
(設(shè)計(jì)意圖:引導(dǎo)學(xué)生嘗試用自己的語(yǔ)言敘述定義,教師給予規(guī)范并板書。隨即給出相似多邊形的表示方法和相似比的概念,接下來(lái)引導(dǎo)學(xué)生回憶表示全等三角形時(shí)應(yīng)注意的問題,也就是要把表示對(duì)應(yīng)頂點(diǎn)的字母寫在對(duì)應(yīng)的位置上,然后引導(dǎo)學(xué)生用類比的方法得到:在記兩個(gè)多邊形相似時(shí)也要把表示對(duì)應(yīng)頂點(diǎn)的字母寫在對(duì)應(yīng)的位置上,說(shuō)明相似比與兩個(gè)多邊形敘述的順序有關(guān)。)
4、深化理解。
(1)滿足什么條件的兩個(gè)多邊形相似?
(2)如果兩個(gè)多邊形相似,那么它們的對(duì)應(yīng)角和對(duì)應(yīng)邊有什么關(guān)系?
(設(shè)計(jì)意圖:使學(xué)生認(rèn)識(shí)到:相似多邊形的定義既是最基本最重要的判定方法,也是最本質(zhì)最重要的特征。)
(三)辨析研討,知識(shí)深化。(14分鐘)
1、議一議:
(1)觀察下面兩組圖形,圖(1)中的兩個(gè)圖形相似嗎?為什么?圖(2)中的兩個(gè)圖形呢?與同桌交流。 (課件出示圖形)
(2)如果兩個(gè)多邊形不相似,那么它們的各角可能對(duì)應(yīng)相等嗎?它們的各邊可能對(duì)應(yīng)成比例嗎?
(3)如果兩個(gè)菱形相似,那么他們需要滿足什么條件?
(設(shè)計(jì)意圖:為了培養(yǎng)學(xué)生從多角度理解問題,我運(yùn)用教材中兩個(gè)典型的反例,引導(dǎo)學(xué)生討論探究,使學(xué)生認(rèn)識(shí)到:不相似的兩個(gè)多邊形的角也可能對(duì)應(yīng)相等,不相似的兩個(gè)多邊形的邊也可能對(duì)應(yīng)成比例;反過來(lái)說(shuō):只具備各角分別對(duì)應(yīng)相等或各邊分別對(duì)應(yīng)成比例的多邊形不一定相似。進(jìn)而使學(xué)生明確:判斷兩個(gè)多邊形形相似,各角分別對(duì)應(yīng)相等、各邊分別對(duì)應(yīng)成比例這兩個(gè)條件缺一不可。通過正反兩方面的對(duì)照,能使學(xué)生更深刻地理解相似多邊形的定義。這是個(gè)易錯(cuò)點(diǎn),教學(xué)時(shí)應(yīng)注意給學(xué)生留出充分思考交流的時(shí)間。另外在設(shè)計(jì)時(shí),我在教材原有內(nèi)容的基礎(chǔ)上添加了菱形的情況(見課件),引導(dǎo)學(xué)生探索兩個(gè)菱形相似需要滿足什么樣的條件。)
2、做一做。
設(shè)問:學(xué)到這兒,你認(rèn)為黑板邊框內(nèi)外邊緣所成的這兩個(gè)矩形相似嗎?請(qǐng)你計(jì)算說(shuō)明。課件出示問題:
一塊長(zhǎng)3m、寬1.5m的矩形黑板,鑲在其外圍的木質(zhì)邊框?qū)?.5cm.邊框的內(nèi)外邊緣所成的矩形相似嗎?為什么?(學(xué)生自主探索解決)
(設(shè)計(jì)意圖:為了滿足學(xué)生多樣化的學(xué)習(xí)需求,使不同的學(xué)生都能獲得令自己滿意的數(shù)學(xué)知識(shí),我把此題進(jìn)行了適當(dāng)?shù)耐卣购脱由臁?
拓展一:如果將黑板的上邊框去掉,其他條件不變。
那么邊框內(nèi)外邊緣所成的矩形相似嗎?為什么?
拓展二:在拓展一的基礎(chǔ)上,如果矩形的長(zhǎng)為2a,寬為a,
邊框的寬度為x。那么邊框內(nèi)外邊緣所成的矩形還相似嗎?為什么?
(設(shè)計(jì)意圖:引導(dǎo)學(xué)生討論計(jì)算,解決問題。目的是讓學(xué)生明確并不是所有相互套疊的兩個(gè)矩形都不相似。使學(xué)生初步認(rèn)識(shí)到直觀有時(shí)是不可靠的,研究數(shù)學(xué)問題需要在提出猜想的基礎(chǔ)上進(jìn)行推理和計(jì)算,幫助學(xué)生養(yǎng)成嚴(yán)謹(jǐn)?shù)膶W(xué)風(fēng)。)
(四)學(xué)以致用,鞏固提高。(6分鐘)
慧眼識(shí)金!
1、判斷下列各題是否正確:
(1)所有的矩形都相似。
(2)所有的正方形都相似。
(3)對(duì)應(yīng)邊成比例的兩個(gè)多邊形相似 問題解決!
2、下圖中兩面國(guó)旗相似,則它們對(duì)應(yīng)邊的比為 。
3、如圖,兩個(gè)正六邊形廣場(chǎng)磚的邊長(zhǎng)分別為a和b,它們相似嗎?為什么?
(課件出示圖形)
(設(shè)計(jì)意圖:為了體現(xiàn)相似圖形在生活中的廣泛應(yīng)用,我以實(shí)際問題為背景設(shè)計(jì)練習(xí)題。這是一組基礎(chǔ)題,意在鞏固相似多邊形的定義以及相似比的計(jì)算。)
(五)課堂小結(jié),知識(shí)升華。(2分鐘)
師生共同完成。
(設(shè)計(jì)意圖:教師首先肯定學(xué)生在課堂中大膽的猜想和思維的積極性,然后引導(dǎo)學(xué)生從幾方面進(jìn)行反思:我學(xué)會(huì)了什么,我最感興趣的是,我發(fā)現(xiàn)了什么,我能解決,我獲得的數(shù)學(xué)方法是幫助學(xué)生構(gòu)成新的知識(shí)網(wǎng)絡(luò),形成技能。)
(六)布置作業(yè):
1、 P113 習(xí)題第3題
2、畫一畫:在方格紙中畫出兩個(gè)相似多邊形。
3、探究題:小林在一塊長(zhǎng)為6m,寬為4m一邊靠墻的矩形的小花園周圍,栽種了一種蝴蝶花裝飾,這種蝴蝶花的邊框?qū)挒?0cm,邊框內(nèi)外邊緣所圍成的兩個(gè)矩形相似嗎?第1、2題作為必做題;第3題作為選做題,是對(duì)課堂上做一做的再次拓展和延伸:當(dāng)矩形的長(zhǎng)與寬的比不再是2:1時(shí),邊框內(nèi)外邊緣所圍成的兩個(gè)矩形還相似嗎?
板書設(shè) 4、相似多邊形
定義: 各角對(duì)應(yīng)相等,
各邊對(duì)應(yīng)成比例
表示方法:∽
相似比:
初中數(shù)學(xué)優(yōu)秀教案5
4.1二元一次方程
【教學(xué)目標(biāo)】
知識(shí)與技能目標(biāo)
1、通過與一元一次方程的比較,能說(shuō)出二元一次方程的概念,并會(huì)辨別一個(gè)方程是不是
二元一次方程;
2、通過探索交流,會(huì)辨別一個(gè)解是不是二元一次方程的解,能寫出給定的二元一次方程的解,了解方程解的不唯一性;
3、會(huì)將一個(gè)二元一次方程變形成用關(guān)于一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù)的形式。過程與方法目標(biāo)經(jīng)歷觀察、比較、猜想、驗(yàn)證等數(shù)學(xué)學(xué)習(xí)活動(dòng),培養(yǎng)分析問題的能力和數(shù)學(xué)說(shuō)理能力;
情感與態(tài)度目標(biāo)
1、通過與一元一次方程的類比,探究二元一次方程及其解的概念,進(jìn)一步培養(yǎng)運(yùn)用類比轉(zhuǎn)化的思想解決問題的能力;
2、通過對(duì)實(shí)際問題的分析,培養(yǎng)關(guān)注生活,進(jìn)一步體會(huì)方程是刻畫現(xiàn)實(shí)世界的有效數(shù)學(xué)模型,培養(yǎng)良好的數(shù)學(xué)應(yīng)用意識(shí)。
【重點(diǎn)、難點(diǎn)】
重點(diǎn):二元一次方程的概念及二元一次方程的解的概念。
難點(diǎn)1、了解二元一次方程的解的不唯一性和相關(guān)性。即了解二元一次方程的解有無(wú)數(shù)個(gè),
但不是任意的兩個(gè)數(shù)是它的解。
2、把一個(gè)二元一次方程變形成用關(guān)于一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù)的形式,其實(shí)質(zhì)是解一個(gè)含有字母系數(shù)的方程。
【教學(xué)方法與教學(xué)手段】
1、通過創(chuàng)設(shè)問題情境,讓學(xué)生在尋求問題解決的過程中認(rèn)識(shí)二元一次方程,了解二元一
次方程的特點(diǎn),體會(huì)到二元一次方程的引入是解決實(shí)際問題的需要。
2、通過觀察、思考、交流等活動(dòng),激發(fā)學(xué)習(xí)情緒,營(yíng)造學(xué)習(xí)氣氛,給學(xué)生一定的時(shí)間和
空間,自主探討,了解二元一次方程的解的不唯一性和相關(guān)性。
3、通過學(xué)練結(jié)合,以游戲的形式讓學(xué)生及時(shí)鞏固所學(xué)知識(shí)。
【教學(xué)過程】
一、創(chuàng)設(shè)情境導(dǎo)入新課
1、一個(gè)數(shù)的3倍比這個(gè)數(shù)大6,這個(gè)數(shù)是多少?
2、寫有數(shù)字5的黃卡和寫有數(shù)字2的藍(lán)卡若干張,問黃卡和藍(lán)卡各取幾張,才能使取到的卡片上的數(shù)字之和為22?
思考:這個(gè)問題中,有幾個(gè)未知數(shù)?能列一元一次方程求解嗎?
如果設(shè)黃卡取x張,藍(lán)卡取y張,你能列出方程嗎?
3、在高速公路上,一輛轎車行駛2時(shí)的路程比一輛卡車行駛3時(shí)的路程還多20千米。如果設(shè)轎車的速度是a千米/時(shí),卡車的速度是b千米/時(shí),你能列出怎樣的方程?
二、師生互動(dòng)探索新知
1、推陳出新發(fā)現(xiàn)新知
引導(dǎo)學(xué)生觀察所列的方程:5x?2y?22,2a?3b?20,這兩個(gè)方程有哪些共同特征?這些特征與一元一次方程比較,哪些是相同的,哪些是不同的?你能給它們?nèi)(gè)名字嗎?
(板書:二元一次方程)
根據(jù)它們的共同特征,你認(rèn)為怎樣的方程叫做二元一次方程?(二元一次方程的定義:含有兩個(gè)未知數(shù),且含有未知數(shù)的項(xiàng)的次數(shù)都是一次的方程叫做二元一次方程。)
2、小試牛刀鞏固新知
判斷下列各式是不是二元一次方程
(1)x2?y?0(2)12a?b?2b?0(3)y?x(4)x??123y
3、師生互動(dòng)再探新知
(1)什么是方程的解?(使方程兩邊的值相等的未知數(shù)的值,叫做方程的解。)
(2)你能給二元一次方程的解下一個(gè)定義嗎?(使二元一次方程兩邊的值相等的一對(duì)未
知數(shù)的值,叫做二元一次方程的`一個(gè)解。)
?若未知數(shù)設(shè)為x,y,記做x?,若未知數(shù)設(shè)為a,b,記做
?y?
4、再試牛刀檢驗(yàn)新知
(1)檢驗(yàn)下列各組數(shù)是不是方程2a?3b?20的解:(學(xué)生感悟二元一次方程解的不唯一性)
a?4a?5a?0a?100
b?3b??1020b??b?6033
(2)你能寫出方程x-y=1的一個(gè)解嗎?(再一次讓學(xué)生感悟二元一次方程的解的不唯一性)
5、自我挑戰(zhàn)三探新知
有3張寫有相同數(shù)字的藍(lán)卡和2張寫有相同數(shù)字的黃卡,這五張卡片上的數(shù)字之和為10。設(shè)藍(lán)卡上的數(shù)字為x,黃卡上的數(shù)字為y,根據(jù)題意列方程。3x?2y?10
請(qǐng)找出這個(gè)方程的一個(gè)解,并寫出你得到這個(gè)解的過程。
學(xué)生在解二元一次方程的過程中體驗(yàn)和了解二元一次方程解的不唯一性。
6、動(dòng)動(dòng)筆頭鞏固新知
獨(dú)立完成課本第81頁(yè)課內(nèi)練習(xí)2
三、你說(shuō)我說(shuō)清點(diǎn)收獲
比較一元一次方程和二元一次方程的相同點(diǎn)和不同點(diǎn)
相同點(diǎn):方程兩邊都是整式
含有未知數(shù)的項(xiàng)的次數(shù)都是一次
如何求一個(gè)二元一次方程的解
四、知識(shí)鞏固
1、必答題
(1)填空題:若mxy?9x?3yn?1?7是關(guān)于x,y的二元一次方程,則m?n?x?2y?5變形正確的有2
10?xx?10①x?5?4y②x?10?4y③y?④y?44
(3x?7是方程2x?y?15的解。()(2)多選題:方程
y?1
x?7
(4)判斷題:方程2x?y?15的解是。()y?1
2、搶答題
是方程2x?3y?5的一個(gè)解,求a的值。(1)已知x??2
y?a
(2)寫出一個(gè)解為x?3的二元一次方程。
y?1
3、個(gè)人魅力題
寫有數(shù)字5的黃卡和寫有數(shù)字2的藍(lán)卡若干張,問黃卡和藍(lán)卡各取幾張,才能使取到的卡片上的數(shù)字之和為22?設(shè)黃卡取x張,藍(lán)卡取y張,根據(jù)題意列方程:5x?2y?22你能完成這道題目嗎?
五、布置作業(yè)
初中數(shù)學(xué)優(yōu)秀教案6
學(xué)習(xí)目標(biāo)
1、了解分式的概念,會(huì)判斷一個(gè)代數(shù)式是否是分式。
2、能用分式表示簡(jiǎn)單問題中數(shù)量之間的關(guān)系,能解釋簡(jiǎn)單分式的實(shí)際背景或幾何意義。
3、能分析出一個(gè)簡(jiǎn)單分式有、無(wú)意義的條件。
4、會(huì)根據(jù)已知條件求分式的值。
學(xué)習(xí)重點(diǎn)
分式的概念,掌握分式有意義的條件
學(xué)習(xí)難點(diǎn)
分式有、無(wú)意義的條件
教學(xué)流程
預(yù)習(xí)導(dǎo)航
一、創(chuàng)設(shè)情境:
京滬鐵路是我國(guó)東部沿海地區(qū)縱貫?zāi)媳钡慕煌ù髣?dòng)脈,全長(zhǎng)1462km,是我國(guó)最繁忙的鐵路干線之一。如果貨運(yùn)列車的速度為akm/h,快速列車的速度為貨運(yùn)列車2倍,那么:
(1)貨運(yùn)列車從北京到上海需要多長(zhǎng)時(shí)間?
(2)快速列車從北京到上海需要多長(zhǎng)時(shí)間?
(3)已知從北京到上海快速列車比貨運(yùn)列車少用多少時(shí)間?
觀察剛才你們所列的式子,它們有什么特點(diǎn)?
這些式子與分?jǐn)?shù)有什么相同和不同之處?
合作探究
一、概念探究:
1、列出下列式子:
(1)一塊長(zhǎng)方形玻璃板的面積為2㎡,如果寬為am,那么長(zhǎng)是
(2)小麗用n元人民幣買了m袋瓜子,那么每袋瓜子的價(jià)格是 元。
(3)正n邊形的每個(gè)內(nèi)角為 度。
(4)兩塊面積分別為a公頃、b公頃的棉田,產(chǎn)棉花分別為m㎏、n㎏。這兩塊棉田平均每公頃產(chǎn)棉花 ______㎏。
2、兩個(gè)數(shù)相除可以把它們的商表示成分?jǐn)?shù)的形式。如果用字母 分別表示分?jǐn)?shù)的分子和分母,那么 可以表示成什么形式呢?
3、思考:
上面所列各式有什么共同特點(diǎn)?
(通過對(duì)以上幾個(gè)實(shí)際問題的研討,學(xué)會(huì)用 的`形式表示實(shí)際問題中數(shù)量之間的關(guān)系,感受把分?jǐn)?shù)推廣到分式的優(yōu)越性和必要性)
分式的概念:
4、小結(jié)分式的概念中應(yīng)注意的問題.
、 分式是兩個(gè)整式相除的商式,其中分子為被除式,分母為除式,分?jǐn)?shù)線起除號(hào)的作用;
、 分式的分母中必須含有字母,而分子中可以含有字母,也可以不含字母,這是區(qū)別整式的重要依據(jù);
、 如同分?jǐn)?shù)一樣,在任何情況下,分式的分母的值都不可以為0,否則分式無(wú)意義。分式分母不為零是隱含在此分式中而無(wú)須注明的條件。
二、例題分析:
例1 : 試解釋分式 所表示的實(shí)際意義
例2:求分式 的值 ①a=3 ②a=—
例3:當(dāng)取什么值時(shí),分式 (1)沒有意義?(2)有意義?(3)值為零。
三、展示交流:
1、在 ____________中,是整式的有_____________________,是分式的有________________;
2、 寫成分式為____________,且當(dāng)m≠_____時(shí)分式有意義;
3、當(dāng)x_______時(shí),分式 無(wú)意義,當(dāng)x______時(shí),分式的值為1。
4、 若分式 的值為正數(shù),則x的取值應(yīng)是 ( )
A. , B. C. D. 為任意實(shí)數(shù)
四、提煉總結(jié):
1、什么叫分式?
2、分式什么時(shí)候有意義?怎樣求分式的值
初中數(shù)學(xué)優(yōu)秀教案7
4.2.(一)
教材分析:
本節(jié)課是緊接《平行四邊形的性質(zhì)》一節(jié),其探究的主要內(nèi)容是“兩條對(duì)角線互相平分的四邊形是平行四邊形”,以及“一組對(duì)邊平行且相等的四邊形是平行四邊形”這兩種判別方法。它是在學(xué)生掌握了平行線、三角形全等及簡(jiǎn)單圖形的平移和旋轉(zhuǎn)、平行四邊形的定義、性質(zhì)等基礎(chǔ)性知識(shí)上學(xué)習(xí)的。在教學(xué)內(nèi)容上起著承上啟下的作用。首先,在探索方式上運(yùn)用了學(xué)習(xí)機(jī)“圖形計(jì)算器”的度量、旋轉(zhuǎn)、平移等方法、其次、在探究判別條件的合理性上和運(yùn)用判別條件時(shí)除用到了全等三角形的相關(guān)知識(shí),還可以通過直觀體驗(yàn)的方法來(lái)獲取信息。其次,平行四邊形的判別條件是研究特殊的平行四邊形的基礎(chǔ);再有,平行四邊形判別條件的探究模式從方法上為)(研究特殊的平行四邊形奠定了基礎(chǔ)。并且,本節(jié)內(nèi)容還是學(xué)生運(yùn)用化歸思想的良好素材。教材從學(xué)生年齡特征、文化知識(shí)的實(shí)際水平出發(fā),先讓學(xué)生動(dòng)手做,動(dòng)腦思考,然后與同伴交流、利用學(xué)習(xí)機(jī)“圖形計(jì)算器”探索、總結(jié)歸納,升華得出平行四邊形的判別方法,再用這些方法去對(duì)四邊形是否是平行四邊形進(jìn)行判別。這樣的安排使抽象的推理讓學(xué)生更易于接受,并能在整個(gè)教學(xué)過程中真正享受到探索的樂趣。
教學(xué)目標(biāo):
1.經(jīng)歷并了解平行四邊形判別方法的探索過程,使學(xué)生逐步掌握說(shuō)理的`基本方法。
探索并掌握平行四邊形的兩種判別條件,能根據(jù)判別方法進(jìn)行相關(guān)的應(yīng)用。
2.在探索過程中發(fā)展學(xué)生的合理推理意識(shí)、主動(dòng)探究的習(xí)慣。
體驗(yàn)數(shù)學(xué)活動(dòng)來(lái)源于生活又服務(wù)于生活,提高學(xué)生的學(xué)習(xí)興趣。
3.在操作學(xué)習(xí)機(jī)的“圖形計(jì)算器”活動(dòng)過程中,加深師生的情感。培養(yǎng)學(xué)生的觀察能力,并提高學(xué)生的學(xué)習(xí)興趣。在學(xué)習(xí)過程中,來(lái)體會(huì)平行四邊形的圖形美和內(nèi)在美。同時(shí)使“圖形計(jì)算器”真正成為學(xué)生的學(xué)具。
教學(xué)重點(diǎn):探索并掌握平行四邊形的判別條件。(一組對(duì)邊平行且相等的四邊形是平行四邊形;兩條對(duì)角線互相平分的四邊形是平行四邊形)。
教學(xué)難點(diǎn):經(jīng)歷平行四邊形判別條件的探索過程,發(fā)展學(xué)生的合情推理意識(shí)、主動(dòng)探索的習(xí)慣,逐步掌握說(shuō)理的基本方法。
教學(xué)媒體設(shè)計(jì):
為了實(shí)現(xiàn)教學(xué)目標(biāo)、優(yōu)化教學(xué)過程、突破教學(xué)難點(diǎn)、充分調(diào)動(dòng)學(xué)生的各種感官、吸引注意力,課堂上主要采用諾亞舟學(xué)習(xí)機(jī)的“圖形計(jì)算器”進(jìn)行輔助教學(xué),通過大屏幕媒體展示教學(xué)和學(xué)生對(duì)“圖形計(jì)算器”充分利用,使教學(xué)過程與知識(shí)發(fā)展過程和思維過程三者同步,分別在創(chuàng)設(shè)情境;觀察、探索;理順、歸納;運(yùn)用、提高;回顧、反思;布置作業(yè)環(huán)節(jié)都將發(fā)揮“圖形計(jì)算器”的實(shí)戰(zhàn)功能、讓學(xué)生真正做到課上聽懂、理解透徹。將學(xué)生的課堂練習(xí)成果進(jìn)行快速展示,從而節(jié)約時(shí)間,提高課堂效率。
教學(xué)過程設(shè)計(jì):(t—教師,s—學(xué)生)
問題與情境師生行為設(shè)計(jì)意圖
活動(dòng)板塊1
前面我們已經(jīng)學(xué)習(xí)了平行四邊形概念和性質(zhì),我們來(lái)復(fù)習(xí):
。1)平行四邊形概念。
。2)平行四邊形性質(zhì)。
。3)如果我們自己作平行四邊形,你是如何說(shuō)明理由的?
進(jìn)而得出需進(jìn)行平行四邊形判別條件的探究。
先由學(xué)生根據(jù)自主做圖的基礎(chǔ)上,進(jìn)行猜想,具備什么條件的四邊形是平行四邊形,將猜想記錄到練習(xí)本上。利用學(xué)習(xí)機(jī)的“圖形計(jì)算器”將你的猜想進(jìn)行驗(yàn)證。
活動(dòng)板塊2
在學(xué)生合作探究基礎(chǔ)上,對(duì)小組活動(dòng)及時(shí)評(píng)價(jià)、引導(dǎo)。
同時(shí)觀察是否有小組已經(jīng)經(jīng)過猜想、通過實(shí)驗(yàn)驗(yàn)證的方法獲得了平行四邊形判別條件。
適時(shí)地將學(xué)生的探究方向指引到通過平行四邊形的性質(zhì)來(lái)反向探究平行四邊形判別條件,進(jìn)而得出平行四邊形判別方法。
適時(shí)地選出一小組成員在臺(tái)前利用教師學(xué)習(xí)機(jī)的“圖形計(jì)算器”通過大屏幕演示小組成果…
得出平行四邊形判別方法:兩條對(duì)角線互相平分的四邊形是平行四邊形或(一組對(duì)邊平行且相等的四邊形是平行四邊形)。
活動(dòng)板塊3
學(xué)生繼續(xù)活動(dòng),探究平行四邊形判別的其他方法。
適時(shí)地將學(xué)生的探究方向指引到通過平行四邊形的性質(zhì)來(lái)反向探究平行四邊形判別條件,進(jìn)而得出平行四邊形判別方法。
適時(shí)地選出一小組成員在臺(tái)前利用教師學(xué)習(xí)機(jī)的“圖形計(jì)算器”通過大屏幕演示小組成果…
得出平行四邊形判別方法:兩條對(duì)角線互相平分的四邊形是平行四邊形或(一組對(duì)邊平行且相等的四邊形是平行四邊形)。
活動(dòng)板塊4
通過小結(jié)后,借助大屏幕展示學(xué)習(xí)機(jī)的“圖形計(jì)算器”中預(yù)先保存的練習(xí)題。
活動(dòng)板塊5
小結(jié)及學(xué)生談感受、體會(huì)、特別是對(duì)學(xué)習(xí)機(jī)的使用情況談體會(huì)和認(rèn)識(shí)。
活動(dòng)板塊6
課后思考題:(將問題的探究記錄在學(xué)習(xí)機(jī)的“圖形計(jì)算器”中保存)
1.平行四邊形abcd中,在對(duì)角線所在直線上取ae、cf,使ae=cf,連接be、df,試說(shuō)明:be=df。
2.利用學(xué)習(xí)機(jī)的“圖形計(jì)算器”制作一組以平行四邊形為基本圖案的美麗圖形。
t:提出復(fù)習(xí)概念和性質(zhì)。
s:思考,回答結(jié)合一起
復(fù)習(xí)。
s:思考、作圖、自主參與交流。
t:引導(dǎo)、合作,對(duì)小組活動(dòng)及時(shí)評(píng)價(jià)。
t:注意s猜想、驗(yàn)證過程中出現(xiàn)哪些問題,他們想如何解決所遇到的問題。
t:引導(dǎo)發(fā)展s的探究意識(shí)和合作中團(tuán)結(jié)解決所遇到的各種問題。
t:引導(dǎo)和補(bǔ)充。關(guān)注學(xué)生是否交流方法,互動(dòng)學(xué)習(xí)。能否發(fā)現(xiàn)問題,研究并解決問題
s:互動(dòng)學(xué)習(xí),提出論證方法。
t:引導(dǎo)、合作,對(duì)回答問題及時(shí)評(píng)價(jià)。
s:通過對(duì)學(xué)具學(xué)習(xí)機(jī)的“圖形計(jì)算器”的自主探求,獲得平行四邊形判別方法。
s:小組成員合作,其他學(xué)生觀察、思考得出探究的正確方向。
s:互動(dòng)學(xué)習(xí),提出論證方法。
t:引導(dǎo)、合作,對(duì)回答問題及時(shí)評(píng)價(jià)。
t:關(guān)注學(xué)生是否交流方法,互動(dòng)學(xué)習(xí)。能否發(fā)現(xiàn)問題,研究并解決問題
s:小組成員合作,其他學(xué)生觀察、思考得出探究的正確方向。
t:根據(jù)授課情況,板演解題過程,或?qū)W生口述解題過程。s:板演或口述。
t:演示引例,解決具體問題中感受應(yīng)用的價(jià)值。
s:暢所欲言
t:進(jìn)行補(bǔ)充,總結(jié)。
s:小組一名同學(xué)記錄問題題干,另一名同學(xué)在學(xué)習(xí)機(jī)的“圖形計(jì)算器”上記錄下圖形。課后將問題的探究記錄在學(xué)習(xí)機(jī)的“圖形計(jì)算器”中保存
立足于舊知識(shí)的基礎(chǔ)上,引導(dǎo)學(xué)生的注意力。
在情境引入中充分使用學(xué)習(xí)機(jī)“圖形計(jì)算器”來(lái)促進(jìn)學(xué)生學(xué)習(xí)過程。
為全體學(xué)生提供借助“圖形計(jì)算器”為基礎(chǔ)平臺(tái),使全體學(xué)生都有信心學(xué)習(xí)數(shù)學(xué)知識(shí),調(diào)動(dòng)學(xué)生積極性,主動(dòng)地參與到課程過程中來(lái),樹立學(xué)習(xí)的信心。為教學(xué)目標(biāo)1服務(wù)。
通過全體學(xué)生借助“圖形計(jì)算器”,獲得直觀的平行四邊形判別方法的印象,通過小組間的合作探究,更容易將所獲得的信息結(jié)論加以認(rèn)識(shí)、記憶。
學(xué)生在學(xué)習(xí)過程中,對(duì)學(xué)習(xí)機(jī)的“圖形計(jì)算器”的自主發(fā)現(xiàn)時(shí),大膽創(chuàng)新,想解決問題。教師起引導(dǎo)者作用,引入符號(hào)語(yǔ)言,使學(xué)生輕松愉悅地接受并獲取經(jīng)驗(yàn)為今后學(xué)習(xí)特殊四邊形打基礎(chǔ)。達(dá)成目標(biāo)1。
直覺思維能力是數(shù)學(xué)注意培養(yǎng)發(fā)展的能力之一,它有利于人的探究能力的成長(zhǎng)和創(chuàng)新精神培養(yǎng)。
提引問題時(shí)教師起組織者作用,使學(xué)生感受師生合作、生生合作的愉快,不斷的對(duì)學(xué)具學(xué)習(xí)機(jī)的“圖形計(jì)算器”的自主探求,獲得數(shù)學(xué)發(fā)展,激發(fā)學(xué)生的學(xué)習(xí)熱情,調(diào)動(dòng)學(xué)生學(xué)習(xí)自主性。共同發(fā)展,達(dá)成目標(biāo)1.2。
在學(xué)生最近的知識(shí)發(fā)展區(qū)建立新的生長(zhǎng)點(diǎn),解釋應(yīng)用與拓展的學(xué)習(xí)主題,在本活動(dòng)中得以體現(xiàn)。達(dá)成教學(xué)目標(biāo)2。
創(chuàng)設(shè)一個(gè)平等和諧的暢談空間,調(diào)動(dòng)學(xué)生的積極性,養(yǎng)成良好的總結(jié)習(xí)慣,善于從能力,情感、態(tài)度等方面關(guān)注學(xué)生對(duì)課堂整體感受,發(fā)現(xiàn)集體的力量是無(wú)窮的,培養(yǎng)集體主義精神。提供一發(fā)展平臺(tái),給學(xué)生留有學(xué)習(xí)探索的空間。
展示提出問題,為下節(jié)課的學(xué)習(xí)提出預(yù)想。并利用“圖形計(jì)算器”探求問題,帶來(lái)直觀體驗(yàn),同時(shí)培養(yǎng)學(xué)生的觀察能力,并提高學(xué)生的學(xué)習(xí)興趣。
初中數(shù)學(xué)優(yōu)秀教案8
一、教學(xué)目的:
1.理解并掌握菱形的定義及兩個(gè)判定方法;會(huì)用這些判定方法進(jìn)行有關(guān)的論證和計(jì)算;
2.在菱形的判定方法的探索與綜合應(yīng)用中,培養(yǎng)學(xué)生的觀察能力、動(dòng)手能力及邏輯思維能力。
二、重點(diǎn)、難點(diǎn)
1.教學(xué)重點(diǎn):菱形的兩個(gè)判定方法。
2.教學(xué)難點(diǎn):判定方法的證明方法及運(yùn)用。
三、例題的意圖分析
本節(jié)課安排了兩個(gè)例題,其中例1是教材P109的例3,例2是一道補(bǔ)充的題目,這兩個(gè)題目都是菱形判定方法的直接的運(yùn)用,主要目的`是能讓學(xué)生掌握菱形的判定方法,并會(huì)用這些判定方法進(jìn)行有關(guān)的論證和計(jì)算.這些題目的推理都比較簡(jiǎn)單,學(xué)生掌握起來(lái)不會(huì)有什么困難,可以讓學(xué)生自己去完成.程度好一些的班級(jí),可以選講例3.
四、課堂引入
1.復(fù)習(xí)
。1)菱形的定義:一組鄰邊相等的平行四邊形;
(2)菱形的性質(zhì)1菱形的四條邊都相等;性質(zhì)2菱形的對(duì)角線互相平分,并且每條對(duì)角線平分一組對(duì)角;
。3)運(yùn)用菱形的定義進(jìn)行菱形的判定,應(yīng)具備幾個(gè)條件?(判定:2個(gè)條件)
2.問題
要判定一個(gè)四邊形是菱形,除根據(jù)定義判定外,還有其它的判定方法嗎?
3.探究
。ń滩腜109的探究)用一長(zhǎng)一短兩根木條,在它們的中點(diǎn)處固定一個(gè)小釘,做成一個(gè)可轉(zhuǎn)動(dòng)的十字,四周圍上一根橡皮筋,做成一個(gè)四邊形.轉(zhuǎn)動(dòng)木條,這個(gè)四邊形什么時(shí)候變成菱形?
通過演示,容易得到:
菱形判定方法1對(duì)角線互相垂直的平行四邊形是菱形。
注意此方法包括兩個(gè)條件:
。1)是一個(gè)平行四邊形。
。2)兩條對(duì)角線互相垂直。
初中數(shù)學(xué)優(yōu)秀教案9
教學(xué)目標(biāo):
1、通過學(xué)生自己動(dòng)手畫圖,讓學(xué)生體會(huì)軸對(duì)稱、平移和旋轉(zhuǎn)三者之間的聯(lián)系,培養(yǎng)學(xué)生探究的精神。
2、讓學(xué)生深刻體會(huì)對(duì)稱思想的重要性,提高應(yīng)用能力。
教學(xué)過程:
一、向?qū)W生展示生活中美麗的對(duì)稱圖形,并指出其是怎樣的對(duì)稱?(展示課件)
二、探究規(guī)律:
課前完成書本第6頁(yè):做一做、和第14頁(yè):做一做。(展示課件)
軸對(duì)稱、平移和旋轉(zhuǎn)是圖形變換的三種最基本的形式。表面上它們是三件不相干的事,可經(jīng)過反復(fù)軸對(duì)稱,我們發(fā)現(xiàn):
規(guī)律1:當(dāng)對(duì)稱軸兩兩互相平行的時(shí)候,經(jīng)過偶數(shù)次的軸對(duì)稱變換相當(dāng)于實(shí)現(xiàn)一次偉大的平移變換,平移的方向與對(duì)稱軸距離矢量和的方向一致,平移的距離恰好是對(duì)稱軸距離的代數(shù)和的2倍;
若對(duì)稱軸兩兩相交于同一點(diǎn),經(jīng)過偶數(shù)次的軸對(duì)稱變換相當(dāng)于實(shí)現(xiàn)一次偉大的旋轉(zhuǎn)變換,旋轉(zhuǎn)中心就是對(duì)稱軸的交點(diǎn),旋轉(zhuǎn)方向就是對(duì)稱軸交角矢量和的方向一致,旋轉(zhuǎn)的角度恰好是對(duì)稱軸交角的代數(shù)和的2倍。(難點(diǎn))
規(guī)律2:一些圖形經(jīng)過軸對(duì)稱、平移、旋轉(zhuǎn)變換后的,圖形的'形狀、大小與原圖完全一樣。這里的“完全一樣”是一個(gè)非常好用的性質(zhì),因?yàn)樗馐局簩?duì)應(yīng)線段、對(duì)應(yīng)角、對(duì)應(yīng)圖形的周長(zhǎng)、面積相等。
三、應(yīng)用規(guī)律解題:(重點(diǎn))(展示課件)
例1、已知:如圖,點(diǎn)A和點(diǎn)D關(guān)于直線MN對(duì)稱,點(diǎn)B和點(diǎn)C也關(guān)于直線MN對(duì)稱,AC與BD相交于點(diǎn)O,且點(diǎn)0在直線MN上,請(qǐng)你寫出盡可能多的結(jié)論。(至少寫出8條)
例2、如圖,在一個(gè)長(zhǎng)為200米,寬為150米的長(zhǎng)方形公園里,擬建三條寬都為C米的人行道,其余部分為綠化帶,試問,綠化帶面積是多少平方米?(列式即可)
例3、已知正方形ABCD和正方形AEFG有一個(gè)公共點(diǎn)A,點(diǎn)D、E分別在線段AD、 AB上。
。ǎ玻┤魧⒄叫危粒牛疲抢@點(diǎn)A按順時(shí)針方向旋轉(zhuǎn),連結(jié)DG,在旋轉(zhuǎn)的過程中,你能否找到一條線段的長(zhǎng)與線段DG的長(zhǎng)始終相等。并以圖2為例說(shuō)明理由。
解答:連結(jié)BE,
因?yàn)樵谡叫危粒拢茫暮驼叫危粒牛疲侵校?/p>
。粒模剑粒拢 AG=AE;
所以在旋轉(zhuǎn)過程中,
線段AD對(duì)應(yīng)線段AB;
線段AG對(duì)應(yīng)線段AE;
則線段DG對(duì)應(yīng)線段BE;
因此:BE=DG。
練習(xí)1、如圖所示,請(qǐng)你用三種方法,把左邊的小正方形分別移到右邊的三個(gè)圖形中,使它成為軸對(duì)稱圖形。
練習(xí)2、如圖所示,已知AE∥DF,BE∥CF,AD∥BC,AD=BC且AB⊥BC,AB=3,AD=4。求多邊形AEBCFD的面積。
練習(xí)3、如圖,將一個(gè)扇形(∠AOB=90°)平移到一個(gè)長(zhǎng)方形上,恰好OCDE為正方形,若正方形邊長(zhǎng)為1,則圖中陰影部分的面積為多少?
練習(xí)4、如圖所示,點(diǎn)O是邊長(zhǎng)為a的正方形ABCD的中心,將一塊半經(jīng)足夠長(zhǎng),圓心角∠EOF=90°的扇形紙板的圓心放在點(diǎn)O處,并將紙板繞點(diǎn)O旋轉(zhuǎn)。求正方形ABCD的邊被紙板覆蓋部分的長(zhǎng)度和被紙板覆蓋部分的面積。
四、小結(jié):
三種圖形變換的聯(lián)系和兩個(gè)規(guī)律及其應(yīng)用。
五、作業(yè):
。、請(qǐng)同學(xué)們?cè)O(shè)計(jì)符合下列要求的圖形
。ǎ保 使它是中心對(duì)稱圖形,又是軸對(duì)稱圖形;
。ǎ玻 使它是中心對(duì)稱圖形,但不是軸對(duì)稱圖形;
2、預(yù)習(xí)下一章內(nèi)容,嘗試用對(duì)稱的思想分析平行四邊形的性質(zhì)。
六、課后反思:
本節(jié)教學(xué)前,經(jīng)備課組老師建議,取消了規(guī)律1的探索,補(bǔ)充了下面的一道開放式探索題:在正方形的瓷磚面上畫花紋,要求將磚面分成4部分,每部分形狀、大小完全一樣,請(qǐng)作出你的設(shè)計(jì)。 學(xué)生設(shè)計(jì)出12種的方案,并用對(duì)稱的思想加以歸類總結(jié),取得了很好的效果。但作為一堂“指導(dǎo)----自主----合作”的教學(xué)模式,老師安排的內(nèi)容是否太多,學(xué)生自主學(xué)習(xí)放到課前,該如何監(jiān)控等問題還有待進(jìn)一步探索。
初中數(shù)學(xué)優(yōu)秀教案10
【教學(xué)內(nèi)容】
【教學(xué)目標(biāo)】
1.掌握多邊形的內(nèi)角和的計(jì)算方法,并能用內(nèi)角和知識(shí)解決一些簡(jiǎn)單的問題.
2.經(jīng)歷探索多邊形內(nèi)角和計(jì)算公式的過程,體會(huì)如何探索研究問題.
3.通過將多邊形"分割"為三角形的過程體驗(yàn),初步認(rèn)識(shí)"轉(zhuǎn)化"的數(shù)學(xué)思想.
【教學(xué)重點(diǎn)與教學(xué)難點(diǎn)】
1.重點(diǎn):多邊形的內(nèi)角和公式
2.難點(diǎn):多邊形內(nèi)角和的推導(dǎo)
3.關(guān)鍵:.多邊形"分割"為三角形.
【教具準(zhǔn)備】三角板、卡紙
【教學(xué)過程】
一、創(chuàng)設(shè)情景,揭示問題
1、在一次數(shù)學(xué)基礎(chǔ)知識(shí)搶答賽中,老師出了這么一個(gè)問題,一個(gè)五邊形的所有角相加等于多少度?一個(gè)學(xué)生馬上能回答,你們能嗎?
2、教具演示:將一個(gè)五邊形沿對(duì)角線剪開,能分割成幾個(gè)三角形?
你能說(shuō)出五邊形的內(nèi)角和是多少度嗎?(點(diǎn)題)意圖:利用搶答問題和教具演示,調(diào)動(dòng)學(xué)生的學(xué)習(xí)興趣和注意力
二、探索研究學(xué)會(huì)新知
1、回顧舊知,引出問題:
(1)三角形的`內(nèi)角和等于_________.外角和等于____________
(2)長(zhǎng)方形的內(nèi)角和等于_____,正方形的內(nèi)角和等于__________.
2、探索四邊形的內(nèi)角和:
(1)學(xué)生思考,同學(xué)討論交流.
。2)學(xué)生敘述對(duì)四邊形內(nèi)角和的認(rèn)識(shí)(第一二組通過測(cè)量相加,第三四組通過畫對(duì)角線分成兩個(gè)三角形.)回顧三角形,正方形,長(zhǎng)方形內(nèi)角和,使學(xué)生對(duì)新問題進(jìn)行思考與猜想.以四邊形的內(nèi)角和作為探索多邊形的突破口。
。3)引導(dǎo)學(xué)生用"分割法"探索四邊形的內(nèi)角和:
方法一:連接一條對(duì)角線,分成2個(gè)三角形:
180°+180°=360°
從簡(jiǎn)單的思維方式發(fā)散學(xué)生的想象力達(dá)到"分割"問題,并讓學(xué)生發(fā)現(xiàn)問題,解決問題教學(xué)步驟教學(xué)內(nèi)容備注方法二:在四邊形內(nèi)部任取一點(diǎn),與頂點(diǎn)連接組成4個(gè)三角形.
180°×4-360°=360°
3、探索多邊形內(nèi)角和的問題,提出階梯式的問題:
你能嘗試用上面的方法一求出五邊形的內(nèi)角和嗎?(第一二組)
你能嘗試用上面的方法一求出六邊形的內(nèi)角和嗎?(第三,四組)那么n邊形呢?完成后填表:
n邊形3456...n分成三角形的個(gè)數(shù)1234...n-2內(nèi)角和...4、及時(shí)運(yùn)用,掌握新知:
(1)一個(gè)八邊形的內(nèi)角和是_____________度
。2)一個(gè)多邊形的內(nèi)角和是720度,這個(gè)多邊形是_____邊形
。3)一個(gè)正五邊形的每一個(gè)內(nèi)角是________,那么正六邊形的每個(gè)內(nèi)角是_________
通過學(xué)生動(dòng)手去用分割法求五(六)邊形的內(nèi)角和,從簡(jiǎn)單到復(fù)雜,從而歸納出n邊形的內(nèi)角和
三、點(diǎn)例透析
運(yùn)用新知例題:想一想:如果一個(gè)四邊形的一組對(duì)角互補(bǔ),那么另一組對(duì)角有什么關(guān)系呢?
四、應(yīng)用訓(xùn)練強(qiáng)化理解
4、第83頁(yè)練習(xí)1和2多邊形內(nèi)角和定理的應(yīng)用
五、知識(shí)回放
課堂小結(jié)提問方式:本節(jié)課我們學(xué)習(xí)了什么?
1多邊形內(nèi)角和公式
2多邊形內(nèi)角和計(jì)算是通過轉(zhuǎn)化為三角形
六、作業(yè)練習(xí)
1、書面作業(yè):
2、課外練習(xí):
初中數(shù)學(xué)優(yōu)秀教案11
【教學(xué)目標(biāo)】:
通過實(shí)例,使學(xué)生體會(huì)用樣本估計(jì)總體的思想,能夠根據(jù)統(tǒng)計(jì)結(jié)果作出合理的判斷 和推測(cè),能與 同學(xué)進(jìn)行交流,用清晰的語(yǔ)言表達(dá)自己的觀點(diǎn)。
【重點(diǎn)難點(diǎn)】:
重點(diǎn)、難點(diǎn):根據(jù)有關(guān)問題查找資料或調(diào)查,用隨機(jī)抽樣的方法選取樣本,能用樣本的平均數(shù)和方差,從而對(duì)總體有個(gè)體有個(gè)合理的估計(jì)和推測(cè)。
【教學(xué)過程】:
一、課前準(zhǔn)備
問題:20xx年北京的空氣質(zhì)量情況如何?請(qǐng)用簡(jiǎn)單隨機(jī)抽樣方法選取該年的30天,記錄并統(tǒng)計(jì)這30天北京的空氣污染指數(shù),求出這30天的平均空氣污染指數(shù),據(jù)此估計(jì)北京20xx年全年的平均空氣 污染指數(shù)和空氣質(zhì)量狀況。請(qǐng)同學(xué)們查詢中國(guó)環(huán)境保護(hù)網(wǎng)。
二、新課
師生用隨機(jī)抽樣的方法選定如下表中的30天,通過上網(wǎng)得知北京在這30天的空氣污染指數(shù)及質(zhì)量級(jí)別,如下表所示:
這30個(gè)空氣污染指數(shù)的平均數(shù)為107,據(jù)此估計(jì)該城市20xx年的平均空氣污染指數(shù)為107, 空氣質(zhì)量狀況屬于輕微污染。
討論:同學(xué)們之 間互相交流,算一算自己選取的樣本的污染指數(shù)為多少?根據(jù)樣本的空氣污染指數(shù)的平均數(shù),估計(jì)這個(gè)城市的空氣質(zhì)量 。
2、體會(huì)用樣本估計(jì)總體的合理性
下面是老師抽取的樣本的空氣 質(zhì)量級(jí)別、所占天數(shù)及比例的統(tǒng)計(jì)圖和該城市20xx年全年的相應(yīng)數(shù)據(jù)的統(tǒng)計(jì)圖,同學(xué)們可以通過比較兩張統(tǒng)計(jì)圖,體會(huì)用樣本估計(jì)總體的合理性。
經(jīng)比較可以發(fā)現(xiàn),雖然從樣本獲得的數(shù)據(jù)與總體的不完全一致,但這樣的誤差 還是可以接受的,是一個(gè)較好的估計(jì)。
練習(xí):同學(xué)們根據(jù)自己所抽取的樣本繪制統(tǒng)計(jì)圖,并 和20xx年全年的相應(yīng)數(shù)據(jù)的統(tǒng)計(jì)圖進(jìn)行比較,想一想用你所抽取的樣本估計(jì)總體是否合理?
顯然,由于各位同學(xué)所抽取的樣本的不同,樣本的污染指數(shù)不同。但是,正如我們前面已經(jīng)看到的.,隨著樣本容量(樣本中包含的個(gè)體的個(gè)數(shù))的增加,由樣本得出的平均數(shù)往往會(huì)更接近總體的平均數(shù),數(shù)學(xué)家已經(jīng)證明隨機(jī)抽樣方法是科學(xué)而可靠的 . 對(duì)于估計(jì)總體特性這類問 題,數(shù)學(xué)上的一般做法是給出具有一定可靠程度的一個(gè)估計(jì)值的范圍,將來(lái)同學(xué)們會(huì)學(xué)習(xí)到有關(guān)的數(shù)學(xué)知識(shí)。
3、加權(quán)平均數(shù)的求法
問題1:在計(jì)算20個(gè)男同學(xué)平均身高時(shí),小華先將所有數(shù)據(jù)按由小到大的順序排列,如下表所示:
然后,他這樣計(jì)算這20個(gè)學(xué)生的平均身高:
小華這樣計(jì)算平均數(shù)可以嗎?為什么?
問題2:假設(shè)你們年級(jí)共有四個(gè)班級(jí),各班的男同學(xué)人數(shù)和平均身高如下表所示.
小強(qiáng)這樣計(jì)算全年級(jí)男同學(xué)的平均身高:
小強(qiáng)這樣計(jì)算平均數(shù)可以嗎?為什么?
練習(xí):在一個(gè)班的40學(xué)生中,14歲的有5人,15歲的有30人,16歲的有4人,17歲的有1人,求這個(gè)班級(jí)學(xué)生的平均年 齡。
三、小結(jié)
用樣本估計(jì)總體 時(shí),樣本容量越大,樣本對(duì)總體的估計(jì)也就越精確。相應(yīng)地,搜集、整理、計(jì)算數(shù)據(jù)的工作量也就越大,隨機(jī)抽樣是經(jīng)過數(shù)學(xué)證明了的可靠的方法,它對(duì)于 估計(jì)總體特征是很有幫助的。
四、作業(yè)
習(xí)題4.2 1
初中數(shù)學(xué)優(yōu)秀教案12
一、課題引入
為了讓學(xué)生更好地理解正數(shù)與負(fù)數(shù)的概念,作為教師有必要了解數(shù)系的發(fā)展.從數(shù)系的發(fā)展歷程來(lái)看,微積分的基礎(chǔ)是實(shí)數(shù)理論,實(shí)數(shù)的基礎(chǔ)是有理數(shù),而有理數(shù)的基礎(chǔ)則是自然數(shù).自然數(shù)為數(shù)學(xué)結(jié)構(gòu)提供了堅(jiān)實(shí)的基礎(chǔ).
對(duì)于“數(shù)的發(fā)展”(也即“數(shù)的擴(kuò)充”),有著兩種不同的認(rèn)知體系.一是數(shù)的自然擴(kuò)充過程,如圖1所示,即數(shù)系發(fā)展的自然的、歷史的體系,它反映了人類對(duì)數(shù)的認(rèn)識(shí)的歷史發(fā)展進(jìn)程;另一是數(shù)的邏輯擴(kuò)充過程,如圖2所示,即數(shù)系發(fā)展所經(jīng)歷的理論的、邏輯的體系,它是策墨羅、馮諾伊曼、皮亞諾、高斯等數(shù)學(xué)家構(gòu)造的一種邏輯體系,其中綜合反映了現(xiàn)代數(shù)學(xué)中許多思想方法.
二、課題研究
在實(shí)際生活中,存在著諸如上升5m,下降5m;收入5000元,支出5000元等各種具體的數(shù)量.這些數(shù)量不僅與5、5000等數(shù)量有關(guān),而且還含有上升與下降、收入與支出等實(shí)際的意義.顯然上升5m與下降5m,收入5000元與支出5000元的實(shí)際意義是不同的.
為了準(zhǔn)確表達(dá)諸如此類的一些具有相反意義的量,僅用小學(xué)學(xué)過的正整數(shù)、正分?jǐn)?shù)、零,是不夠的.如果把收入5000元記作5000元,那么支出5000元顯然是不可以也同樣記作5000元的`.收入與支出是“意義相反”的兩回事,是不能用同一個(gè)數(shù)來(lái)表達(dá)的.因此,為了準(zhǔn)確表達(dá)支出5000元,就有必要引入了一種新數(shù)—負(fù)數(shù).
我們把所學(xué)過的大于零的數(shù),都稱為正數(shù);而且還可以在正數(shù)的前面添加一個(gè)“+”號(hào),比如在5的前面添加一個(gè)“+”號(hào)就成了“+5”,把“+5”稱為一個(gè)正數(shù),讀作“正5”.
在正數(shù)的前面添加一個(gè)“-”號(hào),比如在5的前面添加一個(gè)“-”號(hào),就成了“-5”,所有按這種形式構(gòu)成的數(shù)統(tǒng)稱為負(fù)數(shù).“-5”讀作“負(fù)5”,“-5000”讀作“負(fù)5000”.
于是“收入5000元”可以記作“5000元”,也可以記作“+5000元”,同時(shí)“支出5000元”就可以記作“-5000元”了.這樣具有相反意義的兩個(gè)數(shù)量就有了不同的表達(dá)方式.
利用正數(shù)與負(fù)數(shù)可以準(zhǔn)確地表達(dá)或記錄諸如上升與下降、收入與支出、海平面以上與海平面以下、零上與零下等一些“具有相反意義的量”.再如,某個(gè)機(jī)器零件的實(shí)際尺寸比設(shè)計(jì)尺寸大0.5mm就可以表示成“0.5mm”,或“+0.5mm”;如果“另一個(gè)機(jī)器零件的實(shí)際尺寸比設(shè)計(jì)尺寸小0.5mm”,那么就可以表示成“-0.5mm”了.在一次足球比賽中,如果甲隊(duì)贏了乙隊(duì)2個(gè)球,那么可以把甲隊(duì)的凈勝球數(shù)記作“+2”,把乙隊(duì)的凈勝球數(shù)記作“-2”.
借助實(shí)際例子能夠讓學(xué)生較好地理解為什么要引入負(fù)數(shù),認(rèn)識(shí)到負(fù)數(shù)是為了有效表達(dá)與實(shí)際生活相關(guān)的一些數(shù)量而引入的一種新數(shù),而不是人為地“硬造”出來(lái)的一種“新數(shù)”.
三、鞏固練習(xí)
例1博然的父母6月共收入4800元,可以將這筆收入記作+4800元;由于天氣炎熱,博然家用其中的1600元錢買了一臺(tái)空調(diào),又該怎樣記錄這筆支出呢?
思路分析:“收入”與“支出”是一對(duì)“具有相反意義的量”,可以用正數(shù)或負(fù)數(shù)來(lái)表示.一般來(lái)說(shuō),把“收入4800元”記作+4800元,而把與之具有相反意義的量“支出1600元”記作-1600元.
特別提醒:通常具有“增加、上升、零上、海平面以上、盈余、上漲、超出”等意義的數(shù)量,都用正數(shù)來(lái)表示;而與之相對(duì)的、具有“減少、下降、零下、海平面以下、虧損、下跌、不足”等意義的數(shù)量則用負(fù)數(shù)來(lái)表示.
再如,若游泳池的水位比正常水位高5cm,則可以將這時(shí)游泳池的水位記作+5cm;若游泳池的水位比正常的水位低3cm,則可以將這時(shí)游泳池的水位記作-3cm;若游泳池的水位正好處于正常水位的位置,則將其水位記作0cm.
例2周一證券交易市場(chǎng)開盤時(shí),某支股票的開盤價(jià)為18.18元,收盤時(shí)下跌了2.11元;周二到周五開盤時(shí)的價(jià)格與前一天收盤價(jià)相比的漲跌情況及當(dāng)天的收盤價(jià)與開盤價(jià)的漲跌情況如下表:?jiǎn)挝唬涸?/p>
日期周二周三周四周五
開盤+0.16+0.25+0.78+2.12
收盤-0.23-1.32-0.67-0.65
當(dāng)日收盤價(jià)
試在表中填寫周二到周五該股票的收盤價(jià).
思路分析:以周二為例,表中數(shù)據(jù)“+0.16”所表示的實(shí)際意義是“周二該股票的開盤價(jià)比周一的收盤價(jià)高出了0.16元”;而表中數(shù)據(jù)“-0.23”則表示“周二該股票收盤時(shí)的收盤價(jià)比當(dāng)天的開盤價(jià)降低了0.23元”.
因此,這五天該股票的開盤價(jià)與收盤價(jià)分別應(yīng)該按如下的方式進(jìn)行計(jì)算:
周一該股票的收盤價(jià)是18.18-2.11=16.07元;周二該股票的收盤價(jià)為16.07+0.16-0.23=16.00元;周三該股票的收盤價(jià)為16.00+0.25-1.32=14.93元;周四的該股票的收盤價(jià)為14.93+0.78-0.67=15.04元;周五該股票的收盤價(jià)為15.04+2.12-0.65=16.51元.
例3甲、乙、丙三支球隊(duì)以主客場(chǎng)的形式進(jìn)行雙循環(huán)比賽,每?jī)申?duì)之間都比賽兩場(chǎng),下表是這三支球隊(duì)的比賽成績(jī),其中左欄表示主隊(duì),上行表示客隊(duì),比分中前后兩數(shù)分別是主客隊(duì)的進(jìn)球數(shù),例如3∶2表示主隊(duì)進(jìn)3球客隊(duì)進(jìn)2球.
初中數(shù)學(xué)優(yōu)秀教案13
知識(shí)點(diǎn):
因式分解定義,提取公因式、應(yīng)用公式法、分組分解法、二次三項(xiàng)式的因式(十字相乘法、求根)、因式分解一般步驟。
教學(xué)目標(biāo):
理解因式分解的概念,掌握提取公因式法、公式法、分組分解法等因式分解方法,掌握利用二次方程求根公式分解二次二項(xiàng)式的方法,能把簡(jiǎn)單多項(xiàng)式分解因式。
考查重難點(diǎn)與常見題型:
考查因式分解能力,在中考試題中,因式分解出現(xiàn)的頻率很高。重點(diǎn)考查的分式提取公因式、應(yīng)用公式法、分組分解法及它們的.綜合運(yùn)用。習(xí)題類型以填空題為多,也有選擇題和解答題。
教學(xué)過程:
因式分解知識(shí)點(diǎn)
多項(xiàng)式的因式分解,就是把一個(gè)多項(xiàng)式化為幾個(gè)整式的積。分解因式要進(jìn)行到每一個(gè)因式都不能再分解為止。分解因式的常用方法有:
(1)提公因式法
如多項(xiàng)式
其中m叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式, m既可以是一個(gè)單項(xiàng)式,也可以是一個(gè)多項(xiàng)式。
。2)運(yùn)用公式法,即用
寫出結(jié)果。
(3)十字相乘法
對(duì)于二次項(xiàng)系數(shù)為l的二次三項(xiàng)式 尋找滿足ab=q,a+b=p的a,b,如有,則對(duì)于一般的二次三項(xiàng)式尋找滿足
a1a2=a,c1c2=c,a1c2+a2c1=b的a1,a2,c1,c2,如有,則
。4)分組分解法:把各項(xiàng)適當(dāng)分組,先使分解因式能分組進(jìn)行,再使分解因式在各組之間進(jìn)行。
分組時(shí)要用到添括號(hào):括號(hào)前面是“+”號(hào),括到括號(hào)里的各項(xiàng)都不變符號(hào);括號(hào)前面是“-”號(hào),括到括號(hào)里的各項(xiàng)都改變符號(hào)。
。5)求根公式法:如果有兩個(gè)根X1,X2,那么
2、教學(xué)實(shí)例:學(xué)案示例
3、課堂練習(xí):學(xué)案作業(yè)
4、課堂:
5、板書:
6、課堂作業(yè):學(xué)案作業(yè)
7、教學(xué)反思:
初中數(shù)學(xué)優(yōu)秀教案14
教學(xué)目標(biāo):
情意目標(biāo):培養(yǎng)學(xué)生團(tuán)結(jié)協(xié)作的精神,體驗(yàn)探究成功的樂趣。
能力目標(biāo):能利用等腰梯形的性質(zhì)解簡(jiǎn)單的幾何計(jì)算、證明題;培養(yǎng)學(xué)生探究問題、自主學(xué)習(xí)的能力。
認(rèn)知目標(biāo):了解梯形的概念及其分類;掌握等腰梯形的性質(zhì)。
教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):等腰梯形性質(zhì)的探索;
難點(diǎn):梯形中輔助線的`添加。
教學(xué)課件:PowerPoint演示文稿
教學(xué)方法:?jiǎn)l(fā)法、
學(xué)習(xí)方法:討論法、合作法、練習(xí)法
教學(xué)過程:
。ㄒ唬⿲(dǎo)入
1、出示圖片,說(shuō)出每輛汽車車窗形狀(投影)
2、板書課題:5梯形
3、練習(xí):下列圖形中哪些圖形是梯形?(投影)
結(jié)梯形概念:只有4、總結(jié)梯形概念:一組對(duì)邊平行另以組對(duì)邊不平行的四邊形是梯形。
5、指出圖形中各部位的名稱:上底、下底、腰、高、對(duì)角線。(投影)
6、特殊梯形的分類:(投影)
(二)等腰梯形性質(zhì)的探究
【探究性質(zhì)一】
思考:在等腰梯形中,如果將一腰AB沿AD的方向平移到DE的位置,那么所得的△DEC是怎樣的三角形?(投影)
猜想:由此你能得到等腰梯形的內(nèi)角有什么樣的性質(zhì)?(學(xué)生操作、討論、作答)
如圖,等腰梯形ABCD中,AD∥BC,AB=CD。求證:∠B=∠C
想一想:等腰梯形ABCD中,∠A與∠D是否相等?為什么?
等腰梯形性質(zhì):等腰梯形的同一條底邊上的兩個(gè)內(nèi)角相等。
【操練】
。1)如圖,等腰梯形ABCD中,AD∥BC,AB=CD,∠B=60o,BC=10cm,AD=4cm,則腰AB=cm。(投影)
(2)如圖,在等腰梯形ABCD中,AD∥BC,AB=CD,DE∥AC,交BC的延長(zhǎng)線于點(diǎn)E,CA平分∠BCD,求證:∠B=2∠E.(投影)
【探究性質(zhì)二】
如果連接等腰梯形的兩條對(duì)角線,圖中有哪幾對(duì)全等三角形?哪些線段相等?(學(xué)生操作、討論、作答)
如上圖,等腰梯形ABCD中,AD∥BC,AB=CD,AC、BD相交于O,求證:AC=BD。(投影)
等腰梯形性質(zhì):等腰梯形的兩條對(duì)角線相等。
【探究性質(zhì)三】
問題一:延長(zhǎng)等腰梯形的兩腰,哪些三角形是軸對(duì)稱圖形?為什么?對(duì)稱軸呢?(學(xué)生操作、作答)
問題二:等腰梯是否軸對(duì)稱圖形?為什么?對(duì)稱軸是什么?(重點(diǎn)討論)
等腰梯形性質(zhì):同以底上的兩個(gè)內(nèi)角相等,對(duì)角線相等
。ㄈ┵|(zhì)疑反思、小結(jié)
讓學(xué)生回顧本課教學(xué)內(nèi)容,并提出尚存問題;
學(xué)生小結(jié),教師視具體情況給予提示:性質(zhì)(從邊、角、對(duì)角線、對(duì)稱性等角度總結(jié))、解題方法(化梯形問題為三角形及平行四邊形問題)、梯形中輔助線的添加方法。
初中數(shù)學(xué)優(yōu)秀教案15
教學(xué)目標(biāo)
1. 使學(xué)生掌握不等式的三條基本性質(zhì);
2. 培養(yǎng)學(xué)生觀察、分析、比較的能力,提高他們靈活地運(yùn)用所學(xué)知識(shí)解題的能力.
教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):不等式的三條基本性質(zhì)的運(yùn)用.
難點(diǎn):不等式的基本性質(zhì)3的運(yùn)用.
課堂教學(xué)過程設(shè)計(jì)
一、從學(xué)生原有的認(rèn)知結(jié)構(gòu)提出問題
1. 什么叫不等式?說(shuō)出不等式的三條基本性質(zhì).
2. 當(dāng)x取下列數(shù)值時(shí),不等式1-5x<16是否成立?
3,-4,-3,4,2.5,0,-1.
3. 用不等式表示下列數(shù)量關(guān)系:
。1) x的3倍大于x的2倍與5的差; (3)y的與x的'的差小于2;
。2) y的一半與4的和是負(fù)數(shù); (4)5與a的4倍的差不是正數(shù).
4. 按照下列條件寫出仍然成立的不等式,并說(shuō)明根據(jù)不等式的哪一條基本性質(zhì):
。1)m>n,兩邊都減去3; (2)m>n,兩邊同乘以3;
(3)m>n,兩邊同乘以-3; (4)m>n,兩邊同乘以-3;
(5)m>n,兩邊同乘以 .
。ㄒ陨细黝}中,從第2題開始,用投影儀打在屏幕上.學(xué)生在回答上述問題時(shí),如遇到困難,教師應(yīng)做適當(dāng)點(diǎn)撥)在學(xué)生回答完上述問題的基礎(chǔ)上,教師指出:本節(jié)課我們將通過學(xué)習(xí)例題和練習(xí),進(jìn)一步鞏固并熟練掌握不等式的基本性質(zhì),尤其是不等式基本性質(zhì)。
二、講授新課
例1 在下列各題橫線上填入不等號(hào),使不等式成立.并說(shuō)明是根據(jù)哪一條不等式基本性質(zhì).
(1)若a–3<9,則a_____12; (2)若-a<10,則a_____–10;
。3)若a>–1,則a_____–4; (4)若-a>,則a_____0.
答:(1)a<12,根據(jù)不等式基本性質(zhì)1. (2)a>-10,根據(jù)不等式基本性質(zhì)3.
(3)a>-4,根據(jù)不等式基本性質(zhì)2. (4)a<0,根據(jù)不等式基本性質(zhì)3.
(在講授本課時(shí),應(yīng)啟發(fā)學(xué)和在添加不等號(hào)“>”或“<”時(shí),要和題目中的已知條件進(jìn)行對(duì)比,觀察它是根據(jù)不等式的哪條基本性質(zhì),是怎樣由已知條件變形得到的.同時(shí)還應(yīng)強(qiáng)調(diào)在運(yùn)用不等式基本性質(zhì)3時(shí),不等號(hào)要改變方向=
例2 已知,用a<0,“<”或“>”號(hào)填空:
(1)a+2_____2; (2)a-1_____–1; (3)3a_____0; (4)a-1______0; (5)a2 _______0; (6)a3______0; (7)a-1______0; (8)|a|______0。
答:(1)a+2<2,根據(jù)不等式基本性質(zhì)1. (2)a-1<-1,根據(jù)不等式基本性質(zhì)1.
。ǎ常┮?yàn)椋砤,根據(jù)不等式基本性質(zhì)2. (4)->0,根據(jù)不等式基本性質(zhì)3.
(5)因?yàn)閍<0,兩邊同乘以a<0,由不等式基本性質(zhì)3,得a2>0.
。ǎ叮┮?yàn)閍<0,兩邊同乘以a2>0,由不等式基本性質(zhì)2,得a3<0。
(7)因?yàn)閍<0,兩邊同加上-1,由不等式基本性質(zhì)1,得a-1<-1.
又已知,-1<0,所以a-1<0.
。ǎ福┮?yàn)椤<0,所以a≠0,所以|a|>0.
。ū纠}除了進(jìn)一步運(yùn)用不等式的三條基本性質(zhì)外,還涉及了一些舊的基礎(chǔ)知識(shí),如a<0表示a是負(fù)數(shù);a>0表示a是正數(shù);|a|是非負(fù)數(shù).后面幾個(gè)小題較靈活,條件由具體數(shù)字改為抽象的字母,這里字母代表正數(shù)還是代表負(fù)數(shù)是解決問題的關(guān)鍵)
例外 判斷下列各題的推導(dǎo)是否正確?為什么?(投影)(請(qǐng)學(xué)生回答)
。ǎ保┮?yàn)椋罚担荆担,所以-7.5<-5.7?(2)因?yàn)閍+8>4,,所以a>-4; (3)因?yàn)椋碼>4b,所以a>b; (4)因?yàn)閍<b,所以<>'
。ǎ担┮?yàn)椋荆保詀>4; (6)因?yàn)椋保荆,所以-a-1>-a-2;
。ǎ罚┮?yàn)椋常荆,所以3a>2a.
答:(1)正確,根據(jù)不等式基本性質(zhì)3. (2)正確,根據(jù)不等式基本性質(zhì)1.
。ǎ常┱_,根據(jù)不等式基本性質(zhì)2. (4)不對(duì),根據(jù)不等式基本性質(zhì)3,應(yīng)改為>; (5)因?yàn)椋荆保詀>4
答:(1)正確,根據(jù)不等式基本性質(zhì)3。 (2)正確,根據(jù)不等式基本性質(zhì)1。
(3)正確,根據(jù)不等式基本性質(zhì)2。 (4)不對(duì),根據(jù)不等式基本性質(zhì)3,應(yīng)改為。
(5)不對(duì),根據(jù)不等式基本性質(zhì)5,應(yīng)改為a<4。
(6)正確,根據(jù)不等式基本性質(zhì)1。 (7)不對(duì),應(yīng)分情況逐一討論。
當(dāng)a>0時(shí),3a>2a。(不等式基本性質(zhì)2)
當(dāng)a=0時(shí),3a<2a。
當(dāng)a<0時(shí),3a<2a。(不等式基本性質(zhì)3)
(當(dāng)學(xué)生在回答本題的過程當(dāng)中,當(dāng)遇到困難或問題時(shí),教師應(yīng)做適當(dāng)引導(dǎo)、啟發(fā)、幫助)
三、課堂練習(xí)(投影)
1。按照下列條件,寫出仍能成立的不等式:
(1)由-2<-1,兩邊都加-a; (2)由-4x<0,兩邊都乘以-;
(3)由7>5,兩邊都乘以不為零的-a。
2?用“>”或“<”號(hào)填空:
(1)當(dāng)a-b<0時(shí),a______b: (2)當(dāng)a<0,b<0時(shí),ab_____0;
(3)當(dāng)a<0,b<0時(shí),ab____0; (4)當(dāng)a>0,b<0時(shí),ab____0;
(5)若a____0,b<0,則ab>0; (6)若<0,且b<0,則a_____0。
四、師生共同小結(jié)
在師生共同回顧本節(jié)課所學(xué)內(nèi)容的基礎(chǔ)上,教師指出:①在利用不等式的基本性質(zhì)進(jìn)行變形時(shí),當(dāng)不等式的兩邊都乘以(或除以)同一個(gè)字母,字母代表什么數(shù)是問題的關(guān)鍵,這決定了是用不等式基本性質(zhì)2還是基本性質(zhì)3,也就是不等號(hào)是否要改變方向的問題;②運(yùn)用不等式基本性質(zhì)3時(shí),要變兩個(gè)號(hào),一個(gè)性質(zhì)符號(hào),另一個(gè)是不等號(hào)。
五、作業(yè)
1。根據(jù)不等式的基本性質(zhì),把下列不等式化成“x>a”或“x<a”的形式:
(1)x-1<0; (2)x>-x+6;
(3)3x>7; (4)-x<-3。
2。設(shè)a<b,用“>”或“>”號(hào)連接下列各題中的兩個(gè)代數(shù)式:
(1)a-1,b-1; (2)a+2,b+2; (3)2a,2b;
(4); (5); (6)-b,-a。
3。用“>”號(hào)或“<”號(hào)填空:
(1)若a-b<0,則a_____b; (2)若b<0,則a+b_____a;
(3)若a=0,則a+b_____b; (4)若<0,則ab_____;
(5)b<a<2,則(a-2)(b-2)____0;(2-a)(2-b)____;(2-a)(a-b)。
課堂教學(xué)設(shè)計(jì)說(shuō)明
由于本節(jié)課的教學(xué)目標(biāo)是使學(xué)生進(jìn)一步掌握不等式基本性質(zhì),尤其是基本性質(zhì)3。故在設(shè)計(jì)教學(xué)過程時(shí),注意在教師的主導(dǎo)作用下讓學(xué)生以練為主,從而使學(xué)生在初步掌握不等式的三條基本性質(zhì)的基礎(chǔ)上,通過口答,筆做,討論等不同的方式的練習(xí),提高學(xué)生將不等式正確、靈活進(jìn)行變形的能力。
【初中數(shù)學(xué)優(yōu)秀教案】相關(guān)文章:
初中數(shù)學(xué)優(yōu)秀教案【精】12-30
【精】初中數(shù)學(xué)優(yōu)秀教案02-24
初中數(shù)學(xué)優(yōu)秀教案通用04-06
初中數(shù)學(xué)優(yōu)秀教案【薦】12-28
初中數(shù)學(xué)教案【優(yōu)秀】05-22
初中數(shù)學(xué)教案[優(yōu)秀]05-21