- 相關(guān)推薦
高中高二數(shù)學(xué)教案3篇
在教學(xué)工作者實際的教學(xué)活動中,總不可避免地需要編寫教案,教案是實施教學(xué)的主要依據(jù),有著至關(guān)重要的作用。怎樣寫教案才更能起到其作用呢?以下是小編精心整理的高中高二數(shù)學(xué)教案,供大家參考借鑒,希望可以幫助到有需要的朋友。
高中高二數(shù)學(xué)教案1
教學(xué)目標(biāo):
1.了解復(fù)數(shù)的幾何意義,會用復(fù)平面內(nèi)的點和向量來表示復(fù)數(shù);了解復(fù)數(shù)代數(shù)形式的加、減運(yùn)算的幾何意義.
2.通過建立復(fù)平面上的點與復(fù)數(shù)的一一對應(yīng)關(guān)系,自主探索復(fù)數(shù)加減法的幾何意義.
教學(xué)重點:
復(fù)數(shù)的幾何意義,復(fù)數(shù)加減法的幾何意義.
教學(xué)難點:
復(fù)數(shù)加減法的幾何意義.
教學(xué)過程:
一 、問題情境
我們知道,實數(shù)與數(shù)軸上的點是一一對應(yīng)的,實數(shù)可以用數(shù)軸上的點來表示.那么,復(fù)數(shù)是否也能用點來表示呢?
二、學(xué)生活動
問題1 任何一個復(fù)數(shù)a+bi都可以由一個有序?qū)崝?shù)對(a,b)惟一確定,而有序?qū)崝?shù)對(a,b)與平面直角坐標(biāo)系中的點是一一對應(yīng)的,那么我們怎樣用平面上的點來表示復(fù)數(shù)呢?
問題2 平面直角坐標(biāo)系中的點A與以原點O為起點,A為終點的向量是一一對應(yīng)的,那么復(fù)數(shù)能用平面向量表示嗎?
問題3 任何一個實數(shù)都有絕對值,它表示數(shù)軸上與這個實數(shù)對應(yīng)的點到原點的距離.任何一個向量都有模,它表示向量的長度,那么相應(yīng)的,我們可以給出復(fù)數(shù)的模(絕對值)的概念嗎?它又有什么幾何意義呢?
問題4 復(fù)數(shù)可以用復(fù)平面的向量來表示,那么,復(fù)數(shù)的.加減法有什么幾何意義呢?它能像向量加減法一樣,用作圖的方法得到嗎?兩個復(fù)數(shù)差的模有什么幾何意義?
三、建構(gòu)數(shù)學(xué)
1.復(fù)數(shù)的幾何意義:在平面直角坐標(biāo)系中,以復(fù)數(shù)a+bi的實部a為橫坐標(biāo),虛部b為縱坐標(biāo)就確定了點Z(a,b),我們可以用點Z(a,b)來表示復(fù)數(shù)a+bi,這就是復(fù)數(shù)的幾何意義.
2.復(fù)平面:建立了直角坐標(biāo)系來表示復(fù)數(shù)的平面.其中x軸為實軸,y軸為虛軸.實軸上的點都表示實數(shù),除原點外,虛軸上的點都表示純虛數(shù).
3.因為復(fù)平面上的點Z(a,b)與以原點O為起點、Z為終點的向量一一對應(yīng),所以我們也可以用向量來表示復(fù)數(shù)z=a+bi,這也是復(fù)數(shù)的幾何意義.
6.復(fù)數(shù)加減法的幾何意義可由向量加減法的平行四邊形法則得到,兩個復(fù)數(shù)差的模就是復(fù)平面內(nèi)與這兩個復(fù)數(shù)對應(yīng)的兩點間的距離.同時,復(fù)數(shù)加減法的法則與平面向量加減法的坐標(biāo)形式也是完全一致的.
四、數(shù)學(xué)應(yīng)用
例1 在復(fù)平面內(nèi),分別用點和向量表示下列復(fù)數(shù)4,2+i,-i,-1+3i,3-2i.
練習(xí) 課本P123練習(xí)第3,4題(口答).
思考
1.復(fù)平面內(nèi),表示一對共軛虛數(shù)的兩個點具有怎樣的位置關(guān)系?
2.如果復(fù)平面內(nèi)表示兩個虛數(shù)的點關(guān)于原點對稱,那么它們的實部和虛部分別滿足什么關(guān)系?
3.“a=0”是“復(fù)數(shù)a+bi(a,b∈R)是純虛數(shù)”的__________條件.
4.“a=0”是“復(fù)數(shù)a+bi(a,b∈R)所對應(yīng)的點在虛軸上”的_____條件.
例2 已知復(fù)數(shù)z=(m2+m-6)+(m2+m-2)i在復(fù)平面內(nèi)所對應(yīng)的點位于第二象限,求實數(shù)m允許的取值范圍.
例3 已知復(fù)數(shù)z1=3+4i,z2=-1+5i,試比較它們模的大。
思考 任意兩個復(fù)數(shù)都可以比較大小嗎?
例4 設(shè)z∈C,滿足下列條件的點Z的集合是什么圖形?
。1)│z│=2;(2)2<│z│<3.
變式:課本P124習(xí)題3.3第6題.
五、要點歸納與方法小結(jié)
本節(jié)課學(xué)習(xí)了以下內(nèi)容:
1.復(fù)數(shù)的幾何意義.
2.復(fù)數(shù)加減法的幾何意義.
3.?dāng)?shù)形結(jié)合的思想方法.
高中高二數(shù)學(xué)教案2
【教學(xué)目標(biāo)】
1.會用語言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結(jié)構(gòu)特征。
2.能根據(jù)幾何結(jié)構(gòu)特征對空間物體進(jìn)行分類。
3.提高學(xué)生的觀察能力;培養(yǎng)學(xué)生的空間想象能力和抽象括能力。
【教學(xué)重難點】
教學(xué)重點:讓學(xué)生感受大量空間實物及模型、概括出柱、錐、臺、球的結(jié)構(gòu)特征。
教學(xué)難點:柱、錐、臺、球的結(jié)構(gòu)特征的概括。
【教學(xué)過程】
1.情景導(dǎo)入
教師提出問題,引導(dǎo)學(xué)生觀察、舉例和相互交流,提出本節(jié)課所學(xué)內(nèi)容,出示課題。
2.展示目標(biāo)、檢查預(yù)習(xí)
3、合作探究、交流展示
(1)引導(dǎo)學(xué)生觀察棱柱的幾何物體以及棱柱的圖片,說出它們各自的特點是什么?它們的共同特點是什么?
(2)組織學(xué)生分組討論,每小組選出一名同學(xué)發(fā)表本組討論結(jié)果。
在此基礎(chǔ)上得出棱柱的主要結(jié)構(gòu)特征。
(1)有兩個面互相平行;
(2)其余各面都是平行四邊形;
(3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。
(3)提出問題:請列舉身邊的棱柱并對它們進(jìn)行分類
(4)以類似的方法,讓學(xué)生思考、討論、概括出棱錐、棱臺的結(jié)構(gòu)特征,并得出相關(guān)的概念,分類以及表示。
(5)讓學(xué)生觀察圓柱,并實物模型演示,概括出圓柱的概念以及相關(guān)的'概念及圓柱的表示。
(6)引導(dǎo)學(xué)生以類似的方法思考圓錐、圓臺、球的結(jié)構(gòu)特征,以及相關(guān)概念和表示,借助實物模型演示引導(dǎo)學(xué)生思考、討論、概括。
(7)教師指出圓柱和棱柱統(tǒng)稱為柱體,棱臺與圓臺統(tǒng)稱為臺體,圓錐與棱錐統(tǒng)稱為錐體。
4.質(zhì)疑答辯,排難解惑,發(fā)展思維,教師提出問題,讓學(xué)生思考。
(1)有兩個面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說明)
(2)棱柱的任何兩個平面都可以作為棱柱的底面嗎?
(3)圓柱可以由矩形旋轉(zhuǎn)得到,圓錐可以由直角三角形旋轉(zhuǎn)得到,圓臺可以由什么圖形旋轉(zhuǎn)得到?如何旋轉(zhuǎn)?
(4)棱臺與棱柱、棱錐有什么關(guān)系?圓臺與圓柱、圓錐呢?
(5)繞直角三角形某一邊的幾何體一定是圓錐嗎?
高中高二數(shù)學(xué)教案3
教學(xué)目標(biāo)
熟練掌握三角函數(shù)式的求值
教學(xué)重難點
熟練掌握三角函數(shù)式的求值
教學(xué)過程
【知識點精講】
三角函數(shù)式的求值的關(guān)鍵是熟練掌握公式及應(yīng)用,掌握公式的逆用和變形
三角函數(shù)式的求值的類型一般可分為:
(1)“給角求值”:給出非特殊角求式子的值。仔細(xì)觀察非特殊角的特點,找出和特殊角之間的關(guān)系,利用公式轉(zhuǎn)化或消除非特殊角
(2)“給值求值”:給出一些角得三角函數(shù)式的值,求另外一些角得三角函數(shù)式的值。找出已知角與所求角之間的某種關(guān)系求解
(3)“給值求角”:轉(zhuǎn)化為給值求值,由所得函數(shù)值結(jié)合角的范圍求出角。
(4)“給式求值”:給出一些較復(fù)雜的三角式的值,求其他式子的值。將已知式或所求式進(jìn)行化簡,再求之三角函數(shù)式常用化簡方法:切割化弦、高次化低次
注意點:靈活角的變形和公式的變形重視角的范圍對三角函數(shù)值的影響,對角的范圍要討論
【課堂小結(jié)】
三角函數(shù)式的求值的關(guān)鍵是熟練掌握公式及應(yīng)用,掌握公式的逆用和變形
三角函數(shù)式的求值的類型一般可分為:
(1)“給角求值”:給出非特殊角求式子的值。仔細(xì)觀察非特殊角的特點,找出和特殊角之間的關(guān)系,利用公式轉(zhuǎn)化或消除非特殊角
(2)“給值求值”:給出一些角得三角函數(shù)式的值,求另外一些角得三角函數(shù)式的值。找出已知角與所求角之間的某種關(guān)系求解
(3)“給值求角”:轉(zhuǎn)化為給值求值,由所得函數(shù)值結(jié)合角的`范圍求出角。
(4)“給式求值”:給出一些較復(fù)雜的三角式的值,求其他式子的值。將已知式或所求式進(jìn)行化簡,再求之
三角函數(shù)式常用化簡方法:切割化弦、高次化低次
注意點:靈活角的變形和公式的變形
重視角的范圍對三角函數(shù)值的影響,對角的范圍要討論
【高中高二數(shù)學(xué)教案】相關(guān)文章:
高中高二英語作文范文02-17
忘記600字高二-高中作文08-17
高中高二作文1000字:書店02-16
開鎖作文1000字高中高二作文02-19
高中高二作文900字:任性的小孩01-26
高中英語高二教學(xué)計劃10-18
高中集合的概念數(shù)學(xué)教案(通用12篇)05-25
對不起500字高中高二作文(精選24篇)12-14
新課標(biāo)高中數(shù)學(xué)教案(人教A版)12-16
高中高二作文900字:漫話詠月詩02-14