一级毛片免费不卡在线视频,国产日批视频免费在线观看,菠萝菠萝蜜在线视频免费视频,欧美日韩亚洲无线码在线观看,久久精品这里精品,国产成人综合手机在线播放,色噜噜狠狠狠综合曰曰曰,琪琪视频

高中數(shù)學(xué)教案

時(shí)間:2024-06-27 13:02:41 高中數(shù)學(xué)教案 我要投稿

高中數(shù)學(xué)教案15篇(通用)

  作為一位不辭辛勞的人民教師,有必要進(jìn)行細(xì)致的教案準(zhǔn)備工作,教案是實(shí)施教學(xué)的主要依據(jù),有著至關(guān)重要的作用。那么問題來了,教案應(yīng)該怎么寫?以下是小編精心整理的高中數(shù)學(xué)教案,希望對大家有所幫助。

高中數(shù)學(xué)教案15篇(通用)

高中數(shù)學(xué)教案1

  教學(xué)目標(biāo)

  1使學(xué)生理解本章的知識(shí)結(jié)構(gòu),并通過本章的知識(shí)結(jié)構(gòu)掌握本章的全部知識(shí);

  2對線段、射線、直線、角的概念及它們之間的關(guān)系有進(jìn)一步的認(rèn)識(shí);

  3掌握本章的全部定理和公理;

  4理解本章的數(shù)學(xué)思想方法;

  5了解本章的題目類型。

  教學(xué)重點(diǎn)和難點(diǎn)

  重點(diǎn)是理解本章的知識(shí)結(jié)構(gòu),掌握本章的全部定和公理;難點(diǎn)是理解本章的數(shù)學(xué)思想方法。

  教學(xué)設(shè)計(jì)過程

  一、本章的知識(shí)結(jié)構(gòu)

  二、本章中的概念

  1直線、射線、線段的概念。

  2線段的中點(diǎn)定義。

  3角的兩個(gè)定義。

  4直角、平角、周角、銳角、鈍角的概念。

  5互余與互補(bǔ)的角。

  三、本章中的公理和定理

  1直線的公理;線段的公理。

  2補(bǔ)角和余角的性質(zhì)定理。

  四、本章中的主要習(xí)題類型

  1對直線、射線、線段的概念的理解。

  例1下列說法中正確的是( )。

  A延長射線OP B延長直線CD

  C延長線段CD D反向延長直線CD

  解:C因?yàn)樯渚和直線是可以向一方或兩方無限延伸的,所以任何延長射線或直線的說法都是錯(cuò)誤的。而線段有兩個(gè)端點(diǎn),可以向兩方延長。

  例2如圖1-57中的線段共有多少條?

  解:15條,它們是:線段AB,AD,AF,AC,AE,AG,BD,BF,DF,CE,CG,EG,BC,DE,F(xiàn)G。

  2線段的和、差、倍、分。

  例3已知線段AB,延長AB到C,使AC=2BC,反向延長AB到D使AD= BC,那么線段AD是線段AC的( )。

  A.B. C. D.

  解:B如圖1-58,因?yàn)锳D是BC的二分之一,BC又是AC的二分之一,所以AD是AC的四分之一。

  例4如圖1-59,B為線段AC上的一點(diǎn),AB=4cm,BC=3cm,M,N分別為AB,BC的中點(diǎn),求MN的長。

  解:因?yàn)锳B=4,M是AB的中點(diǎn),所以MB=2,又因?yàn)镹是BC的中點(diǎn),所以BN=1.5。則MN=2+1.5=3.5

  3角的概念性質(zhì)及角平分線。

  例5如圖1-60,已知AOC是一條直線,OD是∠AOB的平分線,OE是∠BOC的平分線,求∠EOD的度數(shù)。

  解:因?yàn)镺D是∠AOB的平分線,所以∠BOD= ∠AOB;又因?yàn)镺E是∠BOC的平分線,所以∠BOE= ∠BOC;又∠AOB+∠BOC=180°,

  所以∠BOE+∠BOD=(∠AOB+∠BOC)÷2=90°。

  則∠EOD=90°。

  例6如圖1-61,已知∠AOB=∠COD=90°,又∠AOD=150°,那么∠AOC與∠COB的度數(shù)的比是多少?

  解:因?yàn)椤螦OB=90°,又∠AOD=150°,所以∠BOD=60°。

  又∠COD=90°,所以∠COB=30°。

  則∠AOC=60°,(同角的余角相等)

  ∠AOC與∠COB的度數(shù)的比是2∶1。

  4互余與互補(bǔ)角的性質(zhì)。

  例7如圖1-62,直線AB,CD相交于O,∠BOE=90°,若∠BOD=45°,求∠COE,∠COA,∠AOD的度數(shù)。

  解:因?yàn)镃OD為直線,∠BOE=90°,∠BOD=45°,

  所以∠COE=180°-90°-45°=45°

  又AOB為直線,∠BOE=90°,∠COE=45°

  故∠COA=180°-90°-45°=45°,

  而AOB為直線,∠BOD=45°,

  因此∠AOD=180°-45°=135°。

  例8一個(gè)角是另一個(gè)角的3倍,且小有的余角與大角的余角之差為20°,求這兩個(gè)角的度數(shù)。

  解:設(shè)第一個(gè)角為x°,則另一個(gè)角為3x°,

  依題義列方程得:(90-x)-(90-3x)=20,解得:x=10,3x=30。

  答:一個(gè)角為10°,另一個(gè)角為30°。

  5度分秒的換算及和、差、倍、分的計(jì)算。

  例9 (1)將4589°化成度、分、秒的'形式。

  (2)將80°34′45″化成度。

  (3)計(jì)算:(36°55′40″-23°56′45″)。

  解:(1)45°53′24″。

  (2)約為8058°。

  (3)約為9°44′11″(第一步,做減法后得12°58′55″;再做乘法后得36°174′165″,可以先不進(jìn)位,做除法后得9°44′11″)

  五、本章中所學(xué)到的數(shù)學(xué)思想

  1運(yùn)動(dòng)變化的觀點(diǎn):幾何圖形不是孤立和靜止的,也應(yīng)看作不斷發(fā)展和變化的,如線段向一個(gè)方向延長,就發(fā)展成為射線;射線向另一方向延長就發(fā)展成直線。又如射線饒它的端點(diǎn)旋轉(zhuǎn)就形成角;角的終邊不斷旋轉(zhuǎn)就變化成直角、平角和周角。從圖形的運(yùn)動(dòng)中可以看到變化,從變化中看到聯(lián)系和區(qū)別及特性。

  2數(shù)形結(jié)合的思想:在幾何的知識(shí)中經(jīng)常遇到計(jì)算問題,對形的研究離不開數(shù)。正如數(shù)學(xué)家華羅庚所說:“數(shù)缺形時(shí)少直觀,形缺數(shù)時(shí)難如微”。本章的知識(shí)中,將線段的長度用數(shù)量表示,利用方程的方法解決余角與補(bǔ)角的問題。因此我們對幾何的學(xué)習(xí)不能與代數(shù)的學(xué)習(xí)截然分開,在形的問題難以解決時(shí),發(fā)揮數(shù)的功能,在數(shù)的問題遇到困難時(shí),畫出與它相關(guān)的圖形,都會(huì)給問題的解決帶來新的思路。從幾何的起始課,就注意數(shù)形結(jié)合,就會(huì)養(yǎng)成良好的思維習(xí)慣。

  3聯(lián)系實(shí)際,從實(shí)際事物中抽象出數(shù)學(xué)模型。數(shù)學(xué)的產(chǎn)生來源于生產(chǎn)和生活實(shí)踐,因此學(xué)習(xí)數(shù)學(xué)不能脫離實(shí)際生活,尤其是幾乎何的學(xué)習(xí)更離不開實(shí)際生活。一方面要讓學(xué)生知道本章的主要內(nèi)容是線和角,都在生活中有大量的原型存在,另一方面又要引導(dǎo)學(xué)生將所學(xué)的知識(shí)去解決某些簡單的實(shí)際問題,這才是理論聯(lián)系實(shí)際的觀點(diǎn)。

  六、本章的疑點(diǎn)和誤點(diǎn)分析

  概念在應(yīng)用中的混淆。

  例10判斷正誤:

  (1)在∠AOB的邊OA的延長線上取一點(diǎn)D。

  (2)大于90°的角是鈍角。

  (3)任何一個(gè)角都可以有余角。

  (4)∠A是銳角,則∠A的所有余角都相等。

  (5)兩個(gè)銳角的和一定小于平角。

  (6)直線MN是平角。

  (7)互補(bǔ)的兩個(gè)角的和一定等于平角。

  (8)如果一個(gè)角的補(bǔ)角是銳角,那么這個(gè)角就沒有余角。

  (9)鈍角一定大于它的補(bǔ)角。

  (10)經(jīng)過三點(diǎn)一定可以畫一條直線。

  解:(1)錯(cuò)。因?yàn)榻堑膬蛇吺巧渚,而射線是可以向一方無限延伸的,所以就不能再說射線的延長線了。

  (2)錯(cuò)。鈍角的定義是:大于直角且小于平角的角,叫做鈍角。

  (3)錯(cuò)。余角的定義是:如果兩個(gè)角的和是一個(gè)直角,這兩個(gè)角互為余角。因此大于直角的角沒有余角。

  (4)對.∠A的所有余角都是90°-∠A。

  (5)對.若∠A<90°,∠B<90°則∠A+∠B<90°+90°=180°.

  (6)錯(cuò)。平角是一個(gè)角就要有頂點(diǎn),而直線上沒有表示平角頂點(diǎn)的點(diǎn)。如果在直線上標(biāo)出表示角的頂點(diǎn)的點(diǎn),就可以了。

  (7)對。符合互補(bǔ)的角的定義。

  (8)對。如果一個(gè)角的補(bǔ)角是銳角,那么這個(gè)角一定是鈍角,而鈍角是沒有余角的。

  (9)對。因?yàn)殁g角的補(bǔ)角是銳角,鈍角一定大于銳角。

  (10)錯(cuò)。這個(gè)題應(yīng)該分情況討論:如果這三點(diǎn)在同一條直線上,這個(gè)結(jié)論是正確的。如果這三個(gè)點(diǎn)不在同一條直線上,那么過這三個(gè)點(diǎn)就不能畫一條直線。

  板書設(shè)計(jì)

  回顧與反思

  (一)知識(shí)結(jié)構(gòu)(四)主要習(xí)題類型(五)本章的數(shù)學(xué)思想

  略例1 1

  · 2

  (二)本章概念· 3

  略· (六)疑誤點(diǎn)分析

  (三)本章的公理和定理·

  例9

高中數(shù)學(xué)教案2

  教學(xué)目標(biāo)

 。1)了解用坐標(biāo)法研究幾何問題的方法,了解解析幾何的基本問題。

 。2)理解曲線的方程、方程的曲線的概念,能根據(jù)曲線的已知條件求出曲線的方程,了解兩條曲線交點(diǎn)的概念。

 。3)通過曲線方程概念的教學(xué),培養(yǎng)學(xué)生數(shù)與形相互聯(lián)系、對立統(tǒng)一的辯證唯物主義觀點(diǎn)。

 。4)通過求曲線方程的教學(xué),培養(yǎng)學(xué)生的轉(zhuǎn)化能力和全面分析問題的能力,幫助學(xué)生理解解析幾何的思想方法。

 。5)進(jìn)一步理解數(shù)形結(jié)合的思想方法。

  教學(xué)建議

  教材分析

 。1)知識(shí)結(jié)構(gòu)

  曲線與方程是在初中軌跡概念和本章直線方程概念之后的解析幾何的基本概念,在充分討論曲線方程概念后,介紹了坐標(biāo)法和解析幾何的思想,以及解析幾何的基本問題,即由曲線的已知條件,求曲線方程;通過方程,研究曲線的性質(zhì)。曲線方程的概念和求曲線方程的.問題又有內(nèi)在的邏輯順序。前者回答什么是曲線方程,后者解決如何求出曲線方程。至于用曲線方程研究曲線性質(zhì)則更在其后,本節(jié)不予研究。因此,本節(jié)涉及曲線方程概念和求曲線方程兩大基本問題。

 。2)重點(diǎn)、難點(diǎn)分析

  ①本節(jié)內(nèi)容教學(xué)的重點(diǎn)是使學(xué)生理解曲線方程概念和掌握求曲線方程方法,以及領(lǐng)悟坐標(biāo)法和解析幾何的思想。

 、诒竟(jié)的難點(diǎn)是曲線方程的概念和求曲線方程的方法。

  教法建議

 。1)曲線方程的概念是解析幾何的核心概念,也是基礎(chǔ)概念,教學(xué)中應(yīng)從直線方程概念和軌跡概念入手,通過簡單的實(shí)例引出曲線的點(diǎn)集與方程的解集之間的對應(yīng)關(guān)系,說明曲線與方程的對應(yīng)關(guān)系。曲線與方程對應(yīng)關(guān)系的基礎(chǔ)是點(diǎn)與坐標(biāo)的對應(yīng)關(guān)系。注意強(qiáng)調(diào)曲線方程的完備性和純粹性。

  (2)可以結(jié)合已經(jīng)學(xué)過的直線方程的知識(shí)幫助學(xué)生領(lǐng)會(huì)坐標(biāo)法和解析幾何的思想,學(xué)習(xí)解析幾何的意義和要解決的問題,為學(xué)習(xí)求曲線的方程做好邏輯上的和心理上的準(zhǔn)備。

  (3)無論是判斷、證明,還是求解曲線的方程,都要緊扣曲線方程的概念,即始終以是否滿足概念中的兩條為準(zhǔn)則。

  (4)從集合與對應(yīng)的觀點(diǎn)可以看得更清楚:

  設(shè) 表示曲線 上適合某種條件的點(diǎn) 的集合;

  表示二元方程的解對應(yīng)的點(diǎn)的坐標(biāo)的集合。

  可以用集合相等的概念來定義“曲線的方程”和“方程的曲線”,即

 。5)在學(xué)習(xí)求曲線方程的方法時(shí),應(yīng)從具體實(shí)例出發(fā),引導(dǎo)學(xué)生從曲線的幾何條件,一步步地、自然而然地過渡到代數(shù)方程(曲線的方程),這個(gè)過渡是一個(gè)從幾何向代數(shù)不斷轉(zhuǎn)化的過程,在這個(gè)過程中提醒學(xué)生注意轉(zhuǎn)化是否為等價(jià)的,這將決定第五步如何做。同時(shí)教師不要生硬地給出或總結(jié)出求解步驟,應(yīng)在充分分析實(shí)例的基礎(chǔ)上讓學(xué)生自然地獲得。教學(xué)中對課本例2的解法分析很重要。

  這五個(gè)步驟的實(shí)質(zhì)是將產(chǎn)生曲線的幾何條件逐步轉(zhuǎn)化為代數(shù)方程,即

  文字語言中的幾何條件 數(shù)學(xué)符號(hào)語言中的等式 數(shù)學(xué)符號(hào)語言中含動(dòng)點(diǎn)坐標(biāo) , 的代數(shù)方程 簡化了的 , 的代數(shù)方程

  由此可見,曲線方程就是產(chǎn)生曲線的幾何條件的一種表現(xiàn)形式,這個(gè)形式的特點(diǎn)是“含動(dòng)點(diǎn)坐標(biāo)的代數(shù)方程。”

 。6)求曲線方程的問題是解析幾何中一個(gè)基本的問題和長期的任務(wù),不是一下子就徹底解決的,求解的方法是在不斷的學(xué)習(xí)中掌握的,教學(xué)中要把握好“度”。

高中數(shù)學(xué)教案3

  教學(xué)要求:

  理解曲線交點(diǎn)與方程組的解的關(guān)系,掌握直線與曲線位置關(guān)系的討論,能熟練地求曲線交點(diǎn)。

  教學(xué)重點(diǎn):

  熟練地求交點(diǎn)。

  教學(xué)過程:

 一、復(fù)習(xí)準(zhǔn)備:

  1、直線A x+B+C=0與直線A x+B+C=0,平行的充要條件是xx,相交的充要條件是xx;

  重合的充要條件是xx,垂直的充要條件是xx。

  2、知識(shí)回顧:充分條件、必要條件、充要條件。

二、講授新課:

  1、教學(xué)例題:

 、俪鍪纠呵笾本=x+1截曲線=x所得線段的中點(diǎn)坐標(biāo)。

  ②由學(xué)生分析求解的思路→學(xué)生練→老師評(píng)講

 。(lián)立方程組→消用韋達(dá)定理求x坐標(biāo)→用直線方程求坐標(biāo))

  ③試求→訂正→小結(jié)思路。→變題:求弦長

 、艹鍪纠寒(dāng)b為何值時(shí),直線=x+b與曲線x+=4分別相交?相切?相離?

 、莘治觯喝N位置關(guān)系與兩曲線的交點(diǎn)情況有何關(guān)系?

 、迣W(xué)生試求→訂正→小結(jié)思路。

 、哂懻撈渌夥?

  解一:用圓心到直線的`距離求解;

  解二:用數(shù)形結(jié)合法進(jìn)行分析。

 、嘤懻摚簝蓷l曲線F(x,)=0與F(x,)=0相交的充要條件是什么?

  如何判別直線Ax+B+C=0與曲線F(x,)=0的位置關(guān)系?

 。(lián)立方程組后,一解時(shí):相切或相交;二解時(shí):相交;無解時(shí):相離)

  2、練習(xí):

  求過點(diǎn)(—2,—)且與拋物線=x相切的直線方程。

三、鞏固練習(xí):

  1、若兩直線x+=3a,x-=a的交點(diǎn)在圓x+=5上,求a的值。

  (答案:a=±1)

  2、求直線=2x+3被曲線=x截得的線段長。

  3、課堂作業(yè):書P72 3、4、10題。

高中數(shù)學(xué)教案4

  教學(xué)目標(biāo):

  1。通過生活中優(yōu)化問題的學(xué)習(xí),體會(huì)導(dǎo)數(shù)在解決實(shí)際問題中的作用,促進(jìn)

  學(xué)生全面認(rèn)識(shí)數(shù)學(xué)的科學(xué)價(jià)值、應(yīng)用價(jià)值和文化價(jià)值。

  2。通過實(shí)際問題的研究,促進(jìn)學(xué)生分析問題、解決問題以及數(shù)學(xué)建模能力的提高。

  教學(xué)重點(diǎn):

  如何建立實(shí)際問題的目標(biāo)函數(shù)是教學(xué)的重點(diǎn)與難點(diǎn)。

  教學(xué)過程:

  一、問題情境

  問題1把長為60cm的鐵絲圍成矩形,長寬各為多少時(shí)面積最大?

  問題2把長為100cm的鐵絲分成兩段,各圍成正方形,怎樣分法,能使兩個(gè)正方形面積之各最小?

  問題3做一個(gè)容積為256L的方底無蓋水箱,它的高為多少時(shí)材料最?

  二、新課引入

  導(dǎo)數(shù)在實(shí)際生活中有著廣泛的應(yīng)用,利用導(dǎo)數(shù)求最值的方法,可以求出實(shí)際生活中的某些最值問題。

  1。幾何方面的應(yīng)用(面積和體積等的最值)。

  2。物理方面的'應(yīng)用(功和功率等最值)。

  3。經(jīng)濟(jì)學(xué)方面的應(yīng)用(利潤方面最值)。

  三、知識(shí)建構(gòu)

  例1在邊長為60cm的正方形鐵片的四角切去相等的正方形,再把它的邊沿虛線折起(如圖),做成一個(gè)無蓋的方底箱子,箱底的邊長是多少時(shí),箱底的容積最大?最大容積是多少?

  說明1解應(yīng)用題一般有四個(gè)要點(diǎn)步驟:設(shè)——列——解——答。

  說明2用導(dǎo)數(shù)法求函數(shù)的最值,與求函數(shù)極值方法類似,加一步與幾個(gè)極

  值及端點(diǎn)值比較即可。

  例2圓柱形金屬飲料罐的容積一定時(shí),它的高與底與半徑應(yīng)怎樣選取,才

  能使所用的材料最。

  變式當(dāng)圓柱形金屬飲料罐的表面積為定值S時(shí),它的高與底面半徑應(yīng)怎樣選取,才能使所用材料最?

  說明1這種在定義域內(nèi)僅有一個(gè)極值的函數(shù)稱單峰函數(shù)。

  說明2用導(dǎo)數(shù)法求單峰函數(shù)最值,可以對一般的求法加以簡化,其步驟為:

  S1列:列出函數(shù)關(guān)系式。

  S2求:求函數(shù)的導(dǎo)數(shù)。

  S3述:說明函數(shù)在定義域內(nèi)僅有一個(gè)極大(。┲,從而斷定為函數(shù)的最大(。┲担匾獣r(shí)作答。

  例3在如圖所示的電路中,已知電源的內(nèi)阻為,電動(dòng)勢為。外電阻為

  多大時(shí),才能使電功率最大?最大電功率是多少?

  說明求最值要注意驗(yàn)證等號(hào)成立的條件,也就是說取得這樣的值時(shí)對應(yīng)的自變量必須有解。

  例4強(qiáng)度分別為a,b的兩個(gè)光源A,B,它們間的距離為d,試問:在連接這兩個(gè)光源的線段AB上,何處照度最?試就a=8,b=1,d=3時(shí)回答上述問題(照度與光的強(qiáng)度成正比,與光源的距離的平方成反比)。

  例5在經(jīng)濟(jì)學(xué)中,生產(chǎn)單位產(chǎn)品的成本稱為成本函數(shù),記為;出售單位產(chǎn)品的收益稱為收益函數(shù),記為;稱為利潤函數(shù),記為。

 。1)設(shè),生產(chǎn)多少單位產(chǎn)品時(shí),邊際成本最低?

 。2)設(shè),產(chǎn)品的單價(jià),怎樣的定價(jià)可使利潤最大?

  四、課堂練習(xí)

  1。將正數(shù)a分成兩部分,使其立方和為最小,這兩部分應(yīng)分成____和___。

  2。在半徑為R的圓內(nèi),作內(nèi)接等腰三角形,當(dāng)?shù)走吷细邽? 時(shí),它的面積最大。

  3。有一邊長分別為8與5的長方形,在各角剪去相同的小正方形,把四邊折起做成一個(gè)無蓋小盒,要使紙盒的容積最大,問剪去的小正方形邊長應(yīng)為多少?

  4。一條水渠,斷面為等腰梯形,如圖所示,在確定斷面尺寸時(shí),希望在斷面ABCD的面積為定值S時(shí),使得濕周l=AB+BC+CD最小,這樣可使水流阻力小,滲透少,求此時(shí)的高h(yuǎn)和下底邊長b。

  五、回顧反思

 。1)解有關(guān)函數(shù)最大值、最小值的實(shí)際問題,需要分析問題中各個(gè)變量之間的關(guān)系,找出適當(dāng)?shù)暮瘮?shù)關(guān)系式,并確定函數(shù)的定義區(qū)間;所得結(jié)果要符合問題的實(shí)際意義。

  (2)根據(jù)問題的實(shí)際意義來判斷函數(shù)最值時(shí),如果函數(shù)在此區(qū)間上只有一個(gè)極值點(diǎn),那么這個(gè)極值就是所求最值,不必再與端點(diǎn)值比較。

 。3)相當(dāng)多有關(guān)最值的實(shí)際問題用導(dǎo)數(shù)方法解決較簡單。

  六、課外作業(yè)

  課本第38頁第1,2,3,4題。

高中數(shù)學(xué)教案5

  教學(xué)目標(biāo):

  1、使學(xué)生了解角的形成,理解角的概念掌握角的各種表示法;

  2、通過觀察、操作培養(yǎng)學(xué)生的觀察能力和動(dòng)手操作能力。

  3、使學(xué)生掌握度、分、秒的進(jìn)位制,會(huì)作度、分、秒間的單位互化

  4、采用自學(xué)與小組合作學(xué)習(xí)相結(jié)合的方法,培養(yǎng)學(xué)生主動(dòng)參與、勇于探究的精神。

  教學(xué)重點(diǎn):

  理解角的概念,掌握角的三種表示方法

  教學(xué)難點(diǎn):

  掌握度、分、秒的進(jìn)位制, ,會(huì)作度、分、秒間的單位互化

  教學(xué)手段:

  教具:電腦課件、實(shí)物投影、量角器

  學(xué)具:量角器需測量的角

  教學(xué)過程:

  一、建立角的概念

  (一)引入角(利用課件演示)

  1、從生活中引入

  提問:

  A、以前我們曾經(jīng)認(rèn)識(shí)過角,那你們能從這兩個(gè)圖形中指出哪些地方是角嗎?

  B、在我們的生活當(dāng)中存在著許許多多的角。一起看一看。誰能從這些常用的物品中找出角?

  2、從射線引入

  提問:

  A、昨天我們認(rèn)識(shí)了射線,想從一點(diǎn)可以引出多少條射線?

  B、如果從一點(diǎn)出發(fā)任意取兩條射線,那出現(xiàn)的.是什么圖形?

  C、哪兩條射線可以組成一個(gè)角?誰來指一指。

 。ǘ┱J(rèn)識(shí)角,總結(jié)角的定義

  3、 過渡:角是怎么形成的呢?一起看

 。1)、演示:老師在這畫上一個(gè)點(diǎn),現(xiàn)在從這點(diǎn)出發(fā)引出一條射線,再從這點(diǎn)出發(fā)引出第二條射線。

  提問:觀察從這點(diǎn)引出了幾條射線?此時(shí)所組成的圖形是什么圖形?

 。2)、判斷下列哪些圖形是角。

  (√) (×) (√) (×) (√)

  為何第二幅和第四幅圖形不是角?(學(xué)生回答)

  誰能用自己的話來概括一下怎樣組成的圖形叫做角?

  總結(jié):有公共端點(diǎn)的兩條射線所組成的圖形叫做角(angle)

  角的第二定義:角也可以看做由一條射線繞端點(diǎn)旋轉(zhuǎn)所形成的圖形.如下圖中的角,可以看做射線OA繞端點(diǎn)0按逆時(shí)針方向旋轉(zhuǎn)到OB所形成的我們把OA叫做角的始邊,OB叫做角的終邊.

  B

  0 A

  4、認(rèn)識(shí)角的各部分名稱,明確頂點(diǎn)、邊的作用

 。1)觀看角的圖形提問:這個(gè)點(diǎn)叫什么?這兩條射線叫什么?(學(xué)生邊說師邊標(biāo)名稱)

  (2)角可以畫在本上、黑板上,那角的位置是由誰決定的?

 。3)頂點(diǎn)可以確定角的位置,從頂點(diǎn)引出的兩條邊可以組成一個(gè)角。

  5、學(xué)會(huì)用符號(hào)表示角

  提問:那么,角的符號(hào)是什么?該怎么寫,怎么讀的呢?(電腦顯示)

 。1)可以標(biāo)上三個(gè)大寫字母,寫作:∠ABC或∠CBA,讀作:角ABC或角CBA.

 。2)觀察這兩種方法,有什么特點(diǎn)?(字母B都在中間)

  (3)所以,在只有一個(gè)角的時(shí)候,我們還可以寫作: ∠B,讀作:角B

 。4)為了方便,有時(shí)我們還可以標(biāo)上數(shù)字,寫作∠1,讀作:角1

 。5)注:區(qū)別 “∠”和“<”的不同。請同學(xué)們指著用學(xué)具折出的一個(gè)角,訓(xùn)練一下這三種讀法。

  6、強(qiáng)調(diào)角的大小與兩邊張開的程度有關(guān),與兩條邊的長短無關(guān)。

  二、 角的度量

  1、學(xué)習(xí)角的度量

  (1)教學(xué)生認(rèn)識(shí)量角器

  (2) 認(rèn)識(shí)了量角器,那怎樣使用它去測量角的度數(shù)呢?這部分知識(shí)請同學(xué)們合作學(xué)習(xí)。

  提出要求:小組合作邊學(xué)習(xí)測量方法邊嘗試測量

  第一個(gè)角,想想有幾種方法?

  1、要求合作學(xué)習(xí)探究、測量。

  2、反饋匯報(bào):學(xué)生邊演示邊復(fù)述過程

  3、教師利用課件演示正確的操作過程,糾正學(xué)生中存在的問題。

  4、歸納概括測量方法(兩重合一對)

 。1)用量角器的中心點(diǎn)與角的頂點(diǎn)重合

 。2)零刻度線與角的一邊重合(可與內(nèi)零度刻度線重合;也可與外零度刻度線重合)

 。3)另一條邊所對的角的度數(shù),就是這個(gè)角的度數(shù)。

  5、小結(jié):同一個(gè)角無論是用內(nèi)刻度量角,還是用外刻度量角,結(jié)果都一樣。

  6、獨(dú)立練習(xí)測量角的度數(shù)(書做一做中第一題1,3與第二題)

 。1) 獨(dú)立測量,師注意查看學(xué)生中存在的問題。

 。2) 課件演示糾正問題

  三、度、分、秒的進(jìn)位制及這些單位間的互化

  為了更精細(xì)地度量角,我們引入更小的角度單位:分、秒.把1°的角等分成60份,每份叫做1分記作1′;把1′的角再等分成60份,每份叫做1秒的角,1秒記作1″.

  1°=60′,1′=60″;

  1′=( )°,1″=( )′.

  例1 將57.32°用度、分、秒表示.

  解:先把0.32°化為分,

  0.32°=60′×0.32=19.2′.

  再把0.2′化為秒,

  0.2′=60″×0.2=12″.

  所以 57.32″=57°19′12″.

  例2 把10°6′36″用度表示.

  解:先把36″化為分,

  36″=( )′×36=0.6′

  6′+0.6′=6.6′.

  再把6.6′化為度,

  6.6′=( )°×6.6=0.11°.

  所以 10°6′36″=10.11°.

  四、鞏固練習(xí)

  課本P122練習(xí)

  五、總結(jié):請大家回憶一下,今天都學(xué)了那些知識(shí),通過學(xué)習(xí)你想說些什么?

  六、作業(yè):課本P123 3、4.(1)(3)、5.(2)(4)

高中數(shù)學(xué)教案6

  三維目標(biāo):

  1、知識(shí)與技能:正確理解隨機(jī)抽樣的概念,掌握抽簽法、隨機(jī)數(shù)表法的一般步驟;

  2、過程與方法:

  (1)能夠從現(xiàn)實(shí)生活或其他學(xué)科中提出具有一定價(jià)值的統(tǒng)計(jì)問題;

  (2)在解決統(tǒng)計(jì)問題的過程中,學(xué)會(huì)用簡單隨機(jī)抽樣的方法從總體中抽取樣本。

  3、情感態(tài)度與價(jià)值觀:通過對現(xiàn)實(shí)生活和其他學(xué)科中統(tǒng)計(jì)問題的提出,體會(huì)數(shù)學(xué)知識(shí)與現(xiàn)實(shí)世界及各學(xué)科知識(shí)之間的聯(lián)系,認(rèn)識(shí)數(shù)學(xué)的重要性。

  4、重點(diǎn)與難點(diǎn):正確理解簡單隨機(jī)抽樣的概念,掌握抽簽法及隨機(jī)數(shù)法的步驟,并能靈活應(yīng)用相關(guān)知識(shí)從總體中抽取樣本。

  教學(xué)方法:

  講練結(jié)合法

  教學(xué)用具:

  多媒體

  課時(shí)安排:

  1課時(shí)

  教學(xué)過程:

  一、問題情境

  假設(shè)你作為一名食品衛(wèi)生工作人員,要對某食品店內(nèi)的一批小包裝餅干進(jìn)行衛(wèi)生達(dá)標(biāo)檢驗(yàn),你準(zhǔn)備怎樣做?顯然,你只能從中抽取一定數(shù)量的餅干作為檢驗(yàn)的樣本。(為什么?)那么,應(yīng)當(dāng)怎樣獲取樣本呢?

  二、探究新知

  1、統(tǒng)計(jì)的.有關(guān)概念:總體:在統(tǒng)計(jì)學(xué)中,所有考察對象的全體叫做總體、個(gè)體:每一個(gè)考察的對象叫做個(gè)體、樣本:從總體中抽取的一部分個(gè)體叫做總體的一個(gè)樣本、樣本容量:樣本中個(gè)體的數(shù)目叫做樣本的容量、統(tǒng)計(jì)的基本思想:用樣本去估計(jì)總體、

  2、簡單隨機(jī)抽樣的概念一般地,設(shè)一個(gè)總體含有N個(gè)個(gè)體,從中逐個(gè)不放回地抽取n個(gè)個(gè)體作為樣本(n≤N),如果每次抽取時(shí)總體內(nèi)的各個(gè)個(gè)體被抽到的機(jī)會(huì)都相等,就把這種抽樣方法叫做簡單隨機(jī)抽樣,這樣抽取的樣本,叫做簡單隨機(jī)樣本。

  下列抽樣的方式是否屬于簡單隨機(jī)抽樣?為什么?

  (1)從無限多個(gè)個(gè)體中抽取50個(gè)個(gè)體作為樣本。

  (2)箱子里共有100個(gè)零件,從中選出10個(gè)零件進(jìn)行質(zhì)量檢驗(yàn),在抽樣操作中,從中任意取出一個(gè)零件進(jìn)行質(zhì)量檢驗(yàn)后,再把它放回箱子。

  (3)從8臺(tái)電腦中,不放回地隨機(jī)抽取2臺(tái)進(jìn)行質(zhì)量檢查(假設(shè)8臺(tái)電腦已編好號(hào),對編號(hào)隨機(jī)抽取)

  3、常用的簡單隨機(jī)抽樣方法有:

  (1)抽簽法的定義。一般地,抽簽法就是把總體中的N個(gè)個(gè)體編號(hào),把號(hào)碼寫在號(hào)簽上,將號(hào)簽放在一個(gè)容器中,攪拌均勻后,每次從中抽取一個(gè)號(hào)簽,連續(xù)抽取n次,就得到一個(gè)容量為n的樣本。

  思考?你認(rèn)為抽簽法有什么優(yōu)點(diǎn)和缺點(diǎn):當(dāng)總體中的個(gè)體數(shù)很多時(shí),用抽簽法方便嗎?例1、若已知高一(6)班總共有57人,現(xiàn)要抽取8位同學(xué)出來做游戲,請?jiān)O(shè)計(jì)一個(gè)抽取的方法,要使得每位同學(xué)被抽到的機(jī)會(huì)相等。

  分析:可以把57位同學(xué)的學(xué)號(hào)分別寫在大小,質(zhì)地都相同的紙片上,折疊或揉成小球,把紙片集中在一起并充分?jǐn)嚢韬,在從中個(gè)抽出8張紙片,再選出紙片上的學(xué)號(hào)對應(yīng)的同學(xué)即可、基本步驟:第一步:將總體的所有N個(gè)個(gè)體從1至N編號(hào);第二步:準(zhǔn)備N個(gè)號(hào)簽分別標(biāo)上這些編號(hào),將號(hào)簽放在容器中攪拌均勻后每次抽取一個(gè)號(hào)簽,不放回地連續(xù)取n次;第三步:將取出的n個(gè)號(hào)簽上的號(hào)碼所對應(yīng)的n個(gè)個(gè)體作為樣本。

  (2)隨機(jī)數(shù)法的定義:利用隨機(jī)數(shù)表、隨機(jī)數(shù)骰子或計(jì)算機(jī)產(chǎn)生的隨機(jī)數(shù)進(jìn)行抽樣,叫隨機(jī)數(shù)表法,這里僅介紹隨機(jī)數(shù)表法。怎樣利用隨機(jī)數(shù)表產(chǎn)生樣本呢?下面通過例子來說明,假設(shè)我們要考察某公司生產(chǎn)的500克袋裝牛奶的質(zhì)量是否達(dá)標(biāo),現(xiàn)從800袋牛奶中抽取60袋進(jìn)行檢驗(yàn),利用隨機(jī)數(shù)表抽取樣本時(shí),可以按照下面的步驟進(jìn)行。第一步,先將800袋牛奶編號(hào),可以編為000,001,799。

  第二步,在隨機(jī)數(shù)表中任選一個(gè)數(shù),例如選出第8行第7列的數(shù)7(為了便于說明,下面摘取了附表1的第6行至第10行)。 16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 57 60 86 32 44 09 47 27 96 54 49 17 46 09 62 87 35 20 96 43 84 26 34 91 64 21 76 33 50 25 83 92 12 06 76 12 86 73 58 07 44 39 52 38 79 15 51 00 13 42 99 66 02 79 54 90 52 84 77 27 08 02 73 43 28第三步,從選定的數(shù)7開始向右讀(讀數(shù)的方向也可以是向左、向上、向下等),得到一個(gè)三位數(shù)785,由于785<799,說明號(hào)碼785在總體內(nèi),將它取出;

  繼續(xù)向右讀,得到916,由于916>799,將它去掉,按照這種方法繼續(xù)向右讀,又取出567,199,507,依次下去,直到樣本的60個(gè)號(hào)碼全部取出,這樣我們就得到一個(gè)容量為60的樣本。

  三、課堂練習(xí)

  四、課堂小結(jié)

  1、簡單隨機(jī)抽樣的概念一般地,設(shè)一個(gè)總體的個(gè)體數(shù)為N,如果通過逐個(gè)抽取的方法從中抽取一個(gè)樣本,且每次抽取時(shí)各個(gè)個(gè)體被抽到的概率相等,就稱這樣的抽樣為簡單隨機(jī)抽樣。

  2、簡單隨機(jī)抽樣的方法:抽簽法隨機(jī)數(shù)表法

  五、課后作業(yè)

  P57練習(xí)1、2

  六、板書設(shè)計(jì)

  1、統(tǒng)計(jì)的有關(guān)概念

  2、簡單隨機(jī)抽樣的概念

  3、常用的簡單隨機(jī)抽樣方法有:(1)抽簽法(2)隨機(jī)數(shù)表法

  4、課堂練習(xí)

高中數(shù)學(xué)教案7

  教學(xué)目標(biāo)

  1.理解的概念,掌握的通項(xiàng)公式,并能運(yùn)用公式解決簡單的問題.

 。1)正確理解的定義,了解公比的概念,明確一個(gè)數(shù)列是的限定條件,能根據(jù)定義判斷一個(gè)數(shù)列是,了解等比中項(xiàng)的概念;

 。2)正確認(rèn)識(shí)使用的表示法,能靈活運(yùn)用通項(xiàng)公式求的首項(xiàng)、公比、項(xiàng)數(shù)及指定的項(xiàng);

  (3)通過通項(xiàng)公式認(rèn)識(shí)的性質(zhì),能解決某些實(shí)際問題.

  2.通過對的研究,逐步培養(yǎng)學(xué)生觀察、類比、歸納、猜想等思維品質(zhì).

  3.通過對概念的歸納,進(jìn)一步培養(yǎng)學(xué)生嚴(yán)密的思維習(xí)慣,以及實(shí)事求是的科學(xué)態(tài)度.

  教學(xué)建議

  教材分析

  (1)知識(shí)結(jié)構(gòu)

  是另一個(gè)簡單常見的數(shù)列,研究內(nèi)容可與等差數(shù)列類比,首先歸納出的定義,導(dǎo)出通項(xiàng)公式,進(jìn)而研究圖像,又給出等比中項(xiàng)的概念,最后是通項(xiàng)公式的應(yīng)用.

  (2)重點(diǎn)、難點(diǎn)分析

  教學(xué)重點(diǎn)是的定義和對通項(xiàng)公式的認(rèn)識(shí)與應(yīng)用,教學(xué)難點(diǎn)在于通項(xiàng)公式的推導(dǎo)和運(yùn)用.

 、倥c等差數(shù)列一樣,也是特殊的數(shù)列,二者有許多相同的性質(zhì),但也有明顯的區(qū)別,可根據(jù)定義與通項(xiàng)公式得出的特性,這些是教學(xué)的重點(diǎn).

 、陔m然在等差數(shù)列的學(xué)習(xí)中曾接觸過不完全歸納法,但對學(xué)生來說仍然不熟悉;在推導(dǎo)過程中,需要學(xué)生有一定的觀察分析猜想能力;第一項(xiàng)是否成立又須補(bǔ)充說明,所以通項(xiàng)公式的推導(dǎo)是難點(diǎn).

 、蹖Φ炔顢(shù)列、的綜合研究離不開通項(xiàng)公式,因而通項(xiàng)公式的靈活運(yùn)用既是重點(diǎn)又是難點(diǎn).

  教學(xué)建議

 。1)建議本節(jié)課分兩課時(shí),一節(jié)課為的概念,一節(jié)課為通項(xiàng)公式的應(yīng)用.

  (2)概念的引入,可給出幾個(gè)具體的例子,由學(xué)生概括這些數(shù)列的相同特征,從而得到的定義.也可將幾個(gè)等差數(shù)列和幾個(gè)混在一起給出,由學(xué)生將這些數(shù)列進(jìn)行分類,有一種是按等差、等比來分的,由此對比地概括的定義.

  (3)根據(jù)定義讓學(xué)生分析的公比不為0,以及每一項(xiàng)均不為0的特性,加深對概念的理解.

  (4)對比等差數(shù)列的表示法,由學(xué)生歸納的各種表示法.啟發(fā)學(xué)生用函數(shù)觀點(diǎn)認(rèn)識(shí)通項(xiàng)公式,由通項(xiàng)公式的結(jié)構(gòu)特征畫數(shù)列的圖象.

 。5)由于有了等差數(shù)列的研究經(jīng)驗(yàn),的研究完全可以放手讓學(xué)生自己解決,教師只需把握課堂的節(jié)奏,作為一節(jié)課的組織者出現(xiàn).

 。6)可讓學(xué)生相互出題,解題,講題,充分發(fā)揮學(xué)生的主體作用.

  教學(xué)設(shè)計(jì)示例

  課題:的概念

  教學(xué)目標(biāo)

  1.通過教學(xué)使學(xué)生理解的概念,推導(dǎo)并掌握通項(xiàng)公式.

  2.使學(xué)生進(jìn)一步體會(huì)類比、歸納的思想,培養(yǎng)學(xué)生的觀察、概括能力.

  3.培養(yǎng)學(xué)生勤于思考,實(shí)事求是的精神,及嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度.

  教學(xué)重點(diǎn),難點(diǎn)

  重點(diǎn)、難點(diǎn)是的定義的歸納及通項(xiàng)公式的推導(dǎo).

  教學(xué)用具

  投影儀,多媒體軟件,電腦.

  教學(xué)方法

  討論、談話法.

  教學(xué)過程

  一、提出問題

  給出以下幾組數(shù)列,將它們分類,說出分類標(biāo)準(zhǔn).(幻燈片)

 、伲2,1,4,7,10,13,16,19,…

 、8,16,32,64,128,256,…

 、1,1,1,1,1,1,1,…

  ④243,81,27,9,3,1,,,…

  ⑤31,29,27,25,23,21,19,…

  ⑥1,-1,1,-1,1,-1,1,-1,…

 、1,-10,100,-1000,10000,-100000,…

 、0,0,0,0,0,0,0,…

  由學(xué)生發(fā)表意見(可能按項(xiàng)與項(xiàng)之間的關(guān)系分為遞增數(shù)列、遞減數(shù)列、常數(shù)數(shù)列、擺動(dòng)數(shù)列,也可能分為等差、等比兩類),統(tǒng)一一種分法,其中②③④⑥⑦為有共同性質(zhì)的一類數(shù)列(學(xué)生看不出③的情況也無妨,得出定義后再考察③是否為).

  二、講解新課

  請學(xué)生說出數(shù)列②③④⑥⑦的共同特性,教師指出實(shí)際生活中也有許多類似的例子,如變形蟲分裂問題.假設(shè)每經(jīng)過一個(gè)單位時(shí)間每個(gè)變形蟲都分裂為兩個(gè)變形蟲,再假設(shè)開始有一個(gè)變形蟲,經(jīng)過一個(gè)單位時(shí)間它分裂為兩個(gè)變形蟲,經(jīng)過兩個(gè)單位時(shí)間就有了四個(gè)變形蟲,…,一直進(jìn)行下去,記錄下每個(gè)單位時(shí)間的變形蟲個(gè)數(shù)得到了一列數(shù)這個(gè)數(shù)列也具有前面的幾個(gè)數(shù)列的共同特性,這是我們將要研究的另一類數(shù)列——.(這里播放變形蟲分裂的多媒體軟件的第一步)

  (板書)

  1.的.定義(板書)

  根據(jù)與等差數(shù)列的名字的區(qū)別與聯(lián)系,嘗試給下定義.學(xué)生一般回答可能不夠完美,多數(shù)情況下,有了等差數(shù)列的基礎(chǔ)是可以由學(xué)生概括出來的教師寫出的定義,標(biāo)注出重點(diǎn)詞語.

  請學(xué)生指出②③④⑥⑦各自的公比,并思考有無數(shù)列既是等差數(shù)列又是.學(xué)生通過觀察可以發(fā)現(xiàn)③是這樣的數(shù)列,教師再追問,還有沒有其他的例子,讓學(xué)生再舉兩例.而后請學(xué)生概括這類數(shù)列的一般形式,學(xué)生可能說形如的數(shù)列都滿足既是等差又是,讓學(xué)生討論后得出結(jié)論:當(dāng)時(shí),數(shù)列既是等差又是,當(dāng)時(shí),它只是等差數(shù)列,而不是.教師追問理由,引出對的認(rèn)識(shí):

  2.對定義的認(rèn)識(shí)(板書)

 。1)的首項(xiàng)不為0;

  (2)的每一項(xiàng)都不為0,即;

  問題:一個(gè)數(shù)列各項(xiàng)均不為0是這個(gè)數(shù)列為的什么條件?

 。3)公比不為0.

  用數(shù)學(xué)式子表示的定義.

  是①.在這個(gè)式子的寫法上可能會(huì)有一些爭議,如寫成,可讓學(xué)生研究行不行,好不好;接下來再問,能否改寫為是?為什么不能?

  式子給出了數(shù)列第項(xiàng)與第項(xiàng)的數(shù)量關(guān)系,但能否確定一個(gè)?(不能)確定一個(gè)需要幾個(gè)條件?當(dāng)給定了首項(xiàng)及公比后,如何求任意一項(xiàng)的值?所以要研究通項(xiàng)公式.

  3.的通項(xiàng)公式(板書)

  問題:用和表示第項(xiàng).

 、俨煌耆珰w納法

  .

  ②疊乘法

  ,…,,這個(gè)式子相乘得,所以.

 。ò鍟1)的通項(xiàng)公式

  得出通項(xiàng)公式后,讓學(xué)生思考如何認(rèn)識(shí)通項(xiàng)公式.

 。ò鍟2)對公式的認(rèn)識(shí)

  由學(xué)生來說,最后歸結(jié):

 、俸瘮(shù)觀點(diǎn);

 、诜匠趟枷耄ㄒ蛟诘炔顢(shù)列中已有認(rèn)識(shí),此處再復(fù)習(xí)鞏固而已).

  這里強(qiáng)調(diào)方程思想解決問題.方程中有四個(gè)量,知三求一,這是公式最簡單的應(yīng)用,請學(xué)生舉例(應(yīng)能編出四類問題).解題格式是什么?(不僅要會(huì)解題,還要注意規(guī)范表述的訓(xùn)練)

  如果增加一個(gè)條件,就多知道了一個(gè)量,這是公式的更高層次的應(yīng)用,下節(jié)課再研究.同學(xué)可以試著編幾道題.

  三、小結(jié)

  1.本節(jié)課研究了的概念,得到了通項(xiàng)公式;

  2.注意在研究內(nèi)容與方法上要與等差數(shù)列相類比;

  3.用方程的思想認(rèn)識(shí)通項(xiàng)公式,并加以應(yīng)用.

  四、作業(yè)(略)

  五、板書設(shè)計(jì)

  1.等比數(shù)列的定義

  2.對定義的認(rèn)識(shí)

  3.等比數(shù)列的通項(xiàng)公式

 。1)公式

 。2)對公式的認(rèn)識(shí)

  探究活動(dòng)

  將一張很大的薄紙對折,對折30次后(如果可能的話)有多厚?不妨假設(shè)這張紙的厚度為0.01毫米.

  參考答案:

  30次后,厚度為,這個(gè)厚度超過了世界最高的山峰——珠穆朗瑪峰的高度.如果紙?jiān)俦∫恍热缂埡?.001毫米,對折34次就超過珠穆朗瑪峰的高度了.還記得國王的承諾嗎?第31個(gè)格子中的米已經(jīng)是1073741824粒了,后邊的格子中的米就更多了,最后一個(gè)格子中的米應(yīng)是粒,用計(jì)算器算一下吧(用對數(shù)算也行).

高中數(shù)學(xué)教案8

  教學(xué)目標(biāo)

 。1)了解線性規(guī)劃的意義以及線性約束條件、線性目標(biāo)函數(shù)、線性規(guī)化問題、可行解、可行域以及最優(yōu)解等基本概念;

 。2)了解線性規(guī)劃問題的圖解法,并能應(yīng)用它解決一些簡單的實(shí)際問題;

 。3)培養(yǎng)學(xué)生觀察、聯(lián)想以及作圖的能力,滲透集合、化歸、數(shù)形結(jié)合的'數(shù)學(xué)思想,提高學(xué)生“建!焙徒鉀Q實(shí)際問題的能力;

 。4)結(jié)合教學(xué)內(nèi)容,培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和“用數(shù)學(xué)”的意識(shí),激勵(lì)學(xué)生勇于創(chuàng)新.

  重點(diǎn)難點(diǎn)

  理解二元一次不等式表示平面區(qū)域是教學(xué)重點(diǎn)。

  如何擾實(shí)際問題轉(zhuǎn)化為線性規(guī)劃問題,并給出解答是教學(xué)難點(diǎn)。

  教學(xué)步驟

 。ㄒ唬┮胄抡n

  我們已研究過以二元一次不等式組為約束條件的二元線性目標(biāo)函數(shù)的線性規(guī)劃問題。那么是否有多個(gè)兩個(gè)變量的線性規(guī)劃問題呢?又什么樣的問題不用線性規(guī)劃知識(shí)來解決呢?

高中數(shù)學(xué)教案9

  一、教學(xué)目標(biāo)

  1、知識(shí)與能力目標(biāo)

 、偈箤W(xué)生理解數(shù)列極限的概念和描述性定義。

 、谑箤W(xué)生會(huì)判斷一些簡單數(shù)列的極限,了解數(shù)列極限的“e—N"定義,能利用逐步分析的方法證明一些數(shù)列的極限。

 、弁ㄟ^觀察運(yùn)動(dòng)和變化的過程,歸納總結(jié)數(shù)列與其極限的特定關(guān)系,提高學(xué)生的數(shù)學(xué)概括能力和抽象思維能力。

  2、過程與方法目標(biāo)

  培養(yǎng)學(xué)生的極限的思想方法和獨(dú)立學(xué)習(xí)的能力。

  3、情感、態(tài)度、價(jià)值觀目標(biāo)

  使學(xué)生初步認(rèn)識(shí)有限與無限、近似與精確、量變與質(zhì)變的辯證關(guān)系,培養(yǎng)學(xué)生的辯證唯物主義觀點(diǎn)。

  二、教學(xué)重點(diǎn)和難點(diǎn)

  教學(xué)重點(diǎn):數(shù)列極限的概念和定義。

  教學(xué)難點(diǎn):數(shù)列極限的“ε―N”定義的理解。

  三、教學(xué)對象分析

  這節(jié)課是數(shù)列極限的第一節(jié)課,足學(xué)生學(xué)習(xí)極限的入門課,對于學(xué)生來說是一個(gè)全新的內(nèi)容,學(xué)生的思維正處于由經(jīng)驗(yàn)型抽象思維向理論型抽象思維過渡階段,在《立體幾何》內(nèi)容求球的表面積和體積時(shí)對極限思想已有接觸,而學(xué)生在以往的數(shù)學(xué)學(xué)習(xí)中主要接觸的是關(guān)于“有限”的問題,很少涉及“無限”的問題。極限這一抽象概念能夠使他們做基于直觀的理解,并引導(dǎo)他們作出描述性定義“當(dāng)n無限增大時(shí),數(shù)列{an}中的項(xiàng)an無限趨近于常數(shù)A,也就是an與A的差的絕對值無限趨近于0”,并能用這個(gè)定義判斷一些簡單數(shù)列的極限。但要使他們在一節(jié)課內(nèi)掌握“ε—N”語言求極限要求過高。因此不宜講得太難,能夠通過具體的幾個(gè)例子,歸納研究一些簡單的數(shù)列的極限。使學(xué)生理解極限的基本概念,認(rèn)識(shí)什么叫做數(shù)列的極限以及數(shù)列極限的定義即可。

  四、教學(xué)策略及教法設(shè)計(jì)

  本課是采用啟發(fā)式講授教學(xué)法,通過多媒體課件演示及學(xué)生討論的方法進(jìn)行教學(xué)。通過學(xué)生比較熟悉的一個(gè)實(shí)際問題入手,引起學(xué)生的注意,激發(fā)學(xué)生的學(xué)習(xí)興趣。然后通過具體的兩個(gè)比較簡單的數(shù)列,運(yùn)用多媒體課件演示向?qū)W生展示了數(shù)列中的各項(xiàng)隨著項(xiàng)數(shù)的增大,無限地趨向于某個(gè)常數(shù)的過程,讓學(xué)生在觀察的基礎(chǔ)上討論總結(jié)出這兩個(gè)數(shù)列的特征,從而得出數(shù)列極限的一個(gè)描述性定義。再在教師的引導(dǎo)下分析數(shù)列極限的各種不同情況。從而對數(shù)列極限有了直觀上的認(rèn)識(shí),接著讓學(xué)生根據(jù)數(shù)列中各項(xiàng)的`情況判斷一些簡單的數(shù)列的極限。從而達(dá)到深化定義的效果。最后進(jìn)行練習(xí)鞏固,通過這樣的一個(gè)完整的教學(xué)過程,由觀察到分析、由定量到定性,由直觀到抽象,并借助于多媒體課件的演示,使得學(xué)生逐步地了解極限這個(gè)新的概念,為下節(jié)課的極限的運(yùn)算及應(yīng)用做準(zhǔn)備,為以后學(xué)習(xí)高等數(shù)學(xué)知識(shí)打下基礎(chǔ)。在整個(gè)教學(xué)過程中注意突出重點(diǎn),突破難點(diǎn),達(dá)到教學(xué)目標(biāo)的要求。

  五、教學(xué)過程

  1、創(chuàng)設(shè)情境

  課件展示創(chuàng)設(shè)情境動(dòng)畫。

  今天我們將要學(xué)習(xí)一個(gè)很重要的新的知識(shí)。

  情境

  (1)我國古代數(shù)學(xué)家劉徽于公元263年創(chuàng)立“割圓術(shù)”,“割之彌細(xì),所失彌少。割之又割,以至不可割,則與圓周合體而無所失矣”。

  情境

 。2)我國古代哲學(xué)家莊周所著的《莊子·天下篇》引用過一句話:一尺之棰,日取其半,萬世不竭。也就是說拿一根木棒,將它切成一半,拿其中一半來再切成一半,得到四分之一,再切成一半,就得到了八分之?如此下去,無限次地切,每次都切一半,問是否會(huì)切完?

  大家都知道,這是不可能切完的,但是每次切了以后,木棒都比原來的少了一半,也就是說木棒的長度越來越短,但永遠(yuǎn)不會(huì)變成零。從而引出極限的概念。

  2、定義探究

  展示定義探索(一)動(dòng)畫演示。

  問題1:請觀察以下無窮數(shù)列,當(dāng)n無限增大時(shí),a,I的變化趨勢有什么特點(diǎn)?

 。1)1/2,2/3,3/4,n/n—1

 。2)0.9,0.99,0.999,0.9999,1—1/10n

  問題2:觀察課件演示,請分析以上兩個(gè)數(shù)列隨項(xiàng)數(shù)n的增大項(xiàng)有那些特點(diǎn)?

  師生一起歸納總結(jié)出以下結(jié)論:數(shù)列(1)項(xiàng)數(shù)n無限增大時(shí),項(xiàng)無限趨近于1;數(shù)列(2)項(xiàng)數(shù)n無限增大時(shí),項(xiàng)無限趨近于1。

  那么就把1叫數(shù)列(1)的極限,1叫數(shù)列(2)的極限。這兩個(gè)數(shù)列只是形式不同,它們都是隨項(xiàng)數(shù)n的無限增大,項(xiàng)無限趨近于某一確定常數(shù),這個(gè)常數(shù)叫做這個(gè)數(shù)列的極限。

  那么,什么叫數(shù)列的極限呢?對于無窮數(shù)列an,如果當(dāng)n無限增大時(shí),an無限趨向于某一個(gè)常數(shù)A,則稱A是數(shù)列an的極限。

  提出問題3:怎樣用數(shù)學(xué)語言來定量描述呢?怎樣用數(shù)學(xué)語言來描述上述數(shù)列的變化趨勢?

  展示定義探索(二)動(dòng)畫演示。

  師生共同總結(jié)發(fā)現(xiàn)在數(shù)軸上兩點(diǎn)間距離越小,項(xiàng)與1越趨近,因此可以借助兩點(diǎn)間距離無限小的方式來描述項(xiàng)無限趨近常數(shù)。無論預(yù)先指定多么小的正數(shù)e,如取e=O—1,總能在數(shù)列中找到一項(xiàng)am,使得an項(xiàng)后面的所有項(xiàng)與1的差的絕對值都小于ε,若取£=0.0001,則第6項(xiàng)后面的所有項(xiàng)與1的差的絕對值都小于ε,即1是數(shù)列(1)的極限。最后,師生共同總結(jié)出數(shù)列的極限定義中應(yīng)包含哪量(用這些量來描述數(shù)列1的極限)。

  數(shù)列的極限為:對于任意的ε>0,如果總存在自然數(shù)N,當(dāng)n>N時(shí),不等式|an—A|n的極限。

  課件可以實(shí)現(xiàn)任意輸入一個(gè)n值,可以計(jì)算出相應(yīng)的數(shù)列第n項(xiàng)的值,并且動(dòng)畫演示數(shù)列的變化過程。如圖1所示是課件運(yùn)行時(shí)的一個(gè)畫面。

  定義探索動(dòng)畫(二)課件可以實(shí)現(xiàn)任意輸入一個(gè)n值,可以計(jì)算出相應(yīng)的數(shù)列第n項(xiàng)的值和Ian一1I的值,并且動(dòng)畫演示出第an項(xiàng)和1之間的距離。如圖2所示是課件運(yùn)行時(shí)的一個(gè)畫面。

  3、知識(shí)應(yīng)用

  這里舉了3道例題,與學(xué)生一塊思考,一起分析作答。

  例1、已知數(shù)列:

  1,—1/2,1/3,—1/4,1/5,(—1)n+11/n,(1)計(jì)算an—0(2)第幾項(xiàng)后面的所有項(xiàng)與0的差的絕對值都小于0.017都小于任意指定的正數(shù)。

 。3)確定這個(gè)數(shù)列的極限。

  例2、已知數(shù)列:

  已知數(shù)列:3/2,9/4,15/8,2+(—1/2)n。

  猜測這個(gè)數(shù)列有無極限,如果有,應(yīng)該是什么數(shù)?并求出從第幾項(xiàng)開始,各項(xiàng)與這個(gè)極限的差都小于0.1,從第幾項(xiàng)開始,各項(xiàng)與這個(gè)極限的差都小于0.017

  例3、求常數(shù)數(shù)列一7,一7,一7,一7,的極限。

  4、知識(shí)小結(jié)

  這節(jié)課我們研究了數(shù)列極限的概念,對數(shù)列極限有了初步的認(rèn)識(shí)。數(shù)列極限研究的是無限變化的趨勢,而通過對數(shù)列極限定義的探討,我們看到這一過程又是通過有限來把握的,有限與無限、近似與精確、量變與質(zhì)變之間的辯證關(guān)系在這里得到了充分的體現(xiàn)。

  課后練習(xí):

 。1)判斷下列數(shù)列是否有極限,如果有的話請求出它的極限值。①an=4n+l/n;②an=4—(1/3)m;③an=(—1)n/3n;④aan=—2;⑤an=n;⑥an=(—1)n。

 。2)課本練習(xí)1,2。

  5、探究性問題

  設(shè)計(jì)研究性學(xué)習(xí)的思考題。

  提出問題:

  芝諾悖論:阿基里斯是《荷馬史詩》中的善跑英雄。奔跑中的阿基里斯永遠(yuǎn)也無法超過在他前面慢慢爬行的烏龜,因?yàn)楫?dāng)阿基里斯到達(dá)烏龜?shù)钠鹋茳c(diǎn)時(shí),烏龜已經(jīng)走在前面一小段路了,阿基里斯又必須趕過這一小段路,而烏龜又向前走了。這樣,阿基里斯可無限接近它,但不能追到它。假定阿基里斯跑步的速度是烏龜速度的10倍,阿基里斯與烏龜賽跑的路程是1公里。如果讓烏龜先跑0.1公里,當(dāng)阿基里斯追到O。1公里的地方,烏龜又向前跑了0.01公里。當(dāng)阿基里斯追到0.01公里的地方,烏龜又向前跑了0.001公里這樣一直追下去,阿基里斯能追上烏龜嗎?

  這里是研究性學(xué)習(xí)內(nèi)容,以學(xué)生感興趣的悖論作為課后作業(yè),鞏固本節(jié)所學(xué)內(nèi)容,進(jìn)一步提高了學(xué)生學(xué)習(xí)數(shù)列的極限的興趣。同時(shí)也為學(xué)生創(chuàng)設(shè)了課下交流與討論的情境,逐步培養(yǎng)學(xué)生相互合作、交流和討論的習(xí)慣,使學(xué)生感受到了數(shù)學(xué)來源于生活,又服務(wù)于生活的實(shí)質(zhì),逐步養(yǎng)成用數(shù)學(xué)的知識(shí)去解決生活中遇到的實(shí)際問題的習(xí)慣。

高中數(shù)學(xué)教案10

  課程概述:

  本課程為高中數(shù)學(xué)網(wǎng)課教學(xué),針對的學(xué)生群體為高一學(xué)生,總共有40節(jié)課。課程主要內(nèi)容包括:集合、函數(shù)、三角函數(shù)、數(shù)列、立體幾何、概率論等。

  教學(xué)歷程:

  在教學(xué)歷程中,我們采用在線直播教學(xué)的方式,每節(jié)課的時(shí)長為1小時(shí)。每周安排4節(jié)課,共進(jìn)行2個(gè)月。每節(jié)課開始前,我們會(huì)提前通知學(xué)生上課的時(shí)間和地點(diǎn),以確保學(xué)生能夠準(zhǔn)時(shí)參加。

  教學(xué)內(nèi)容和教學(xué)方法:

  在教學(xué)內(nèi)容方面,我們按照高中數(shù)學(xué)的`教學(xué)大綱進(jìn)行安排,包括基礎(chǔ)概念、公式和解題方法等。教學(xué)方法上,我們采用多種形式的教學(xué)方式,包括在線直播講解、PPT演示、習(xí)題講解等。為了提高學(xué)生的學(xué)習(xí)興趣,我們還會(huì)引入一些生活中的例子進(jìn)行講解。

  教學(xué)效果:

  通過本課程的學(xué)習(xí),學(xué)生們的數(shù)學(xué)成績有了明顯的提高。其中,80%的學(xué)生掌握了課程中的所有內(nèi)容,15%的學(xué)生掌握了一些難度較高的內(nèi)容。在課后作業(yè)的完成情況方面,85%的學(xué)生能夠獨(dú)立完成作業(yè),15%的學(xué)生需要在老師的指導(dǎo)下完成作業(yè)。此外,學(xué)生們還學(xué)會(huì)了如何應(yīng)用數(shù)學(xué)知識(shí)解決生活中的問題。

  反思和建議:

  在課程結(jié)束后,我們對本次教學(xué)進(jìn)行了反思,發(fā)現(xiàn)在教學(xué)的過程中需要進(jìn)一步加強(qiáng)習(xí)題的講解,以幫助學(xué)生更好地掌握數(shù)學(xué)知識(shí)和解題方法。同時(shí),我們建議教師在教學(xué)過程中注重學(xué)生的個(gè)體差異,針對不同的學(xué)生采用不同的教學(xué)方法和策略。

高中數(shù)學(xué)教案11

  教材分析:

  前面已學(xué)習(xí)了向量的概念及向量的線性運(yùn)算,這里引入一種新的向量運(yùn)算——向量的數(shù)量積。教科書以物體受力做功為背景引入向量數(shù)量積的概念,既使向量數(shù)量積運(yùn)算與學(xué)生已有知識(shí)建立了聯(lián)系,又使學(xué)生看到向量數(shù)量積與向量模的大小及夾角有關(guān),同時(shí)與前面的向量運(yùn)算不同,其計(jì)算結(jié)果不是向量而是數(shù)量。

  在定義了數(shù)量積的概念后,進(jìn)一步探究了兩個(gè)向量夾角對數(shù)量積符號(hào)的影響;然后由投影的概念得出了數(shù)量積的幾何意義;并由數(shù)量積的定義推導(dǎo)出一些數(shù)量積的重要性質(zhì);最后“探究”研究了運(yùn)算律。

  教學(xué)目標(biāo):

  (一)知識(shí)與技能

  1.掌握數(shù)量積的定義、重要性質(zhì)及運(yùn)算律;

  2.能應(yīng)用數(shù)量積的重要性質(zhì)及運(yùn)算律解決問題;

  3.了解用平面向量數(shù)量積可以解決長度、角度、垂直共線等問題,為下節(jié)課靈活運(yùn)用平面向量數(shù)量積解決問題打好基礎(chǔ)。

  (二)過程與方法

  以物體受力做功為背景引入向量數(shù)量積的概念,從數(shù)與形兩方面引導(dǎo)學(xué)生對向量數(shù)量積定義進(jìn)行探究,通過例題分析,使學(xué)生明確向量的數(shù)量積與數(shù)的乘法的聯(lián)系與區(qū)別。

  (三)情感、態(tài)度與價(jià)值觀

  創(chuàng)設(shè)適當(dāng)?shù)膯栴}情境,從物理學(xué)中“功”這個(gè)概念引入課題,開始就激發(fā)學(xué)生的學(xué)習(xí)興趣,讓學(xué)生容易切入課題,培養(yǎng)學(xué)生用數(shù)學(xué)的意識(shí),加強(qiáng)數(shù)學(xué)與其它學(xué)科及生活實(shí)踐的聯(lián)系。

  教學(xué)重點(diǎn):

  1.平面向量的數(shù)量積的定義;

  2.用平面向量的數(shù)量積表示向量的模及向量的夾角。

  教學(xué)難點(diǎn):

  平面向量數(shù)量積的定義及運(yùn)算律的理解和平面向量數(shù)量積的`應(yīng)用。

  教學(xué)方法:

  啟發(fā)引導(dǎo)式

  教學(xué)過程:

  (一)提出問題,引入新課

  前面我們學(xué)習(xí)了平面向量的線性運(yùn)算,包括向量的加法、減法、以及數(shù)乘運(yùn)算,它們的運(yùn)算結(jié)果都是向量,既然兩個(gè)向量可以進(jìn)行加法、減法運(yùn)算,我們自然會(huì)提出:兩個(gè)向量是否能進(jìn)行“乘法”運(yùn)算呢?如果能,運(yùn)算結(jié)果又是什么呢?

  這讓我們聯(lián)想到物理中“功”的概念,即如果一個(gè)物體在力F的作用下產(chǎn)生位移s,F(xiàn)與s的夾角是θ,那么力F所做的功如何計(jì)算呢?

  我們知道:W=|F||s|cosθ,功是一個(gè)標(biāo)量(數(shù)量),而力它等于力F和位移s都是矢量(向量),功等于力和位移這兩個(gè)向量的大小與它們夾角余弦的乘積。這給我們一種啟示:能否把功W看成是兩向量F和s的一種運(yùn)算的結(jié)果呢,為此我們引入平面向量的數(shù)量積。

  (二)講授新課

  今天我們就來學(xué)習(xí):(板書課題) 

高中數(shù)學(xué)教案12

  一、教學(xué)目標(biāo)

  【知識(shí)與技能】

  掌握三角函數(shù)的單調(diào)性以及三角函數(shù)值的取值范圍。

  【過程與方法】

  經(jīng)歷三角函數(shù)的單調(diào)性的探索過程,提升邏輯推理能力。

  【情感態(tài)度價(jià)值觀】

  在猜想計(jì)算的過程中,提高學(xué)習(xí)數(shù)學(xué)的興趣。

  二、教學(xué)重難點(diǎn)

  【教學(xué)重點(diǎn)】

  三角函數(shù)的.單調(diào)性以及三角函數(shù)值的取值范圍。

  【教學(xué)難點(diǎn)】

  探究三角函數(shù)的單調(diào)性以及三角函數(shù)值的取值范圍過程。

  三、教學(xué)過程

 。ㄒ唬┮胄抡n

  提出問題:如何研究三角函數(shù)的單調(diào)性

 。ㄋ模┬〗Y(jié)作業(yè)

  提問:今天學(xué)習(xí)了什么?

  引導(dǎo)學(xué)生回顧:基本不等式以及推導(dǎo)證明過程。

  課后作業(yè):

  思考如何用三角函數(shù)單調(diào)性比較三角函數(shù)值的大小。

高中數(shù)學(xué)教案13

  [核心必知]

  1、預(yù)習(xí)教材,問題導(dǎo)入

  根據(jù)以下提綱,預(yù)習(xí)教材P6~P9,回答下列問題、

  (1)常見的程序框有哪些?

  提示:終端框(起止框),輸入、輸出框,處理框,判斷框、

  (2)算法的基本邏輯結(jié)構(gòu)有哪些?

  提示:順序結(jié)構(gòu)、條件結(jié)構(gòu)和循環(huán)結(jié)構(gòu)、

  2、歸納總結(jié),核心必記

 。1)程序框圖

  程序框圖又稱流程圖,是一種用程序框、流程線及文字說明來表示算法的圖形、

  在程序框圖中,一個(gè)或幾個(gè)程序框的組合表示算法中的一個(gè)步驟;帶有方向箭頭的流程線將程序框連接起來,表示算法步驟的執(zhí)行順序、

 。2)常見的程序框、流程線及各自表示的功能

  圖形符號(hào)名稱功能

  終端框(起止框)表示一個(gè)算法的起始和結(jié)束

  輸入、輸出框表示一個(gè)算法輸入和輸出的信息

  處理框(執(zhí)行框)賦值、計(jì)算

  判斷框判斷某一條件是否成立,成立時(shí)在出口處標(biāo)明“是”或“Y”;不成立時(shí)標(biāo)明“否”或“N”

  流程線連接程序框

  ○連接點(diǎn)連接程序框圖的兩部分

  (3)算法的基本邏輯結(jié)構(gòu)

 、偎惴ǖ娜N基本邏輯結(jié)構(gòu)

  算法的三種基本邏輯結(jié)構(gòu)為順序結(jié)構(gòu)、條件結(jié)構(gòu)和循環(huán)結(jié)構(gòu),盡管算法千差萬別,但都是由這三種基本邏輯結(jié)構(gòu)構(gòu)成的

 、陧樞蚪Y(jié)構(gòu)

  順序結(jié)構(gòu)是由若干個(gè)依次執(zhí)行的步驟組成的這是任何一個(gè)算法都離不開的基本結(jié)構(gòu),用程序框圖表示為:

  [問題思考]

 。1)一個(gè)完整的程序框圖一定是以起止框開始,同時(shí)又以起止框表示結(jié)束嗎?

  提示:由程序框圖的概念可知一個(gè)完整的程序框圖一定是以起止框開始,同時(shí)又以起止框表示結(jié)束、

 。2)順序結(jié)構(gòu)是任何算法都離不開的基本結(jié)構(gòu)嗎?

  提示:根據(jù)算法基本邏輯結(jié)構(gòu)可知順序結(jié)構(gòu)是任何算法都離不開的基本結(jié)構(gòu)、

  [課前反思]

  通過以上預(yù)習(xí),必須掌握的幾個(gè)知識(shí)點(diǎn):

 。1)程序框圖的.概念:

  (2)常見的程序框、流程線及各自表示的功能:

 。3)算法的三種基本邏輯結(jié)構(gòu):

  (4)順序結(jié)構(gòu)的概念及其程序框圖的表示:

  問題背景:計(jì)算1×2+3×4+5×6+…+99×100。

  [思考1]能否設(shè)計(jì)一個(gè)算法,計(jì)算這個(gè)式子的值。

  提示:能。

  [思考2]能否采用更簡潔的方式表述上述算法過程。

  提示:能,利用程序框圖。

  [思考3]畫程序框圖時(shí)應(yīng)遵循怎樣的規(guī)則?

  名師指津:

 。1)使用標(biāo)準(zhǔn)的框圖符號(hào)。

 。2)框圖一般按從上到下、從左到右的方向畫。

  (3)除判斷框外,其他程序框圖的符號(hào)只有一個(gè)進(jìn)入點(diǎn)和一個(gè)退出點(diǎn),判斷框是一個(gè)具有超過一個(gè)退出點(diǎn)的程序框。

  (4)在圖形符號(hào)內(nèi)描述的語言要非常簡練清楚。

  (5)流程線不要忘記畫箭頭,因?yàn)樗欠从沉鞒虉?zhí)行先后次序的,如果不畫出箭頭就難以判斷各框的執(zhí)行順序。

高中數(shù)學(xué)教案14

  教學(xué)目標(biāo):

  1.進(jìn)一步熟練掌握比較法證明不等式;

  2.了解作商比較法證明不等式;

  3.提高學(xué)生解題時(shí)應(yīng)變能力.

  教學(xué)重點(diǎn)

  比較法的應(yīng)用

  教學(xué)難點(diǎn)

  常見解題技巧

  教學(xué)方法啟發(fā)引導(dǎo)式

  教學(xué)活動(dòng)

  (一)導(dǎo)入新課

 。ń處熁顒(dòng))教師打出字幕(復(fù)習(xí)提問),請三位同學(xué)回答問題,教師點(diǎn)評(píng).

 。▽W(xué)生活動(dòng))思考問題,回答.

  [字幕]1.比較法證明不等式的步驟是怎樣的?

  2.比較法證明不等式的步驟中,依據(jù)、手段、目的各是什么?

  3.用比較法證明不等式的步驟中,最關(guān)鍵的是哪一步?學(xué)了哪些常用的變形方法?對式子的變形還有其它方法嗎?

  [點(diǎn)評(píng)]用比較法證明不等式步驟中,關(guān)鍵是對差式的變形.在我們所學(xué)的知識(shí)中,對式子變形的常用方法除了配方、通分,還有因式分解.這節(jié)課我們將繼續(xù)學(xué)習(xí)比較法證明不等式,積累對差式變形的常用方法和比較法思想的應(yīng)用.(板書課題)

  設(shè)計(jì)意圖:復(fù)習(xí)鞏固已學(xué)知識(shí),銜接新知識(shí),引入本節(jié)課學(xué)習(xí)的內(nèi)容.

 。ǘ┬抡n講授

  【嘗試探索,建立新知】

 。ń處熁顒(dòng))提出問題,引導(dǎo)學(xué)生研究解決問題,并點(diǎn)評(píng).

 。▽W(xué)生活動(dòng))嘗試解決問題.

  [問題]

  1.化簡

  2.比較與()的大。

 。▽W(xué)生解答問題)

  [點(diǎn)評(píng)]

 、賳栴}1,我們采用了因式分解的.方法進(jìn)行簡化.

 、谕ㄟ^學(xué)習(xí)比較法證明不等式,我們不難發(fā)現(xiàn),比較法的思想方法還可用來比較兩個(gè)式子的大。

  設(shè)計(jì)意圖:啟發(fā)學(xué)生研究問題,建立新知,形成新的知識(shí)體系.

  【例題示范,學(xué)會(huì)應(yīng)用】

 。ń處熁顒(dòng))教師打出字幕(例題),引導(dǎo)、啟發(fā)學(xué)生研究問題,井點(diǎn)評(píng)解題過程.

 。▽W(xué)生活動(dòng))分析,研究問題.

 。圩帜唬堇}3已知 a b 是正數(shù),且,求證

  [分析]依題目特點(diǎn),作差后重新組項(xiàng),采用因式分解來變形.

  證明:(見課本)

 。埸c(diǎn)評(píng)]因式分解也是對差式變形的一種常用方法.此例將差式變形為幾個(gè)因式的積的形式,在確定符號(hào)中,表達(dá)過程較復(fù)雜,如何書寫證明過程,例3給出了一個(gè)好的示范.

 。埸c(diǎn)評(píng)]解這道題在判斷符號(hào)時(shí)用了分類討論,分類討論是重要的數(shù)學(xué) 思想方法.要理解為什么分類,怎樣分類.分類時(shí)要不重不漏.

 。圩帜唬堇5甲、乙兩人同時(shí)同地沿同一條路線走到同一地點(diǎn).甲有一半時(shí)間以速度 m 行走,另一半時(shí)間以速度 n 行走;有一半路程乙以速度 m 行走,另一半路程以速度 n 行走,如果,問甲、乙兩人誰先到達(dá)指定地點(diǎn).

  [分析]設(shè)從出發(fā)地點(diǎn)至指定地點(diǎn)的路程為,甲、乙兩人走完這段路程用的時(shí)間分別為,要回答題目中的問題,只要比較、的大小就可以了.

  解:(見課本)

  [點(diǎn)評(píng)]此題是一個(gè)實(shí)際問題,學(xué)習(xí)了如何利用比較法證明不等式的思想方法解決有關(guān)實(shí)際問題.要培養(yǎng)自己學(xué)數(shù)學(xué),用數(shù)學(xué)的良好品質(zhì).

  設(shè)計(jì)意圖:鞏固比較法證明不等式的方法,掌握因式分解的變形方法和分類討論確定符號(hào)的方法.培養(yǎng)學(xué)生應(yīng)用知識(shí)解決實(shí)際問題的能力.

  【課堂練習(xí)】

 。ń處熁顒(dòng))教師打出字幕練習(xí),要求學(xué)生獨(dú)立思考,完成練習(xí);請甲、乙兩位學(xué)生板演;巡視學(xué)生的解題情況,對正確的給予肯定,對偏差及時(shí)糾正;點(diǎn)評(píng)練習(xí)中存在的問題.

 。▽W(xué)生活動(dòng))在筆記本上完成練習(xí),甲、乙兩位同學(xué)板演.

 。圩帜唬菥毩(xí):1.設(shè),比較與的大小.

  2.已知,求證

  設(shè)計(jì)意圖:掌握比較法證明不等式及思想方法的應(yīng)用.靈活掌握因式分解法對差式的變形和分類討論確定符號(hào).反饋信息,調(diào)節(jié)課堂教學(xué).

  【分析歸納、小結(jié)解法】

 。ń處熁顒(dòng))分析歸納例題的解題過程,小結(jié)對差式變形、確定符號(hào)的常用方法和利用不等式解決實(shí)際問題的解題步驟.

 。▽W(xué)生活動(dòng))與教師一道小結(jié),并記錄在筆記本上.

  1.比較法不僅是證明不等式的一種基本、重要的方法,也是比較兩個(gè)式子大小的一種重要方法.

  2.對差式變形的常用方法有:配方法,通分法,因式分解法等.

  3.會(huì)用分類討論的方法確定差式的符號(hào).

  4.利用不等式解決實(shí)際問題的解題步驟:①類比列方程解應(yīng)用題的步驟.②分析題意,設(shè)未知數(shù),找出數(shù)量關(guān)系(函數(shù)關(guān)系,相等關(guān)系或不等關(guān)系),③列出函數(shù)關(guān)系、等式或不等式,④求解,作答.

  設(shè)計(jì)意圖:培養(yǎng)學(xué)生分析歸納問題的能力,掌握用比較法證明不等式的知識(shí)體系.

  (三)小結(jié)

 。ń處熁顒(dòng))教師小結(jié)本節(jié)課所學(xué)的知識(shí)及數(shù)學(xué) 思想與方法.

  (學(xué)生活動(dòng))與教師一道小結(jié),并記錄筆記.

  本節(jié)課學(xué)習(xí)了對差式變形的一種常用方法因式分解法;對符號(hào)確定的分類討論法;應(yīng)用比較法的思想解決實(shí)際問題.

  通過學(xué)習(xí)比較法證明不等式,要明確比較法證明不等式的理論依據(jù),理解轉(zhuǎn)化,使問題簡化是比較法證明不等式中所蘊(yùn)含的重要數(shù)學(xué)思想,掌握求差后對差式變形以及判斷符號(hào)的重要方法,并在以后的學(xué)習(xí)中繼續(xù)積累方法,培養(yǎng)用數(shù)學(xué)知識(shí)解決實(shí)際問題的能力.

  設(shè)計(jì)意圖:培養(yǎng)學(xué)生對所學(xué)的知識(shí)進(jìn)行概括歸納的能力,鞏固所學(xué)的知識(shí),領(lǐng)會(huì)化歸、類比、分類討論的重要數(shù)學(xué) 思想方法.

 。ㄋ模┎贾米鳂I(yè)

  1.課本作業(yè):P17 7、8。

  2,思考題:已知,求證

  3.研究性題:對于同樣的距離,船在流水中來回行駛一次的時(shí)間和船在靜水中來回行駛一次的時(shí)間是否相等?(假設(shè)船在流水中的速度和部在靜水中的速度保持不變)

  設(shè)計(jì)意圖:思考題讓學(xué)生了解商值比較法,掌握分類討論的思想.研究性題是使學(xué)生理論聯(lián)系實(shí)際,用數(shù)學(xué)解決實(shí)際問題,提高應(yīng)用數(shù)學(xué)的能力.

  (五)課后點(diǎn)評(píng)

  1.教學(xué)評(píng)價(jià)、反饋調(diào)節(jié)措施的構(gòu)想:本節(jié)課采用啟發(fā)引導(dǎo),講練結(jié)合的授課方式,發(fā)揮教師主導(dǎo)作用,體現(xiàn)學(xué)生主體地位,通過啟發(fā)誘導(dǎo)學(xué)生深入思考問題,解決問題,反饋學(xué)習(xí)信息,調(diào)節(jié)教學(xué)活動(dòng).

  2.教學(xué)措施的設(shè)計(jì):由于對差式變形,確定符號(hào)是掌握比較法證明不等式的關(guān)鍵,本節(jié)課在上節(jié)課的基礎(chǔ)上繼續(xù)學(xué)習(xí)差式變形的方法和符號(hào)的確定,例3和例4分別使學(xué)生掌握因式分解變形和分類討論確定符號(hào),例5使學(xué)生對所學(xué)的知識(shí)會(huì)應(yīng)用.例題設(shè)計(jì)目的在于突出重點(diǎn),突破難點(diǎn),學(xué)會(huì)應(yīng)用

高中數(shù)學(xué)教案15

  教學(xué)目標(biāo):

  1.理解流程圖的選擇結(jié)構(gòu)這種基本邏輯結(jié)構(gòu)

  2.能識(shí)別和理解簡單的框圖的功能

  3.能運(yùn)用三種基本邏輯結(jié)構(gòu)設(shè)計(jì)流程圖以解決簡單的問題

  教學(xué)方法:

  1.通過模仿、操作、探索,經(jīng)歷設(shè)計(jì)流程圖表達(dá)求解問題的過程,加深對流程圖的`感知

  2.在具體問題的解決過程中,掌握基本的流程圖的畫法和流程圖的三種基本邏輯結(jié)構(gòu)

  教學(xué)過程:

  一、問題情境

  1.情境:

  某鐵路客運(yùn)部門規(guī)定甲、乙兩地之間旅客托運(yùn)行李的費(fèi)用為

  其中(單位:xx)為行李的重量.

  2.試給出計(jì)算費(fèi)用(單位:xx元)的一個(gè)算法,并畫出流程圖

  二、學(xué)生活動(dòng)

  學(xué)生討論,教師引導(dǎo)學(xué)生進(jìn)行表達(dá)

  三、建構(gòu)數(shù)學(xué)

  1.選擇結(jié)構(gòu)的概念:

  先根據(jù)條件作出判斷,再?zèng)Q定執(zhí)行哪一種操作的結(jié)構(gòu)稱為選擇結(jié)構(gòu)

  虛線框內(nèi)是一個(gè)選擇結(jié)構(gòu),它包含一個(gè)判斷框,當(dāng)條件成立(或稱條件為“真”)時(shí)執(zhí)行,否則執(zhí)行

  2.說明:

  (1)有些問題需要按給定的條件進(jìn)行分析、比較和判斷,并按判斷的不同情況進(jìn)行不同的操作,這類問題的實(shí)現(xiàn)就要用到選擇結(jié)構(gòu)的設(shè)計(jì);

  (2)選擇結(jié)構(gòu)也稱為分支結(jié)構(gòu)或選取結(jié)構(gòu),它要先根據(jù)指定的條件進(jìn)行判斷,再由判斷的結(jié)果決定執(zhí)行兩條分支路徑中的某一條;

  (3)在上圖的選擇結(jié)構(gòu)中,只能執(zhí)行和之一,不可能既執(zhí)行,又執(zhí)行,但或兩個(gè)框中可以有一個(gè)是空的,即不執(zhí)行任何操作;

  (4)流程圖圖框的形狀要規(guī)范,判斷框必須畫成菱形,它有一個(gè)進(jìn)入點(diǎn)和兩個(gè)退出點(diǎn)。

  3.思考:教材第7頁圖所示的算法中,哪一步進(jìn)行了判斷?

【高中數(shù)學(xué)教案】相關(guān)文章:

數(shù)學(xué)教案高中教學(xué)06-11

高中必修數(shù)學(xué)教案01-07

高中數(shù)學(xué)教案10-26

高中必修4數(shù)學(xué)教案03-13

高中數(shù)學(xué)教案09-28

高中數(shù)學(xué)教案[通用]06-22

高中數(shù)學(xué)教案【推薦】05-26

【集合】高中數(shù)學(xué)教案05-22

高中數(shù)學(xué)教案[優(yōu)]05-20

高中高二數(shù)學(xué)教案11-14