- 相關(guān)推薦
小學(xué)數(shù)學(xué)一元二次方程教案范文
教學(xué)目標(biāo)
了解一元二次方程的概念;一般式ax2+bx+c=0(a0)及其派生的概念;應(yīng)用一元二次方程概念解決一些簡(jiǎn)單題目.
1.通過設(shè)置問題,建立數(shù)學(xué)模型,模仿一元一次方程概念給一元二次方程下定義.
2.一元二次方程的一般形式及其有關(guān)概念.
3.解決一些概念性的題目.
4.通過生活學(xué)習(xí)數(shù)學(xué),并用數(shù)學(xué)解決生活中的問題來激發(fā)學(xué)生的學(xué)習(xí)熱情.
重難點(diǎn)關(guān)鍵
1.重點(diǎn):一元二次方程的概念及其一般形式和一元二次方程的有關(guān)概念并用這些概念解決問題.
2.難點(diǎn)關(guān)鍵:通過提出問題,建立一元二次方程的數(shù)學(xué)模型,再由一元一次方程的概念遷移到一元二次方程的概念.
教學(xué)過程
一、復(fù)習(xí)引入
學(xué)生活動(dòng):列方程.
問題(1)《九章算術(shù)》勾股章有一題:今有戶高多于廣六尺八寸,兩隅相去適一丈,問戶高、廣各幾何?
大意是說:已知長(zhǎng)方形門的高比寬多6尺8寸,門的對(duì)角線長(zhǎng)1丈,那么門的高和寬各是多少?
如果假設(shè)門的高為x尺,那么,這個(gè)門的寬為_______尺,根據(jù)題意,得________.
整理、化簡(jiǎn),得:__________.
問題(2)如圖,如果 ,那么點(diǎn)C叫做線段AB的黃金分割點(diǎn).
如果假設(shè)AB=1,AC=x,那么BC=________,根據(jù)題意,得:________.
整理得:_________.
問題(3)有一面積為54m2的長(zhǎng)方形,將它的一邊剪短5m,另一邊剪短2m,恰好變成一個(gè)正方形,那么這個(gè)正方形的邊長(zhǎng)是多少?
如果假設(shè)剪后的正方形邊長(zhǎng)為x,那么原來長(zhǎng)方形長(zhǎng)是________,寬是_____,根據(jù)題意,得:_______.
整理,得:________.
老師點(diǎn)評(píng)并分析如何建立一元二次方程的數(shù)學(xué)模型,并整理.
二、探索新知
學(xué)生活動(dòng):請(qǐng)口答下面問題.
(1)上面三個(gè)方程整理后含有幾個(gè)未知數(shù)?
(2)按照整式中的多項(xiàng)式的規(guī)定,它們最高次數(shù)是幾次?
(3)有等號(hào)嗎?或與以前多項(xiàng)式一樣只有式子?
老師點(diǎn)評(píng):(1)都只含一個(gè)未知數(shù)x;(2)它們的最高次數(shù)都是2次的;(3)都有等號(hào),是方程.
因此,像這樣的方程兩邊都是整式,只含有一個(gè)未知數(shù)(一元),并且未知數(shù)的最高次數(shù)是2(二次)的方程,叫做一元二次方程.
一般地,任何一個(gè)關(guān)于x的一元二次方程,經(jīng)過整理,都能化成如下形式ax2+bx+c=0(a0).這種形式叫做一元二次方程的一般形式.
一個(gè)一元二次方程經(jīng)過整理化成ax2+bx+c=0(a0)后,其中ax2是二次項(xiàng),a是二次項(xiàng)系數(shù);bx是一次項(xiàng),b是一次項(xiàng)系數(shù);c是常數(shù)項(xiàng).
例1.將方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并寫出其中的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)及常數(shù)項(xiàng).
分析:一元二次方程的一般形式是ax2+bx+c=0(a0).因此,方程(8-2x)(5-2x)=18必須運(yùn)用整式運(yùn)算進(jìn)行整理,包括去括號(hào)、移項(xiàng)等.
解:去括號(hào),得:
40-16x-10x+4x2=18
移項(xiàng),得:4x2-26x+22=0
其中二次項(xiàng)系數(shù)為4,一次項(xiàng)系數(shù)為-26,常數(shù)項(xiàng)為22.
例2.(學(xué)生活動(dòng):請(qǐng)二至三位同學(xué)上臺(tái)演練)將方程(x+1)2+(x-2)(x+2)=1化成一元二次方程的一般形式,并寫出其中的二次項(xiàng)、二次項(xiàng)系數(shù);一次項(xiàng)、一次項(xiàng)系數(shù);常數(shù)項(xiàng).
分析:通過完全平方公式和平方差公式把(x+1)2+(x-2)(x+2)=1化成ax2+bx+c=0(a0)的形式.
解:去括號(hào),得:
x2+2x+1+x2-4=1
移項(xiàng),合并得:2x2+2x-4=0
其中:二次項(xiàng)2x2,二次項(xiàng)系數(shù)2;一次項(xiàng)2x,一次項(xiàng)系數(shù)2;常數(shù)項(xiàng)-4.
三、鞏固練習(xí)
教材P32 練習(xí)1、2
四、應(yīng)用拓展
例3.求證:關(guān)于x的方程(m2-8m+17)x2+2mx+1=0,不論m取何值,該方程都是一元二次方程.
分析:要證明不論m取何值,該方程都是一元二次方程,只要證明m2-8m+170即可.
證明:m2-8m+17=(m-4)2+1
∵(m-4)20
(m-4)2+10,即(m-4)2+10
不論m取何值,該方程都是一元二次方程.
五、歸納小結(jié)(學(xué)生總結(jié),老師點(diǎn)評(píng))
本節(jié)課要掌握:
(1)一元二次方程的概念;(2)一元二次方程的一般形式ax2+bx+c=0(a0)和二次項(xiàng)、二次項(xiàng)系數(shù),一次項(xiàng)、一次項(xiàng)系數(shù),常數(shù)項(xiàng)的概念及其它們的運(yùn)用.
六、布置作業(yè)
【小學(xué)數(shù)學(xué)一元二次方程教案】相關(guān)文章:
數(shù)學(xué)《一元二次方程》教案設(shè)計(jì)12-04
《一元二次方程》數(shù)學(xué)教案(精選12篇)12-25
數(shù)學(xué)教案-一元二次方程的應(yīng)用(一)05-02
數(shù)學(xué)教案-一元二次方程的應(yīng)用(三)05-02
《一元二次方程》數(shù)學(xué)教案(精選10篇)06-26
數(shù)學(xué)教案-一元二次方程的應(yīng)用(二)05-02
一元二次方程教案01-15