一级毛片免费不卡在线视频,国产日批视频免费在线观看,菠萝菠萝蜜在线视频免费视频,欧美日韩亚洲无线码在线观看,久久精品这里精品,国产成人综合手机在线播放,色噜噜狠狠狠综合曰曰曰,琪琪视频

初中數(shù)學教案

時間:2024-10-22 12:08:48 初中數(shù)學教案 我要投稿

初中數(shù)學教案錦集【10篇】

  在教學工作者實際的教學活動中,就難以避免地要準備教案,借助教案可以恰當?shù)剡x擇和運用教學方法,調(diào)動學生學習的積極性。那么教案應該怎么寫才合適呢?下面是小編為大家收集的初中數(shù)學教案,僅供參考,希望能夠幫助到大家。

初中數(shù)學教案錦集【10篇】

初中數(shù)學教案1

  知識技能目標

  1、理解反比例函數(shù)的圖象是雙曲線,利用描點法畫出反比例函數(shù)的圖象,說出它的性質;

  2、利用反比例函數(shù)的圖象解決有關問題。

  過程性目標

  1、經(jīng)歷對反比例函數(shù)圖象的觀察、分析、討論、概括過程,會說出它的性質;

  2、探索反比例函數(shù)的圖象的性質,體會用數(shù)形結合思想解數(shù)學問題。

  教學過程

  一、創(chuàng)設情境

  上節(jié)的練習中,我們畫出了問題1中函數(shù)的圖象,發(fā)現(xiàn)它并不是直線。那么它是怎么樣的曲線呢?本節(jié)課,我們就來討論一般的反比例函數(shù)(k是常數(shù),k≠0)的圖象,探究它有什么性質。

  二、探究歸納

  1、畫出函數(shù)的圖象。

  分析畫出函數(shù)圖象一般分為列表、描點、連線三個步驟,在反比例函數(shù)中自變量x≠0。

  解

  1、列表:這個函數(shù)中自變量x的取值范圍是不等于零的一切實數(shù),列出x與y的對應值:

  2、描點:用表里各組對應值作為點的坐標,在直角坐標系中描出在京各點點(—6,—1)、(—3,—2)、(—2,—3)等。

  3、連線:用平滑的曲線將第一象限各點依次連起來,得到圖象的第一個分支;用平滑的曲線將第三象限各點依次連起來,得到圖象的另一個分支。這兩個分支合起來,就是反比例函數(shù)的'圖象。

  上述圖象,通常稱為雙曲線(hyperbola)。

  提問這兩條曲線會與x軸、y軸相交嗎?為什么?

  學生試一試:畫出反比例函數(shù)的圖象(學生動手畫反比函數(shù)圖象,進一步掌握畫函數(shù)圖象的步驟)。

  學生討論、交流以下問題,并將討論、交流的結果回答問題。

  1、這個函數(shù)的圖象在哪兩個象限?和函數(shù)的圖象有什么不同?

  2、反比例函數(shù)(k≠0)的圖象在哪兩個象限內(nèi)?由什么確定?

  3、聯(lián)系一次函數(shù)的性質,你能否總結出反比例函數(shù)中隨著自變量x的增加,函數(shù)y將怎樣變化?有什么規(guī)律?

  反比例函數(shù)有下列性質:

  (1)當k>0時,函數(shù)的圖象在第一、三象限,在每個象限內(nèi),曲線從左向右下降,也就是在每個象限內(nèi)y隨x的增加而減少;

  (2)當k<0時,函數(shù)的圖象在第二、四象限,在每個象限內(nèi),曲線從左向右上升,也就是在每個象限內(nèi)y隨x的增加而增加。

  注

  1、雙曲線的兩個分支與x軸和y軸沒有交點;

  2、雙曲線的兩個分支關于原點成中心對稱。

  以上兩點性質在上堂課的問題1和問題2中反映了怎樣的實際意義?

  在問題1中反映了汽車比自行車的速度快,小華乘汽車比騎自行車到鎮(zhèn)上的時間少。

  在問題2中反映了在面積一定的情況下,飼養(yǎng)場的一邊越長,另一邊越小。

  三、實踐應用

  例1若反比例函數(shù)的圖象在第二、四象限,求m的值。

  分析由反比例函數(shù)的定義可知:,又由于圖象在二、四象限,所以m+1<0,由這兩個條件可解出m的值。

  解由題意,得解得。

  例2已知反比例函數(shù)(k≠0),當x>0時,y隨x的增大而增大,求一次函數(shù)y=kx—k的圖象經(jīng)過的象限。

  分析由于反比例函數(shù)(k≠0),當x>0時,y隨x的增大而增大,因此k<0,而一次函數(shù)y=kx—k中,k<0,可知,圖象過二、四象限,又—k>0,所以直線與y軸的交點在x軸的上方。

  解因為反比例函數(shù)(k≠0),當x>0時,y隨x的增大而增大,所以k<0,所以一次函數(shù)y=kx—k的圖象經(jīng)過一、二、四象限。

  例3已知反比例函數(shù)的圖象過點(1,—2)。

  (1)求這個函數(shù)的解析式,并畫出圖象;

  (2)若點A(—5,m)在圖象上,則點A關于兩坐標軸和原點的對稱點是否還在圖象上?

  分析(1)反比例函數(shù)的圖象過點(1,—2),即當x=1時,y=—2。由待定系數(shù)法可求出反比例函數(shù)解析式;再根據(jù)解析式,通過列表、描點、連線可畫出反比例函數(shù)的圖象;

 。2)由點A在反比例函數(shù)的圖象上,易求出m的值,再驗證點A關于兩坐標軸和原點的對稱點是否在圖象上。

  解(1)設:反比例函數(shù)的解析式為:(k≠0)。

  而反比例函數(shù)的圖象過點(1,—2),即當x=1時,y=—2。

  所以,k=—2。

  即反比例函數(shù)的'解析式為:。

 。2)點A(—5,m)在反比例函數(shù)圖象上,所以,點A的坐標為。

  點A關于x軸的對稱點不在這個圖象上;

  點A關于y軸的對稱點不在這個圖象上;

  點A關于原點的對稱點在這個圖象上;

  例4已知函數(shù)為反比例函數(shù)。

 。1)求m的值;

 。2)它的圖象在第幾象限內(nèi)?在各象限內(nèi),y隨x的增大如何變化?

  (3)當—3≤x≤時,求此函數(shù)的最大值和最小值。

  解(1)由反比例函數(shù)的定義可知:解得,m=—2。

 。2)因為—2<0,所以反比例函數(shù)的圖象在第二、四象限內(nèi),在各象限內(nèi),y隨x的增大而增大。

  (3)因為在第個象限內(nèi),y隨x的增大而增大,所以當x=時,y最大值=;

  當x=—3時,y最小值=。

  所以當—3≤x≤時,此函數(shù)的最大值為8,最小值為。

  例5一個長方體的體積是100立方厘米,它的長是y厘米,寬是5厘米,高是x厘米。

 。1)寫出用高表示長的函數(shù)關系式;

 。2)寫出自變量x的取值范圍;

 。3)畫出函數(shù)的圖象。

  解(1)因為100=5xy,所以。

 。2)x>0。

 。3)圖象如下:

  說明由于自變量x>0,所以畫出的反比例函數(shù)的圖象只是位于第一象限內(nèi)的一個分支。

  四、交流反思

  本節(jié)課學習了畫反比例函數(shù)的圖象和探討了反比例函數(shù)的性質。

  1、反比例函數(shù)的圖象是雙曲線(hyperbola)。

  2、反比例函數(shù)有如下性質:

  (1)當k>0時,函數(shù)的圖象在第一、三象限,在每個象限內(nèi),曲線從左向右下降,也就是在每個象限內(nèi)y隨x的增加而減少;

  (2)當k<0時,函數(shù)的圖象在第二、四象限,在每個象限內(nèi),曲線從左向右上升,也就是在每個象限內(nèi)y隨x的增加而增加。

  五、檢測反饋

  1、在同一直角坐標系中畫出下列函數(shù)的圖象:

 。1);(2)。

  2、已知y是x的反比例函數(shù),且當x=3時,y=8,求:

 。1)y和x的函數(shù)關系式;

 。2)當時,y的值;

 。3)當x取何值時,?

  3、若反比例函數(shù)的圖象在所在象限內(nèi),y隨x的增大而增大,求n的值。

  4、已知反比例函數(shù)經(jīng)過點A(2,—m)和B(n,2n),求:

  (1)m和n的值;

 。2)若圖象上有兩點P1(x1,y1)和P2(x2,y2),且x1<0

初中數(shù)學教案2

  教學目標

  (一)知識認知要求

  1、回顧收集數(shù)據(jù)的方式、

  2、回顧收集數(shù)據(jù)時,如何保證樣本的代表性、

  3、回顧頻率、頻數(shù)的概念及計算方法、

  4、回顧刻畫數(shù)據(jù)波動的統(tǒng)計量:極差、方差、標準差的概念及計算公式、

  5、能利用計算器或計算機求一組數(shù)據(jù)的算術平均數(shù)、

 。ǘ┠芰τ柧氁

  1、熟練掌握本章的知識網(wǎng)絡結構、

  2、經(jīng)歷數(shù)據(jù)的收集與處理的過程,發(fā)展初步的統(tǒng)計意識和數(shù)據(jù)處理能力、

  3、經(jīng)歷調(diào)查、統(tǒng)計等活動,在活動中發(fā) 展學生解決問題的能力、

 。ㄈ┣楦信c價值觀要求

  1、通過對本章內(nèi)容的回顧與思考,發(fā)展學 生用數(shù)學的意識、

  2、在活動中培養(yǎng)學生團隊精神、

  教學重點

  1、建立本章的知識框架圖、

  2、體會收集數(shù)據(jù)的方式,保證樣本的代表性,頻率、頻數(shù)及刻畫數(shù)據(jù)離散程度的統(tǒng) 計量在實際情境中的意義和應用、

  教學難點

  收集數(shù)據(jù)的方式、抽樣時保證樣本的代表性、頻率、頻數(shù)、刻畫數(shù)據(jù)離散程度的統(tǒng)計量在不同情境中的應用、

  教學過程

  一、導入新課

  本章的內(nèi)容已全部學完、現(xiàn)在如何讓你調(diào)查一個情況、并且根據(jù)你獲得數(shù)據(jù),分析整理,然后寫出調(diào)查報告,我想大家現(xiàn)在心里應該有數(shù)、

  例如,我們要調(diào)查一下“上網(wǎng)吧的人的年齡”這一情況,我們應如何操作?

  先選擇調(diào)查方式,當然這個調(diào)查應采用抽樣調(diào)查的方式,因為我們不可能調(diào)查到所有上網(wǎng)吧的人,何況也沒有必要、

  同學們感興趣的話,下去以后可以以小組為單位,選擇自己感興趣的事情做調(diào)查,然后再作統(tǒng)計分析,然后把調(diào)查結果匯報上來,我們可以比一比,哪一個組表現(xiàn)最好?

  二、講授新課

  1、舉例說明收集數(shù)據(jù)的方式主要有哪幾種類型、

  2、抽樣調(diào)查時,如何保證樣本的代表性?舉例說明、

  3、舉出與頻數(shù)、頻率有關的幾個生活實例?

  4、刻畫數(shù)據(jù)波動的統(tǒng)計量有 哪些?它們有什么作用?舉例說明、

  針對上面的幾個問題,同學們先獨 立思考,然后可在小組內(nèi)交流你的想法,然后我們每組選出代表來回答、

 。ń處熆蓞⑴c到學生的討論中,發(fā)現(xiàn)同學們前面知識掌握不好的地方,及時補上)、

  收集數(shù)據(jù)的方式有兩種類型:普查和抽樣調(diào)查、

  例如:調(diào)查我校八年級同學每天做家庭作業(yè)的時間,我們就可以用普查的形式、

  在這次調(diào)查中,總體:我校八年級全體學生每天做家庭作業(yè)的時間;個體:我校八年級每個學生每天做家庭作業(yè)的時間、

  用普查的方式可以直接獲得總體情況、但有時總體中個體數(shù)目太多,普查的工作量較大;有時受客觀條件的限制,無法對所有個體進行普查;有時調(diào)查具有破壞性,不允許普查,此時可用抽樣調(diào)查、

  例如把上面問題改成“調(diào)查全國八年級同學每天做家庭作業(yè)的時間”,由于個體數(shù)目太多,普查的工作量也較大,此時就采取抽樣調(diào)查,從總體中抽取一個樣本,通過樣本的特征數(shù)字來估計總體,例如平均數(shù)、中位數(shù)、眾數(shù) 、極差、方差等、

  上面我們回顧了為了了解某種情況而采取的調(diào)查方式:普查和抽樣調(diào)查,但抽樣調(diào)查必須保證數(shù)據(jù)具有代表性,因為只 有這樣,你抽取的樣本才能體現(xiàn)出總體的情況,不然,就會失去可靠性和準確性、

  例如對我們班里某門學科的成績情況,有時不僅知道平均成績,還要知道90分以上占多少,80到90分之間占多少,……,不及格的占多少等,這時,我們只要看一下每個學生的成績落在哪一個分數(shù)段,落在這個分數(shù)段的分數(shù)有幾個,表明數(shù)據(jù)落在這個小組的頻數(shù)就是多少,數(shù)據(jù)落在這個小組的頻率就是頻數(shù)與數(shù)據(jù)總個數(shù)的商、

  刻畫數(shù)據(jù)波動的統(tǒng)計量有極差、方差、標準差、它們是用來描述一組數(shù)據(jù)的穩(wěn)定性的、一般而言,一組數(shù)據(jù)的極差、方差或標準差越小,這組數(shù)據(jù)就越穩(wěn)定、

  例如:某農(nóng)科所在8個試驗點,對甲、乙兩種玉米進行對比試驗,這兩種玉米在各試驗點的畝產(chǎn)量如下(單位:千克)

  甲:450 460 450 430 450 460 440 460

  乙:440 470 460 440 430 450 470 4 40

  在這個試驗點甲、乙兩種玉米哪一種產(chǎn)量比較穩(wěn)定?

  我們可以算極差、甲種玉米極差為460-430=30千克;乙種玉米極差為470-430=40千克、所以甲種玉米較穩(wěn)定、

  還可以用方差來比較哪一種玉米穩(wěn)定、

  s甲2=100,s乙2=200、

  s甲2<s乙2,所以甲種玉米的產(chǎn)量較穩(wěn)定、

  三、建立知識框架圖

  通 過剛才的幾個問題回顧思考了我們這一章的重點內(nèi)容,下面構建本章的知識結構圖、

  四、隨堂練習

  例1一家電腦生產(chǎn)廠家在某城市三個經(jīng)銷本廠產(chǎn)品的大商場調(diào)查,產(chǎn)品的銷量占這三個 大商場同類產(chǎn)品銷量的40%、由此在廣告中宣傳,他們的產(chǎn)品在國內(nèi)同類產(chǎn)品的銷售量占40%、請你根據(jù)所學的統(tǒng)計知識,判斷該宣傳中的數(shù)據(jù)是否可靠:________,理由是________、

  分析:這是一道判斷說理型題,它要求借助于統(tǒng)計知識,作出科學的判斷, 同時運 用統(tǒng)計原理給予準確的解釋、因此,該電腦生產(chǎn)廠家憑借挑選某城市經(jīng)銷本產(chǎn)品情況,斷然說他們的產(chǎn)品在國內(nèi)同類產(chǎn)品的`銷量占40%,宣傳中的數(shù)據(jù)是不可靠的,其理由有二:第一,所取樣本容量太小;第二,樣本抽取缺乏代表性和廣泛性、

  例2在舉國上下眾志成城抗擊“非典” 的斗爭中,疫情變化牽動著全國人民的心 、請根據(jù)下面的疫情統(tǒng)計圖表回答問題:

 。1)圖10是5月11日至5月29日全國疫情每天新增數(shù)據(jù)統(tǒng)計走勢圖,觀察后回答:

  ①每天新增確診病例與新增疑似病例人數(shù)之和超過100人的天數(shù)共有__________天;

  ②在本題的統(tǒng)計中,新增確診病例的人數(shù)的中位數(shù)是___________;

 、郾绢}在對新增確診病例的統(tǒng)計中,樣本是__________,樣本容量是__________、

 。2)下表是我國一段時間內(nèi)全國確診病例每天新增的人數(shù)與天數(shù)的頻率統(tǒng)計表、(按人數(shù)分組)

 、100人以下的分組組距是________;

 、谔顚懕窘y(tǒng)計表中未完成的空格;

 、墼诮y(tǒng)計的這段時期中,每天新增確診

  病例人數(shù)在80人以下的天數(shù)共有_________天、

  解:(1)①7 ②26 ③5月11日至29日每天新增確診病例人數(shù) 19

 。2)①10人 ②11 40 0、125 0、325 ③25

  五.課時小結

  這節(jié)課我們通過回顧與思考這一章的重點內(nèi)容,共同建立的知識框架圖,并進一步用統(tǒng)計的思想和知識解決問題,作出決策、

  六.課后作業(yè):

  七.活動與探究

  從魚塘捕得同時放養(yǎng)的草魚240尾,從中任選9尾,稱得每尾魚的質量分別是1、5,1、6,1、4,1、6,1、3,1、4,1、2,1、7,1、8(單位:千克)、依此估計這240尾魚的總質量大約是

  A、300克 B、360千克C、36千克 D、30千克

初中數(shù)學教案3

  教學目標

  1.理解二元一次方程及二元一次方程的解的概念;

  2.學會求出某二元一次方程的幾個解和檢驗某對數(shù)值是否為二元一次方程的解;

  3.學會把二元一次方程中的一個未知數(shù)用另一個未知數(shù)的一次式來表示;

  4.在解決問題的過程中,滲透類比的'思想方法,并滲透德育教育。

  教學重點、難點

  重點:二元一次方程的意義及二元一次方程的解的概念

  難點:把一個二元一次方程變形成用關于一個未知數(shù)的代數(shù)式表示另一個未知數(shù)的形式,其實質是解一個含有字母系數(shù)的方程

  教學過程

  1.情景導入:

  新聞鏈接:桐鄉(xiāng)70歲以上老人可領取生活補助,得到方程:80a+150b=902880.2.

  2.新課教學:

  引導學生觀察方程80a+150b=902880與一元一次方程有異同?

  得出二元一次方程的'概念:含有兩個未知數(shù),并且所含未知數(shù)的項的次數(shù)都是1次的方程叫做二元一次方程

  3.合作學習:

  給定方程x+2y=8,男同學給出y(x取絕對值小于10的整數(shù))的值,女同學馬上給出對應的x的值;接下來男女同學互換(比一比哪位同學反應快)請算的最快最準確的同學講他的計算方法.提問:給出x的值,計算y的值時,y的系數(shù)為多少時,計算y最為簡便?

  4.課堂練習:

  1)已知:5xm-2yn=4是二元一次方程,則m+n=;

  2)二元一次方程2x-y=3中,方程可變形為y=當x=2時,y=_

  5.課堂總結:

  (1)二元一次方程的意義及二元一次方程的解的概念(注意書寫格式);

  (2)二元一次方程解的不定性和相關性;

  (3)會把二元一次方程化為用一個未知數(shù)的代數(shù)式表示另一個未知數(shù)的形式

  作業(yè)布置

  本章的課后的方程式鞏固提高練習。

初中數(shù)學教案4

  (一)教材分析

  1、知識結構

  2、重點、難點分析

  重點:

  找出命題的題設和結論.因為找出一個命題的題設和結論,是對該命題深刻理解的前提,而對命題理解能力是我們今后研究數(shù)學必備的能力,也是研究其它學科能力的基礎.

  難點:

  找出一個命題的題設和結論.因為理解和掌握一個命題,一定要分清它的題設和結論,所以找出一個命題的題設和結論是十分重要的問題.但有些命題的題設和結論不明顯.例如,“對頂角相等”,“等角的余角相等”等.一些沒有寫成“如果那么”形式的命題,學生往往搞不清哪是題設,哪是結論,又沒有一個通用的方法可以套用,所以分清題設和結論是教學的一個難點.

 。ǘ┙虒W建議

  1、教師在教學過程中,組織或引導學生從具體到抽象,結合學生熟悉的'事例,來理解命題的概念、找出一個命題的題設和結論,并能判斷一些簡單命題的真假.

  2、命題是數(shù)學中一個非常重要的概念,雖然高中階段我們還要學習,但對于程度好的A層學生還要理解:

 。1)假命題可分為兩類情況:

 、兕}設只有一種情形,并且結論是錯誤的,例如,“1+3=7”就是一個錯誤的命題.

 、陬}設有多種情形,其中至少有一種情形的結論是錯誤的.

  例如,“內(nèi)錯角互補,兩直線平行”這個命題的題設可分為兩種情形:

  第一種情形是兩個內(nèi)錯角都等于90°,這時兩直線平行;

  第二種情形是兩個內(nèi)錯角不都等于90°,這時兩直線不平行.

  整體說來,這是錯誤的命題.

  (2)是否是命題:

  命題的定義包括兩層涵義:

 、倜}必須是一個完整的句子;

 、谶@個句子必須對某件事情做出肯定或者否定的判斷.即命題是判斷某一件事情的句子.在語法上,這樣的句子叫做陳述句,它由“題設+結論”構成.

  另外也有一些句子不是陳述句,例如,祈使句(也叫做命令句)“過直線AB外一點作該直線的平行線.”疑問句“∠A是否等于∠B?”感嘆句“竟然得到5>9的結果!”以上三個句子都不是命題.

 。3)命題的組成

  每個命題都是由題設、結論兩部分組成.題設是已知事項;結論是由已知事項推出的事項.命題常寫成“如果,那么”的形式.具有這種形式的命題中,用“如果”開始的部分是題設,用“那么”開始的部分是結論.

  有些命題,沒有寫成“如果,那么”的形式,題設和結論不明顯.對于這樣的命題,要經(jīng)過分折才能找出題設和結論,也可以將它們改寫成“如果那么”的形式.

  另外命題的題設(條件)部分,有時也可用“已知”或者“若”等形式表述;命題的結論部分,有時也可用“求證”或“則”等形式表述.

初中數(shù)學教案5

  教材分析

  立體圖形的翻折問題是高二《代數(shù)》(下)中立體幾何的一個學習內(nèi)容,它融會貫通于各種立體幾何和幾何體中,對學生進一步理解立體圖形起著至關重要的作用。立體圖形的翻折是從學生生活周圍熟悉的物體入手,使學生進一步認識立體圖形于平面圖形的關系;不僅要讓學生了解幾何體可由平面圖形折疊而成,更重要的是讓學生通過觀察、思考和自己動手操作、經(jīng)歷和體驗圖形的變化過程,使學生了解研究立體圖形的方法。

  教學重點

  了解平面圖形于折疊后的立體圖形之間的關系,找到變化過程中的不變量。

  教學難點

  轉化思想的運用及發(fā)散思維的培養(yǎng)。

  學生分析

  學生在前面已經(jīng)對一些簡單幾何體有了一定的認識,對于求解空間角及空間距離已具備了一定的能力,并且在班級中已初步形成合作交流,敢于探索與實踐的良好習慣。學生間相互評價、相互提問的互動的氣氛較濃。

  設計理念

  根據(jù)教育課程改革的具體目標,結合“注重開放與生成,構建充滿生命活力的課堂教學運行體系”的要求,改變課程過于注重知識傳授的傾向,強調(diào)形成積極生動的學習態(tài)度,關注學生的學習興趣和經(jīng)驗,實施開放式教學,讓學生主動參與學習活動,并引導學生在課堂活動中感悟知識的生成、發(fā)展與變化。

  教學目標

  1、使學生掌握翻折問題的解題方法,并會初步應用。

  2、培養(yǎng)學生的動手實踐能力。在實踐過程中,使學生提高對立體圖形的分析能力,并在設疑的同時培養(yǎng)學生的發(fā)散思維。

  3、通過平面圖形與折疊后的立體圖形的對比,向學生滲透事物間的變化與聯(lián)系觀點,在解題過程中,使學生理解,將立體圖形中的問題化歸到平面圖形中去解決的轉化思想。

  教學流程

  一、創(chuàng)設問題情境,引導學生觀察、設想、導入課題。

  1、如圖(圖略),是一個正方體的展開圖,在原正方體中,有下列命題

 。1)AB與EF所在直線平行

 。2)AB與CD所在直線異面

 。3)MN與EF所在直線成60度

 。4)MN與CD所在直線互相垂直其中正確命題的序號是

  2、引入課題----翻折

  二、學生通過直觀感知、操作確認等實踐活動,加強對圖形的認識和感受(引導學生在解題的過程中如何突破難點,從而體現(xiàn)在平面圖形中求解一些不變量對于解空間問題的重要性)。

  1、給學生一個展示自我的'空間和舞臺,讓學生自己講解。教師根據(jù)學生的講解進一步提出問題。

 。1)線段AE與EF的夾角為什么不是60度呢?

  (2)AE與FG所成角呢?

 。3)AE與GC所成角呢?

  (4)在此正四棱柱上若有一小蟲從A點爬到C點最短路徑是什么?經(jīng)過各面呢?

 。ㄍㄟ^對發(fā)散問題的提出培養(yǎng)學生的培養(yǎng)精神及轉化的教學思想方法,讓學生體會折疊圖與展開圖的不同應用。)

  2、讓學生觀察電腦演示折疊過程后,再親自動手折疊,針對問題做出回答。

  (1)E、F分別處于G1G2、G2G3的什么位置?

 。2)選擇哪種擺放方式更利于求解體積呢?

 。3)如何求G點到面PEF的距離呢?

 。4)PG與面PEF所成角呢?

  (5)面GEF與面PEF所成角呢?

 。▽W生會發(fā)現(xiàn)這幾個問題可在同一個直角三角形中找到答案,然后讓學生在折紙中找到這個三角形的位置,既而發(fā)現(xiàn)折疊過程中的不變量。)

  3、演示MN的運動過程,讓學生觀察分析解題過程強調(diào)證PN垂直AB的困難性。與學生共同品位解出這道2002高考題的喜悅的同時,引導學生用上題的思路能否更快捷地解出此題呢?

 。▽W生大膽想象,并通過模型制作確認想象結果的正確性,從而開辟一條簡捷的翻折思想解題思路。)

  三、小結

  1、畫平面圖,并折前圖與折后圖中的字母盡量保持一致。

  2、尋找立體圖形中的不變量到平面圖形中求解是關鍵。

  3、注意培養(yǎng)轉化思想和發(fā)散思維。

 。ㄍㄟ^提問方式引導學生小結本節(jié)主要知識及學習活動,養(yǎng)成學習、總結、學習的良好學習習慣,發(fā)散自我評價的作用,培養(yǎng)學生的語言表達能力。)

  四、課外活動

  1、完成課上未解決的問題。

  2、對與1題折成正三棱柱結果會怎樣?對于2題改變E、F兩點位置剪成正三棱柱呢?

  (通過課外活動學習本節(jié)知識內(nèi)容,培養(yǎng)學生的發(fā)散思維。)

  課后反思

  本課設計中,有梯度性的先安排三個小題,讓學生經(jīng)歷先動手、思考、預習這一學習過程,然后在課堂上給學生一個充分展示自我的空間,并且適時發(fā)問的同時幫助學生找到解決方法。歸納總結解翻折問題的技巧和作為解題方法的優(yōu)越性。在實施開放式教學的過程中,注重引導學生在課堂活動過程中感悟知識的生成、發(fā)展與變化,培養(yǎng)學生主動探索、敢于實踐、善于發(fā)現(xiàn)的科學精神以及合作交流的精神和創(chuàng)新意識,將創(chuàng)新的教材、創(chuàng)新的教法與創(chuàng)新的課堂環(huán)境有機地結合起來,將學生自主學習與創(chuàng)新意識的培養(yǎng)落到實處。

初中數(shù)學教案6

  教學目的

  1、使學生了解無理數(shù)和實數(shù)的概念,掌握實數(shù)的分類,會準確判斷一個數(shù)是有理數(shù)還是無理數(shù)。

  2、使學生能了解實數(shù)絕對值的意義。

  3、使學生能了解數(shù)軸上的點具有一一對應關系。

  4、由實數(shù)的分類,滲透數(shù)學分類的思想。

  5、由實數(shù)與數(shù)軸的一一對應,滲透數(shù)形結合的思想。

  教學分析

  重點:無理數(shù)及實數(shù)的概念。

  難點:有理數(shù)與無理數(shù)的區(qū)別,點與數(shù)的一一對應。

  教學過程

  一、復習

  1、什么叫有理數(shù)?

  2、有理數(shù)可以如何分類?

 。ò炊x分與按大小分。)

  二、新授

  1、無理數(shù)定義:無限不循環(huán)小數(shù)叫做無理數(shù)。

  判斷:無限小數(shù)都是無理數(shù);無理數(shù)都是無限小數(shù);帶根號的數(shù)都是無理數(shù)。

  2、實數(shù)的定義:有理數(shù)與無理數(shù)統(tǒng)稱為實數(shù)。

  3、按課本中列表,將各數(shù)間的聯(lián)系介紹一下。

  除了按定義還能按大小寫出列表。

  4、實數(shù)的.相反數(shù):

  5、實數(shù)的絕對值:

  6、實數(shù)的運算

  講解例1,加上(3)若|x|=π(4)若|x-1|= ,那么x的值是多少?

  例2,判斷題:

 。1)任何實數(shù)的偶次冪是正實數(shù)。( )

 。2)在實數(shù)范圍內(nèi),若| x|=|y|則x=y。( )

 。3)0是最小的實數(shù)。( )

  (4)0是絕對值最小的實數(shù)。( )

  解:略

  三、練習

  P148 練習:3、4、5、6。

  四、小結

  1、今天我們學習了實數(shù),請同學們首先要清楚,實數(shù)是如何定義的,它與有理數(shù)是怎樣的關系,二是對實數(shù)兩種不同的分類要清楚。

  2、要對應有理數(shù)的相反數(shù)與絕對值定義及運算律和運算性質,來理解在實數(shù)中的運用。

  五、作業(yè)

  1、P150 習題A:3。

  2、基礎訓練:同步練習1。

初中數(shù)學教案7

  教學目標

  1.通過實驗,使學生相信經(jīng)過大量的重復實驗后得到的頻率值確實可以作為隨機事件每次發(fā)生的機會的估計值,體會隨機事件中所隱含著的確定性內(nèi)涵。

  2.使學生知道,通過實驗的方法,用頻率估計機會的大小,必須要求實驗是在相同條件下進行的。且在相同條件下,實驗次數(shù)越多,就越有可能得到較好的估計值,但個人所得的值也并不一定相同。

  3.培養(yǎng)學生合作學習的能力,并學會與他人交流思維的過程和結果。

  教學重難點

  重點:頻率與機會的關系。

  難點:如何用頻率估計機會的大。拷虒W準備數(shù)枚相同的圖釘。

  教學過程

  一、提出問題

  上一節(jié)課,通過一系列的實驗和觀察,我們已經(jīng)知道:實驗是估計機會大小的一種方法。我們可以通過實驗,觀察某事件出現(xiàn)的頻率,當頻率值逐漸穩(wěn)定時,這個值就可以作為我們對該事件發(fā)生機會的估計。

  實際上,在前面的問題中,即使不做實驗,也可以設法預先推測出事件發(fā)生的機會,為什么還要花大量時間去進行實驗呢?

  下面讓我們看另一類問題:

  一枚圖釘被拋起后釘尖觸地的機會有多大?

  二、分組實驗

  1.兩個學生一個小組,一人拋擲,一人記錄

  每個小組拋擲40次,記錄出現(xiàn)釘尖觸地的頻數(shù)

  教師負責把各小組的結果登錄在黑板上

  2.然后把每小組的結果合起來,分別計算拋擲80次、 120次、 160次、 200次、 240次、 180次、 320次、 360次、 400次、 480次、 520次、 560次后出現(xiàn)釘尖觸地的頻數(shù)及頻率

  3.列出統(tǒng)計表,繪制折線圖

  4.根據(jù)實驗結果估計一下釘尖觸地的機會是百分之幾?

  5.課本第105頁表15.2.1和圖15.2.2是一位同學在拋擲圖釘?shù)膶嶒炛挟嫷慕y(tǒng)計表和折線圖。這與你實驗的結果相同嗎?為什么?

  三、深入思考

  如果兩個小組使用的是兩種不同形狀的圖釘,那么這兩種圖釘釘尖觸地的機會相同嗎?

  能把兩個小組的實驗數(shù)據(jù)合起來進行實驗嗎?

  四、概括小結

  從上面的問題可以看出:

  1.通過實驗的方法用頻率估計機會的`大小,必須要求實驗是在相同條件下進行的。比如,以同樣的方式拋擲同一種圖釘。

  2.在相同的條件下,實驗次數(shù)越多,就越有可能得到較好的估計值,但每人所得的值也并不一定相同。

  五、用心觀察

  我們已經(jīng)知道,在相同條件下,實驗次數(shù)越多,就越有可能得到較好的估計值。那么,總共要做多少次實驗才認為得到的結果比較可靠呢?

  觀察課本第105頁表15.2.1和圖15.2.2 。

  當實驗進行到多少次以后,所得頻率值就趨于平穩(wěn)了?

  ( 小結:實驗到頻率值較穩(wěn)定時,結果比較可靠。這個頻率值也就可以作為這個事件發(fā)生機會的估計值。 )

  六、鞏固練習

  課本第107頁練習第1 、 2題。

  七、課堂小結

  這節(jié)課你有什么收獲?還有哪些問題需要老師幫你解決的?

  注意:通過實驗的方法用頻率估計機會大小,必須要求實驗是在相同條件下進行的。

  八、布置作業(yè)

  1 、課本第108頁習題15.2第2題

  2 、課本第106頁做一做

  2 、數(shù)字之積為奇數(shù)與偶數(shù)的機會

初中數(shù)學教案8

  一、教材分析

  本節(jié)內(nèi)容是人民教育出版社出版《義務教育課程實驗教科書(五四學制)數(shù)學》(供天津用)八年級下冊第十章整式第一節(jié)整式加減第2小節(jié)整式的加減。

  二、設計思想

  本節(jié)內(nèi)容是學生掌握了“整式”有關概念的延展學習,為后繼學習整式運算、因式分解、一元二次方程及函數(shù)知識奠定基礎,是“數(shù)”向“式”的正式過度,具有十分重要地位。

  八年級學生已具有了較強的數(shù)的運算技能和“合并”的意識(解一元一次方程中用)同時也具有初步的觀察、歸納、探索的技能。因此,我結合教材,立足讓每個學生都有發(fā)展的宗旨,我采用合作探究的學習方式開展教學活動,通過設計有針對性、多樣式的問題引導學生,給學生提供充足的'、和諧的探索空間讓學生學習。通過學習活動不但培養(yǎng)學生化簡意識,提升數(shù)學運算技能而且讓學生深刻體會到數(shù)學是解決實際問題的重要工具,增強應用數(shù)學的意識。

  三、教學目標:

  (一)知識技能目標:

  1、理解同類項的含義,并能辨別同類項。

  2、掌握合并同類項的'方法,熟練的合并同類項。

  3、掌握整式加減運算的方法,熟練進行運算。

 。ǘ┻^程方法目標:

  1、通過探究同類項定義、合并同類項的方法的活動,培養(yǎng)學生觀察、歸納、探究的能力。

  2、通過合并同類項、整式加減運算的練習活動,提高學生運算技能,提升運算的準確率培養(yǎng)學生化簡意識,發(fā)展學生的抽象概括能力。

  3、通過研究引例、探究例1的活動,發(fā)展學生的形象思維,初步培養(yǎng)學生的符號感。

 。ㄈ┣楦袃r值目標:

  1、通過交流協(xié)商、分組探究,培養(yǎng)學生合作交流的意識和敢于探索未知問題的精神。

  2、通過學習活動培養(yǎng)學生科學、嚴謹?shù)膶W習態(tài)度。

  四、教學重、難點:

  合并同類項

  五、教學關鍵:

  同類項的概念

  六、教學準備:

  教師:

  1、篩選數(shù)學題目,精心設置問題情境。

  2、制作大小不等的兩個長方體紙盒實物模型,并能展開。

  3、設計多媒體教學課件。(要凸顯①單項式中系數(shù)、字母、指數(shù)的特征②長方體紙盒立體圖、展開圖。)

  學生:

  1、復習有關單項式的概念、有理數(shù)四則運算及去括號的法則)

  2、每小組制作大小不等的兩個長方體紙盒模型。

初中數(shù)學教案9

  教學目標

  1.使學生認識字母表示數(shù)的意義,了解字母表示數(shù)是數(shù)學的一大進步;

  2.了解代數(shù)式的概念,使學生能說出一個代數(shù)式所表示的數(shù)量關系;

  3.通過對用字母表示數(shù)的講解,初步培養(yǎng)學生觀察和抽象思維的能力;

  4.通過本節(jié)課的教學,使學生深刻體會從特殊到一般的的數(shù)學思想方法。

  教學建議

  1. 知識結構:本小節(jié)先回顧了小學學過的字母表示的兩種實例,一是運算律,二是公式,從中看出字母表示數(shù)的優(yōu)越性,進而引出代數(shù)式的概念。

  2.教學重點分析:教科書,介紹了小學用字母表示數(shù)的實例,一個是運算律,一個是常用公式,上述兩種例子應用廣泛,且能很好地體現(xiàn)用字母表示數(shù)所具有的簡明、普遍的優(yōu)越性,用字母表示是數(shù)學從算術到代數(shù)的一大進步,是代數(shù)的顯著特點。運用算術的方法解決問題,是小學學生的思維方法 ,現(xiàn)在,從具體的數(shù)過渡到用字母表示數(shù),滲透了抽象概括的思維方法,在認識上是一個質的飛躍。對代數(shù)式的概念課文沒有直接給出,而是用實例形象地說明了代數(shù)式的概念。對代數(shù)式的概念可以從三個方面去理解:

  (1)從具體的數(shù)到用字母表示數(shù),是抽象思維的開始,體現(xiàn)了特殊與一般的辨證關系,用字母表示數(shù)具有簡明、普遍的優(yōu)越性.

  (2)代數(shù)式中并不要求數(shù)和表示數(shù)的字母同時出現(xiàn),單獨的一個數(shù)和字母也是代數(shù)式.如:2,m都是代數(shù)式.

  等都不是代數(shù)式.

  3.教學難點分析:能正確說出一個代數(shù)式的數(shù)量關系,即用語言表達代數(shù)式的意義,一定要理清代數(shù)式中含有的各種運算及其順序。用語言表達代數(shù)式的意義,具體說法沒有統(tǒng)一規(guī)定,以簡明而不引起誤會為出發(fā)點。

  如:說出代數(shù)式7(a-3)的意義。

  分析 7(a-3)讀成7乘a減3,這樣就產(chǎn)生歧義,究竟是7a-3呢?還是7(a-3)呢?有模棱兩可之感。代數(shù)式7(a-3)的最后運算是積,應把a-3作為一個整體。所以,7(a-3)的意義是7與(a-3)的積。

  4.書寫代數(shù)式的注意事項:

  (1)代數(shù)式中數(shù)字與字母或者字母與字母相乘時,通常把乘號簡寫作“·”或省略不寫,同時要求數(shù)字應寫在字母前面.

  如3×a ,應寫作3.a 或寫作3a ,a×b 應寫作3.a 或寫作ab .帶分數(shù)與字母相乘,應把帶分數(shù)化成假分數(shù),#FormatImgID_0#

  .數(shù)字與數(shù)字相乘一般仍用“×”號.

  (2)代數(shù)式中有除法運算時,一般按照分數(shù)的寫法來寫.

  (3)含有加減運算的代數(shù)式需注明單位時,一定要把整個式子括起來.

  5.對本節(jié)例題的分析:

  例1是用代數(shù)式表示幾個比較簡單的數(shù)量關系,這些小學都學過.比較復雜一些的數(shù)量關系的代數(shù)式表示,課文安排在下一節(jié)中專門介紹.

  例2是說出一些比較簡單的代數(shù)式的意義.因為代數(shù)式中用字母表示數(shù),所以把字母也看成數(shù),一種特殊的數(shù),就可以像看待原來比較熟悉的數(shù)式一樣,說出一個代數(shù)式所表示的數(shù)量關系,只是另外還要考慮乘號可能省略等新規(guī)定而已.

  6.教法建議

  (1)因為這一章知識大部分在小學學習過,講授新課之前要先復習小學學過的運算律,在學生原有的認知結構上,提出新的問題。這樣即復習了舊知識,又引出了新知識,能激發(fā)學生的學習興趣。在教學中,一定要注意發(fā)揮本章承上啟下的作用,搞好小學數(shù)學與初中代數(shù)的銜接,使學生有一個良好的開端。

  (2)在本節(jié)的學習過程中,要使學生理解代數(shù)式的概念,首先要給學生多舉例子(學生比較熟悉、貼近現(xiàn)實生活的例子),使學生從感性上認識什么是代數(shù)式,理清代數(shù)式中的運算和運算順序,才能正確說出一個代數(shù)式所表示的數(shù)量關系,從而認識字母表示數(shù)的意義——普遍性、簡明性,也為列代數(shù)式做準備。

  (3)條件比較好的學校,老師可選用一些多媒體課件,激發(fā)學生的學習興趣,增強學生自主學習的能力。

  (4)老師在講解第一節(jié)之前,一定要對全章內(nèi)容和課時安排有一個了解,注意前后知識的銜接,只有這樣,我們老師才能教給學生系統(tǒng)的而不是一些零散的知識,久而久之,學生頭腦中自然會形成一個完整的知識體系。

  (5)因為是新學期代數(shù)的第一節(jié)課,老師一定要給學生一個好印象,好的開端等于成功了一半。那么,怎么才能給學生留下好印象呢?首先,你要盡量在學生面前展示自己的才華。比,英語口語好的老師,可以用英語做一個自我介紹,然后為學生說一段祝福語。第二,上課時盡量使用多種語言與學生交流,其中包括情感語言(眉目語言、手勢語言等),讓學生感受到老師對他的關心。

  7.教學重點、難點:

  重點:用字母表示數(shù)的意義

  難點:學會用字母表示數(shù)及正確說出一個代數(shù)式所表示的數(shù)量關系。

  教學設計示例

  課堂教學過程設計

  一、從學生原有的認知結構提出問題

  1在小學我們曾學過幾種運算律?都是什么?如可用字母表示它們?

  (通過啟發(fā)、歸納最后師生共同得出用字母表示數(shù)的五種運算律)

  (1)加法交換律 a+b=b+a;

  (2)乘法交換律 a·b=b·a;

  (3)加法結合律 (a+b)+c=a+(b+c);

  (4)乘法結合律 (ab)c=a(bc);

  (5)乘法分配律 a(b+c)=ab+ac

  指出:(1)“×”也可以寫成“·”號或者省略不寫,但數(shù)與數(shù)之間相乘,一般仍用“×”;

  (2)上面各種運算律中,所用到的字母a,b,c都是表示數(shù)的字母,它代表我們過去學過的一切數(shù)

  2(投影)從甲地到乙地的路程是15千米,步行要3小時,騎車要1小時,乘汽車要0.25小時,試問步行、騎車、乘汽車的速度分別是多少?

  3若用s表示路程,t表示時間,ν表示速度,你能用s與t表示ν嗎?

  4(投影)一個正方形的邊長是a厘米,則這個正方形的周長是多少?面積是多少?

  (用I厘米表示周長,則I=4a厘米;用S平方厘米表示面積,則S=a2平方厘米)

  此時,教師應指出:(1)用字母表示數(shù)可以把數(shù)或數(shù)的關系,簡明的表示出來;(2)在公式與中,用字母表示數(shù)也會給運算帶來方便;(3)像上面出現(xiàn)的a,5,15÷3,4a,a+b,s/t 以及a2等等都叫代數(shù)式.那么究竟什么叫代數(shù)式呢?代數(shù)式的意義又是什么呢?這正是本節(jié)課我們將要學習的內(nèi)容.

  三、講授新課

  1代數(shù)式

  單獨的.一個數(shù)字或單獨的一個字母以及用運算符號把數(shù)或表示數(shù)的字母連接而成的式子叫代數(shù)式.學習代數(shù),首先要學習用代數(shù)式表示數(shù)量關系,明確代數(shù)上的意義

  2舉例說明

  例1 填空:

  (1)每包書有12冊,n包書有__________冊;

  (2)溫度由t℃下降到2℃后是_________℃;

  (3)棱長是a厘米的正方體的體積是_____立方厘米;

  (4)產(chǎn)量由m千克增長10%,就達到_______千克

  (此例題用投影給出,學生口答完成)

  解:(1)12n; (2)(t-2); (3)a3; (4)(1+10%)m

  例2 說出下列代數(shù)式的意義:

  解:(1)2a+3的意義是2a與3的和;(2)2(a+3)的意義是2與(a+3)的積;

  (5)a2+b2的意義是a,b的平方的和;(6)(a+b)2的意義是a與b的和的平方

  說明:(1)本題應由教師示范來完成;

  (2)對于代數(shù)式的意義,具體說法沒有統(tǒng)一規(guī)定,以簡明而不致引起誤會為出發(fā)點如第(1)小題也可以說成“a的2倍加上3”或“a的2倍與3的和”等等

  例3 用代數(shù)式表示:

  (1)m與n的和除以10的商;

  (2)m與5n的差的平方;

  (3)x的2倍與y的和;

  (4)ν的立方與t的3倍的積

  分析:用代數(shù)式表示用語言敘述的數(shù)量關系要注意:①弄清代數(shù)式中括號的使用;②字母與數(shù)字做乘積時,習慣上數(shù)字要寫在字母的前面

  四、課堂練習

  1填空:(投影)

  (1)n箱蘋果重p千克,每箱重_____千克;

  (2)甲身高a厘米,乙比甲矮b厘米,那么乙的身高為_____厘米;

  (3)底為a,高為h的三角形面積是______;

  (4)全校學生人數(shù)是x,其中女生占48%?則女生人數(shù)是____,男生人數(shù)是____

  2說出下列代數(shù)式的意義:(投影)

  3用代數(shù)式表示:(投影)

  (1)x與y的和; (2)x的平方與y的立方的差;

  (3)a的60%與b的2倍的和; (4)a除以2的商與b除3的商的和

  五、師生共同小結

  首先,提出如下問題:

  1本節(jié)課學習了哪些內(nèi)容?2用字母表示數(shù)的意義是什么?

  3什么叫代數(shù)式?

  教師在學生回答上述問題的基礎上,指出:①代數(shù)式實際上就是算式,字母像數(shù)字一樣也可以進行運算;②在代數(shù)式和運算結果中,如有單位時,要正確地使用括號

  六、作業(yè)

  1一個三角形的三條邊的長分別的a,b,c,求這個三角形的周長

  2張強比王華大3歲,當張強a歲時,王華的年齡是多少?

  3飛機的速度是汽車的40倍,自行車的速度是汽車的1/3 ,若汽車的速度是ν千米/時,那么,飛機與自行車的速度各是多少?

  4a千克大米的售價是6元,1千克大米售多少元?

  5圓的半徑是R厘米,它的面積是多少?

  6用代數(shù)式表示:

  (1)長為a,寬為b米的長方形的周長;

  (2)寬為b米,長是寬的2倍的長方形的周長;

  (3)長是a米,寬是長的1/3 的長方形的周長;

  (4)寬為b米,長比寬多2米的長方形的周長

初中數(shù)學教案10

  教學目標:

 。1)能夠根據(jù)實際問題,熟練地列出二次函數(shù)關系式,并求出函數(shù)的自變量的取值范圍。

 。2)注重學生參與,聯(lián)系實際,豐富學生的感性認識,培養(yǎng)學生的良好的學習習慣

  重點難點:

  能夠根據(jù)實際問題,熟練地列出二次函數(shù)關系式,并求出函數(shù)的自變量的取值范圍。

  教學過程:

  一、試一試

  1.設矩形花圃的垂直于墻的一邊AB的長為xm,先取x的一些值,算出矩形的另一邊BC的長,進而得出矩形的面積ym2.試將計算結果填寫在下表的空格中,2.x的值是否可以任意取?有限定范圍嗎?

  3.我們發(fā)現(xiàn),當AB的長(x)確定后,矩形的面積(y)也隨之確定, y是x的函數(shù),試寫出這個函數(shù)的關系式,對于1.,可讓學生根據(jù)表中給出的AB的長,填出相應的BC的長和面積,然后引導學生觀察表格中數(shù)據(jù)的變化情況,提出問題:(1)從所填表格中,你能發(fā)現(xiàn)什么?

  (2)對前面提出的問題的解答能作出什么猜想?讓學生思考、交流、發(fā)表意見,達成共識:當AB的長為5cm,BC的長為10m時,圍成的矩形面積最大;最大面積為50m2。 對于2,可讓學生分組討論、交流,然后各組派代表發(fā)表意見。形成共識,x的值不可以任意取,有限定范圍,其范圍是0 <x <10。 對于3,教師可提出問題,(1)當AB=xm時,BC長等于多少m?

  (2)面積y等于多少?并指出y=x(20-2x)(0 <x <10)就是所求的'函數(shù)關系式.

  二、提出問題

  某商店將每件進價為8元的`某種商品按每件10元出售,一天可銷出約100件.該店想通過降低售價、增加銷售量的辦法來提高利潤,經(jīng)過市場調(diào)查,發(fā)現(xiàn)這種商品單價每降低0.1元,其銷售量可增加10件。將這種商品的售價降低多少時,能使銷售利潤最大? 在這個問題中,可提出如下問題供學生思考并回答:

  1.商品的利潤與售價、進價以及銷售量之間有什么關系?

  [利潤=(售價-進價)×銷售量]

  2.如果不降低售價,該商品每件利潤是多少元?一天總的利潤是多少元?

  [10-8=2(元),(10-8)×100=200(元)]

  3.若每件商品降價x元,則每件商品的利潤是多少元?一天可銷

  售約多少件商品?

  [(10-8-x);(100+100x)]

  4.x的值是否可以任意取?如果不能任意取,請求出它的范圍,[x的值不能任意取,其范圍是0≤x≤2]

  5.若設該商品每天的利潤為y元,求y與x的函數(shù)關系式。

  [y=(10-8-x) (100+100x)(0≤x≤2)]

  將函數(shù)關系式y(tǒng)=x(20-2x)(0 <x <10=化為:

  y=-2x2+20x(0<x<10)……………(1) 將函數(shù)關系式y(tǒng)=(10-8-x)(100+100x)(0≤x≤2)化為: y=-100x2+100x+20D (0≤x≤2)…………(2)

  三、觀察;概括

  1.教師引導學生觀察函數(shù)關系式(1)和(2),提出以下問題讓學生思考回答;

  (1)函數(shù)關系式(1)和(2)的自變量各有幾個?

  (各有1個)

  (2)多項式-2x2+20和-100x2+100x+200分別是幾次多項式? (分別是二次多項式)

  (3)函數(shù)關系式(1)和(2)有什么共同特點?

  (都是用自變量的二次多項式來表示的)

  (4)本章導圖中的問題以及P1頁的問題2有什么共同特點? 讓學生討論、交流,發(fā)表意見,歸結為:自變量x為何值時,函數(shù)y取得最大值。

  2.二次函數(shù)定義:形如y=ax2+bx+c (a、b、c是常數(shù),a≠0)的函數(shù)叫做x的二次函數(shù),a叫做二次函數(shù)的系數(shù),b叫做一次項的系數(shù),c叫作常數(shù)項.

  四、課堂練習

  1.(口答)下列函數(shù)中,哪些是二次函數(shù)?

  (1)y=5x+1 (2)y=4x2-1

  (3)y=2x3-3x2 (4)y=5x4-3x+1

  2.P3練習第1,2題。

  五、小結

  1.請敘述二次函數(shù)的定義.

  2,許多實際問題可以轉化為二次函數(shù)來解決,請你聯(lián)系生活實際,編一道二次函數(shù)應用題,并寫出函數(shù)關系式。

  六、作業(yè):略

【初中數(shù)學教案】相關文章:

初中數(shù)學教案[經(jīng)典]02-21

初中數(shù)學教案02-21

初中的數(shù)學教案05-06

初中數(shù)學教案最新09-05

初中數(shù)學教案模板11-02

人教版初中數(shù)學教案07-17

角初中數(shù)學教案12-30

初中數(shù)學教案【熱門】11-20

初中數(shù)學教案【熱】11-17

初中數(shù)學教案【薦】11-14