- 相關(guān)推薦
高一下冊(cè)數(shù)學(xué)教學(xué)計(jì)劃合集五篇
時(shí)光飛逝,時(shí)間在慢慢推演,我們的工作又進(jìn)入新的階段,為了今后更好的工作發(fā)展,該為接下來(lái)的學(xué)習(xí)制定一個(gè)計(jì)劃了。相信大家又在為寫計(jì)劃犯愁了吧?以下是小編幫大家整理的高一下冊(cè)數(shù)學(xué)教學(xué)計(jì)劃5篇,歡迎閱讀與收藏。
高一下冊(cè)數(shù)學(xué)教學(xué)計(jì)劃 篇1
教材教法分析
本節(jié)課是蘇教版普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)數(shù)學(xué)必修(2)第2章第三節(jié)的第一節(jié)課.該課是在二維平面直角坐標(biāo)系基礎(chǔ)上的推廣,是空間立體幾何的代數(shù)化.教材通過(guò)一個(gè)實(shí)際問(wèn)題的分析和解決,讓學(xué)生感受建立空間直角坐標(biāo)系的必要性,內(nèi)容由淺入深、環(huán)環(huán)相扣,體現(xiàn)了知識(shí)的發(fā)生、發(fā)展的過(guò)程,能夠很好的誘導(dǎo)學(xué)生積極地參與到知識(shí)的探究過(guò)程中.同時(shí),通過(guò)對(duì)《空間直角坐標(biāo)系》的學(xué)習(xí)和掌握將對(duì)今后學(xué)習(xí)本節(jié)內(nèi)容《空間兩點(diǎn)間的距離》和選修2-1內(nèi)容《空間中的向量與立體幾何》有著鋪墊作用.由此,本課打算通過(guò)師生之間的合作、交流、討論,利用類比建立起空間直角坐標(biāo)系.
學(xué)情分析
一方面學(xué)生通過(guò)對(duì)空間幾何體:柱、錐、臺(tái)、球的學(xué)習(xí),處理了空間中點(diǎn)、線、面的關(guān)系,初步掌握了簡(jiǎn)單幾何體的直觀圖畫法,因此頭腦中已建立了一定的空間思維能力.另一方面學(xué)生剛剛學(xué)習(xí)了解析幾何的基礎(chǔ)內(nèi)容:直線和圓,對(duì)建立平面直角坐標(biāo)系,根據(jù)坐標(biāo)利用代數(shù)的方法處理問(wèn)題有了一定的認(rèn)識(shí),因此也建立了一定的轉(zhuǎn)化和數(shù)形結(jié)合的思想.這兩方面都為學(xué)習(xí)本課內(nèi)容打下了基礎(chǔ).
教學(xué)目標(biāo)
1.知識(shí)與技能
、偻ㄟ^(guò)具體情境,使學(xué)生感受建立空間直角坐標(biāo)系的`必要性
、诹私饪臻g直角坐標(biāo)系,掌握空間點(diǎn)的坐標(biāo)的確定方法和過(guò)程
、鄹惺茴惐人枷朐谔骄啃轮R(shí)過(guò)程中的作用
2.過(guò)程與方法
①結(jié)合具體問(wèn)題引入,誘導(dǎo)學(xué)生探究
、陬惐葘W(xué)習(xí),循序漸進(jìn)
3.情感態(tài)度與價(jià)值觀
通過(guò)用類比的數(shù)學(xué)思想方法探究新知識(shí),使學(xué)生感受新舊知識(shí)的聯(lián)系和研究事物從低維到高維的一般方法.通過(guò)實(shí)際問(wèn)題的引入和解決,讓學(xué)生體會(huì)數(shù)學(xué)的實(shí)踐性和應(yīng)用性,感受數(shù)學(xué)刻畫生活的作用,不斷地拓展自己的思維空間.
教學(xué)重點(diǎn)
本課是本節(jié)第一節(jié)課,關(guān)鍵是空間直角坐標(biāo)系的建立,對(duì)今后相關(guān)內(nèi)容的學(xué)習(xí)有著直接的影響作用,所以本課教學(xué)重點(diǎn)確立為空間直角坐標(biāo)系的理解.
教學(xué)難點(diǎn)
通過(guò)建立恰當(dāng)?shù)目臻g直角坐標(biāo)系,確定空間點(diǎn)的坐標(biāo)。
先通過(guò)具體問(wèn)題回顧平面直角坐標(biāo)系,使學(xué)生體會(huì)用坐標(biāo)刻畫平面內(nèi)任意點(diǎn)的位置的方法,進(jìn)而設(shè)置具體問(wèn)題情境促發(fā)利用舊知解決問(wèn)題的局限性,從而尋求新知,根據(jù)已有一定空間思維,所以能較容易得出第三根軸的建立,進(jìn)而感受逐步發(fā)展得到空間直角坐標(biāo)系的建立,再逐步掌握利用坐標(biāo)表示空間任意點(diǎn)的位置.總得來(lái)說(shuō),關(guān)鍵是具體問(wèn)題情境的設(shè)立,不斷地讓學(xué)生感受,交流,討論.
高一下冊(cè)數(shù)學(xué)教學(xué)計(jì)劃 篇2
一、教材依據(jù)
本節(jié)課是北師大版數(shù)學(xué)(必修2)第二章《解析幾何初步》第一節(jié)《1.2直線的方程》第一部分《直線方程的點(diǎn)斜式》內(nèi)容。
二、教材分析
直線方程的點(diǎn)斜式給出了根據(jù)已知一個(gè)點(diǎn)和斜率求直線方程的方法和途徑。在求直線的方程中,直線方程的點(diǎn)斜式是基本的,直線方程的斜截式
、兩點(diǎn)式都是由點(diǎn)斜式推出的。從初中代數(shù)中的一次函數(shù)引入,自然過(guò)渡到本節(jié)課想要解決的問(wèn)題求直線方程問(wèn)題。在引入,過(guò)程中要讓學(xué)生弄清
直線與方程的.一一對(duì)應(yīng)關(guān)系,理解研究直線可以從研究方程和方程的特征入手。
在推導(dǎo)直線方程的點(diǎn)斜式時(shí),根據(jù)直線這一結(jié)論,先猜想確定一條直線的條件,再根據(jù)猜想得到的條件求出直線方程。
三、教學(xué)目標(biāo)
知識(shí)與技能:
。1)理解直線方程的點(diǎn)斜式、斜截式的形式特點(diǎn)和適用范圍;
(2)能正確利用直線的點(diǎn)斜式、斜截式公式求直線方程。
(3)體會(huì)直線的斜截式方程與一次函數(shù)的關(guān)系。
過(guò)程與方法:在已知直角坐標(biāo)系內(nèi)確定一條直線的幾何要素直線上的一點(diǎn)和直線的傾斜角的基礎(chǔ)上,通過(guò)師生探討,得出直線的點(diǎn)斜式方程;學(xué)生
通過(guò)對(duì)比理解截距與距離的區(qū)別。
情態(tài)與價(jià)值觀:通過(guò)讓學(xué)生體會(huì)直線的斜截式方程與一次函數(shù)的關(guān)系,進(jìn)一步培養(yǎng)學(xué)生數(shù)形結(jié)合的思想,滲透數(shù)學(xué)中普遍存在相互聯(lián)系、相互轉(zhuǎn)化
等觀點(diǎn),使學(xué)生能用聯(lián)系的觀點(diǎn)看問(wèn)題。
四、教學(xué)重點(diǎn)
重點(diǎn):直線的點(diǎn)斜式方程和斜截式方程。
五、教學(xué)難點(diǎn)
難點(diǎn):直線的點(diǎn)斜式方程和斜截式方程的應(yīng)用。
要點(diǎn):運(yùn)用數(shù)形結(jié)合的思想方法,幫助學(xué)生分析描述幾何圖形。
六、教學(xué)準(zhǔn)備
1.教學(xué)方法的選擇:?jiǎn)l(fā)、引導(dǎo)、討論.
創(chuàng)設(shè)問(wèn)題情境,采用啟發(fā)誘導(dǎo)式的教學(xué)模式引導(dǎo)學(xué)生探索討論,學(xué)生主動(dòng)參與提出問(wèn)題、探索問(wèn)題和解決問(wèn)題的過(guò)程,突出以學(xué)生為主體的探究性
學(xué)習(xí)活動(dòng)。
2.通過(guò)讓學(xué)生觀察、討論、辨析、畫圖,親身實(shí)踐,調(diào)動(dòng)多感官去體驗(yàn)數(shù)學(xué)建模的思想;學(xué)生要學(xué)會(huì)用數(shù)形結(jié)合的方法建立起代數(shù)問(wèn)題與幾何問(wèn)題
間的密切聯(lián)系。為使學(xué)生積極參與課堂學(xué)習(xí),我主要指導(dǎo)了以下的學(xué)習(xí)方法:
①.讓學(xué)生自己發(fā)現(xiàn)問(wèn)題,自己通過(guò)觀察圖像歸納總結(jié),自己評(píng)析解題對(duì)錯(cuò),從而提高學(xué)生的參與意識(shí)和數(shù)學(xué)表達(dá)能力。
②.分組討論。
高一下冊(cè)數(shù)學(xué)教學(xué)計(jì)劃 篇3
一、教學(xué)分析
1、分析教材
本章教材整體主要分成三大部分:
(1)、圓的標(biāo)準(zhǔn)方程與一般方程;
(2)、直線與圓、圓與圓的位置關(guān)系;
(3)、空間直角坐標(biāo)系以及空間兩點(diǎn)間的距離公式。
圓的方程是在前一章直線方程基礎(chǔ)上引入的新的曲線方程,更進(jìn)一步要求“數(shù)與形”結(jié)合。所以學(xué)習(xí)有關(guān)圓的方程時(shí),仍仍然沿用直線方程中使用的坐標(biāo)法,繼續(xù)運(yùn)用坐標(biāo)法研究直線與圓、圓與圓的位置關(guān)系等幾何問(wèn)題。此外還要學(xué)習(xí)空間直角坐標(biāo)系的有關(guān)知識(shí),以便為今后用坐標(biāo)法研究空間幾何對(duì)象奠定基礎(chǔ)。這些知識(shí)是進(jìn)一步學(xué)習(xí)圓錐曲線方程、導(dǎo)數(shù)和積分的基礎(chǔ)。
2、分析學(xué)生
高中一年級(jí)的學(xué)生還沒(méi)有建立起比較好的數(shù)形結(jié)合的思想,前面學(xué)習(xí)過(guò)直線知識(shí),只是使學(xué)生有了用坐標(biāo)法研究問(wèn)題的基本思路,通過(guò)圓的概念的引入及其現(xiàn)實(shí)生活中圓的例子,啟發(fā)學(xué)生學(xué)習(xí)的興趣及研究問(wèn)題的方法,培養(yǎng)學(xué)生分析探索問(wèn)題的能力,熟練的掌握解決解析幾何問(wèn)題的方法-坐標(biāo)法,滲透數(shù)形結(jié)合的思想研究問(wèn)題時(shí)抓住問(wèn)題的本質(zhì),研究細(xì)致思考,規(guī)范得出解答,體現(xiàn)運(yùn)動(dòng)變化,對(duì)立統(tǒng)一的思想
3、教學(xué)重點(diǎn)與難點(diǎn)
重點(diǎn):圓的標(biāo)準(zhǔn)方程與一般方程;利用直線與圓的方程判斷直線與圓、圓與圓的位置關(guān)系;空間直角坐標(biāo)系的基本認(rèn)識(shí)。
難點(diǎn):直線與圓的方程的應(yīng)用;會(huì)求解簡(jiǎn)單的直線與圓的相關(guān)曲線的方程;建立空間直角坐標(biāo)系。
二、教學(xué)目標(biāo)
1、掌握?qǐng)A的定義和圓標(biāo)準(zhǔn)方程、一般方程的概念;能根據(jù)圓的方程求圓心和半徑,初步掌握求圓的方程的方法。
2、掌握直線與圓的位置關(guān)系的判定。
3、在進(jìn)一步培養(yǎng)學(xué)生類比、數(shù)形結(jié)合、分類討論和化歸的數(shù)學(xué)思想方法的過(guò)程中,提高學(xué)生學(xué)習(xí)能力。
4、培養(yǎng)學(xué)生科學(xué)探索精神、審美觀和理論聯(lián)系實(shí)際思想。
三、教學(xué)策略
1、教學(xué)模式
本節(jié)內(nèi)容是運(yùn)用“問(wèn)題解決”課堂教學(xué)模式的一次嘗試,采用探究、討論的
教學(xué)方法,通過(guò)問(wèn)題激發(fā)學(xué)生求知欲,使學(xué)生主動(dòng)參與數(shù)學(xué)實(shí)踐活動(dòng),以獨(dú)立思考和相互交流的形式,在教師的指導(dǎo)下發(fā)現(xiàn)、分析和解決問(wèn)題,掌握數(shù)學(xué)基本知識(shí)和基本能力,培養(yǎng)積極探索和團(tuán)結(jié)協(xié)作的'科學(xué)精神。
2、教學(xué)方法與手段--充分利用信息技術(shù),合理整合課程資源
采用探究、討論的教學(xué)方法,通過(guò)問(wèn)題激發(fā)學(xué)生求知欲采用多媒體技術(shù),目的在于充分利用其優(yōu)良的傳播功能,大容量信息的呈現(xiàn)和生動(dòng)形象的演示(尤其是動(dòng)畫效果)對(duì)提高學(xué)生學(xué)習(xí)興趣、激活學(xué)生思維、加深概念理解有積極作用。制作中,采用交互技術(shù),使課件的機(jī)動(dòng)性得到加強(qiáng)。
四、對(duì)內(nèi)容安排的說(shuō)明
本章分三部分:圓的標(biāo)準(zhǔn)方程與一般方程;直線與圓、圓與圓的位置關(guān)系;空間直角坐標(biāo)系。
1、建立圓的方程是本節(jié)的主要內(nèi)容之一。根據(jù)圓的幾何特征(主要是動(dòng)點(diǎn)與定點(diǎn)間距離恒定)建立適當(dāng)?shù)淖鴺?biāo)系,再根據(jù)曲線上的點(diǎn)所滿足的幾何條件,求出點(diǎn)的坐標(biāo)所滿足的曲線方程。
通過(guò)研究方程來(lái)研究曲線的性質(zhì)是解析幾何的另一個(gè)主要內(nèi)容,這就是解析幾何通過(guò)代數(shù)方法研究幾何圖形的特點(diǎn),也就是坐標(biāo)法。始終強(qiáng)調(diào)曲線方程與曲線圖像之間的一一對(duì)應(yīng)。這一思想應(yīng)該貫穿于整個(gè)圓的教學(xué)。
2.通過(guò)方程,研究直線與圓、圓與圓的位置關(guān)系是本章的主要內(nèi)容之一。判斷直線與圓、圓與圓的位置關(guān)系可以從兩個(gè)方面著手:
(1)。兩條曲線有無(wú)公共點(diǎn),等價(jià)于由它們方程聯(lián)立的方程組有無(wú)實(shí)數(shù)解。方程組有幾組實(shí)數(shù)解,這兩條曲線就有幾個(gè)公共點(diǎn);方程組沒(méi)有實(shí)數(shù)解,這兩條曲線就沒(méi)有公共點(diǎn)。
(2)。運(yùn)用平面幾何知識(shí),把直線與圓、圓與圓位置關(guān)系的結(jié)論轉(zhuǎn)化為相應(yīng)的代數(shù)結(jié)論。
3、坐標(biāo)法是研究幾何問(wèn)題的重要方法,在教學(xué)過(guò)程中,應(yīng)該始終貫穿坐標(biāo)法這一重要思想,不怕重復(fù);通過(guò)坐標(biāo)系,把點(diǎn)和坐標(biāo)、曲線和方程聯(lián)系起來(lái),實(shí)現(xiàn)形和數(shù)的統(tǒng)一。
用坐標(biāo)法解決幾何問(wèn)題時(shí),先用坐標(biāo)和方程表示相應(yīng)的幾何對(duì)象,然后對(duì)坐標(biāo)和方程進(jìn)行代數(shù)討論;最后再把代數(shù)運(yùn)算結(jié)果翻譯成相應(yīng)的幾何結(jié)論。這就是用坐標(biāo)法解決平面幾何問(wèn)題的“三步曲”:
第一步:建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,用坐標(biāo)和方程表示問(wèn)題中涉及的幾何元素,將平面幾何問(wèn)題轉(zhuǎn)化為代數(shù)問(wèn)題;
第二步:通過(guò)代數(shù)運(yùn)算,解決代數(shù)問(wèn)題;
第三步:把代數(shù)運(yùn)算結(jié)果翻譯成幾何結(jié)論。
五、教學(xué)評(píng)價(jià)
、暹^(guò)程性評(píng)價(jià)
1、教學(xué)過(guò)程中,教師的講解和學(xué)生的練習(xí)緊扣教學(xué)目標(biāo),內(nèi)容深淺要分層次,設(shè)計(jì)的問(wèn)題要照顧好、中、差。
2、對(duì)于方程的推導(dǎo)運(yùn)用的方法,學(xué)生理解起來(lái)難度較大,主要采用讓學(xué)生理解的基礎(chǔ)上進(jìn)行檢測(cè)反饋
、娼K結(jié)性評(píng)價(jià)
1、課程內(nèi)容全部結(jié)束后,讓學(xué)生分組交流、討論后,選代表談收獲、體會(huì)和感想。
2、留課后作業(yè)(扣教學(xué)目標(biāo)、分類型、分層次,落實(shí)學(xué)生為主體),讓學(xué)生認(rèn)真理解和鞏固,了解圓的標(biāo)準(zhǔn)方程和一般方程,以及直線與圓位置關(guān)系,做完課后習(xí)題,做好作業(yè)。
高一下冊(cè)數(shù)學(xué)教學(xué)計(jì)劃 篇4
一、指導(dǎo)思想:
(1)隨著素質(zhì)教育的深入展開(kāi),《課程方案》提出了“教育要面向世界,面向未來(lái),面向現(xiàn)代化”和“教育必須為社會(huì)主義現(xiàn)代化建設(shè)服務(wù),必須與生產(chǎn)勞動(dòng)相結(jié)合,培養(yǎng)德、智、體等方面全面發(fā)展的社會(huì)主義事業(yè)的建設(shè)者和接班人”的指導(dǎo)思想和課程理念和改革要點(diǎn)。使學(xué)生掌握從事社會(huì)主義現(xiàn)代化建設(shè)和進(jìn)一步學(xué)習(xí)現(xiàn)代化科學(xué)技術(shù)所需要的數(shù)學(xué)知識(shí)和基本技能。
(2)培養(yǎng)學(xué)生的邏輯思維能力、運(yùn)算能力、空間想象能力,以及綜合運(yùn)用有關(guān)數(shù)學(xué)知識(shí)分析問(wèn)題和解決問(wèn)題的能力。使學(xué)生逐步地學(xué)會(huì)觀察、分析、綜合、比較、抽象、概括、探索和創(chuàng)新的能力;運(yùn)用歸納、演繹和類比的方法進(jìn)行推理,并正確地、有條理地表達(dá)推理過(guò)程的能力。
高一下冊(cè)數(shù)學(xué)教學(xué)計(jì)劃(3) 根據(jù)數(shù)學(xué)的學(xué)科特點(diǎn),加強(qiáng)學(xué)習(xí)目的性的教育,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的自覺(jué)心和興趣,培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣,實(shí)事求是的科學(xué)態(tài)度,頑強(qiáng)的學(xué)習(xí)毅力和獨(dú)立思考、探索創(chuàng)新的精神。
(4) 使學(xué)生具有一定的數(shù)學(xué)視野,逐步認(rèn)識(shí)數(shù)學(xué)的科學(xué)價(jià)值、應(yīng)用價(jià)值和文化價(jià)值,形成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的理性精神,體會(huì)數(shù)學(xué)的美學(xué)意義,理解數(shù)學(xué)中普遍存在著的運(yùn)動(dòng)、變化、相互聯(lián)系和相互轉(zhuǎn)化的情形,從而進(jìn)一步樹(shù)立辯證唯物主義和歷史唯物主義世界觀。
(5)學(xué)會(huì)通過(guò)收集信息、處理數(shù)據(jù)、制作圖像、分析原因、推出結(jié)論來(lái)解決實(shí)際問(wèn)題的思維方法和操作方法。
(6)本學(xué)期是高一的重要時(shí)期,教師承擔(dān)著雙重責(zé)任,既要不斷夯實(shí)基礎(chǔ),加強(qiáng)綜合能力的培養(yǎng),又要滲透有關(guān)高考的思想方法,為三年的學(xué)習(xí)做好準(zhǔn)備。
二、學(xué)生狀況分析
本學(xué)期擔(dān)任高一(1)班和(5)班的數(shù)學(xué)教學(xué)工作,學(xué)生共有111人,其中(1)班學(xué)生是名校直通班,學(xué)生思維活躍,(5)班是火箭班,學(xué)生基本素質(zhì)不錯(cuò),一些基本知識(shí)掌握不是很好,學(xué)習(xí)積極性需要教師提高,成績(jī)以中等為主,中上不多。兩個(gè)班中,從軍訓(xùn)一周來(lái)看,學(xué)生的學(xué)習(xí)積極性還是比較高,愛(ài)問(wèn)問(wèn)題的同學(xué)比較多,但由于基礎(chǔ)知識(shí)不太牢固,上課效率不是很高。
二、教材簡(jiǎn)析
使用人教版《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)·數(shù)學(xué)(A版)》,教材在堅(jiān)持我國(guó)數(shù)學(xué)教育優(yōu)良傳統(tǒng)的前提下,認(rèn)真處理繼承、借鑒、發(fā)展、創(chuàng)新之間的關(guān)系,體現(xiàn)基礎(chǔ)性、時(shí)代性、典型性和可接受性等,具有親和力、問(wèn)題性、科學(xué)性、思想性、應(yīng)用性、聯(lián)系性等特點(diǎn)。必修1有三章(集合與函數(shù)概念;基本初等函數(shù);函數(shù)的應(yīng)用);必修4有三章(三角函數(shù);平面向量;三角恒等變換)。
必修1,主要涉及兩章內(nèi)容:
第一章 集合
通過(guò)本章學(xué)習(xí),使學(xué)生感受到用集合表示數(shù)學(xué)內(nèi)容時(shí)的簡(jiǎn)潔性、準(zhǔn)確性,幫助學(xué)生學(xué)會(huì)用集合語(yǔ)言表示數(shù)學(xué)對(duì)象,為以后的.學(xué)習(xí)奠定基礎(chǔ)。
1.了解集合的含義,體會(huì)元素與集合的屬于關(guān)系,并初步掌握集合的表示方法;新-課-標(biāo)-第-一-網(wǎng)
2.理解集合間的包含與相等關(guān)系,能識(shí)別給定集合的子集,了解全集與空集的含義;
3.理解補(bǔ)集的含義,會(huì)求在給定集合中某個(gè)集合的補(bǔ)集;
4.理解兩個(gè)集合的并集和交集的含義,會(huì)求兩個(gè)簡(jiǎn)單集合的并集和交集;
5.滲透數(shù)形結(jié)合、分類討論等數(shù)學(xué)思想方法;
6.在引導(dǎo)學(xué)生觀察、分析、抽象、類比得到集合與集合間的關(guān)系等數(shù)學(xué)知識(shí)的過(guò)程中,培養(yǎng)學(xué)生的思維能力。
第二章 函數(shù)的概念與基本初等函數(shù)Ⅰ
教學(xué)本章時(shí)應(yīng)立足于現(xiàn)實(shí)生活從具體問(wèn)題入手,以問(wèn)題為背景,按照“問(wèn)題情境—數(shù)學(xué)活動(dòng)—意義建構(gòu)—數(shù)學(xué)理論—數(shù)學(xué)應(yīng)用—回顧反思”的順序結(jié)構(gòu),引導(dǎo)學(xué)生通過(guò)實(shí)驗(yàn)、觀察、歸納、抽象、概括,數(shù)學(xué)地提出、分析和解決問(wèn)題。通過(guò)本章學(xué)習(xí),使學(xué)生進(jìn)一步感受函數(shù)是探索自然現(xiàn)象、社會(huì)現(xiàn)象基本規(guī)律的工具和語(yǔ)言,學(xué)會(huì)用函數(shù)的思想、變化的觀點(diǎn)分析和解決問(wèn)題,達(dá)到培養(yǎng)學(xué)生的創(chuàng)新思維的目的。
1.了解函數(shù)概念產(chǎn)生的背景,學(xué)習(xí)和掌握函數(shù)的概念和性質(zhì),能借助函數(shù)的知識(shí)表述、刻畫事物的變化規(guī)律;X|k |b| 1 . c|o |m
2.理解有理指數(shù)冪的意義,掌握有理指數(shù)冪的運(yùn)算性質(zhì);掌握指數(shù)函數(shù)的概念、圖象和性質(zhì);理解對(duì)數(shù)的概念,掌握對(duì)數(shù)的運(yùn)算性質(zhì),掌握對(duì)數(shù)函數(shù)的概念、圖象和性質(zhì);了解冪函數(shù)的概念和性質(zhì),知道指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、冪函數(shù)時(shí)描述客觀世界變化規(guī)律的重要數(shù)學(xué)模型;
3.了解函數(shù)與方程之間的關(guān)系;會(huì)用二分法求簡(jiǎn)單方程的近似解;了解函數(shù)模型及其意義;
4.培養(yǎng)學(xué)生的理性思維能力、辯證思維能力、分析問(wèn)題和解決問(wèn)題的能力、創(chuàng)新意識(shí)與探究能力、數(shù)學(xué)建模能力以及數(shù)學(xué)交流的能力。
必修4,主要涉及三章內(nèi)容:
第一章 三角函數(shù)
通過(guò)本章學(xué)習(xí),有助于學(xué)生認(rèn)識(shí)三角函數(shù)與實(shí)際生活的緊密聯(lián)系,以及三角函數(shù)在解決實(shí)際問(wèn)題中的廣泛應(yīng)用,從中感受數(shù)學(xué)的價(jià)值,學(xué)會(huì)用數(shù)學(xué)的思維方式觀察、分析現(xiàn)實(shí)世界、解決日常生活和其他學(xué)科學(xué)習(xí)中的問(wèn)題,發(fā)展數(shù)學(xué)應(yīng)用意識(shí)。
1.了解任意角的概念和弧度制;
2.掌握任意角三角函數(shù)的定義,理解同角三角函數(shù)的基本關(guān)系及誘導(dǎo)公式;
3.了解三角函數(shù)的周期性;
4.掌握三角函數(shù)的圖像與性質(zhì)。
第二章 平面向量
在本章中讓學(xué)生了解平面向量豐富的實(shí)際背景,理解平面向量及其運(yùn)算的意義,能用向量的語(yǔ)言和方法表述和解決數(shù)學(xué)和物理中的一些問(wèn)題,發(fā)展運(yùn)算能力和解決實(shí)際問(wèn)題的能力。
1.理解平面向量的概念及其表示;
2.掌握平面向量的加法、減法和向量數(shù)乘的運(yùn)算;
3.理解平面向量的正交分解及其坐標(biāo)表示,掌握平面向量的坐標(biāo)運(yùn)算;
4.理解平面向量數(shù)量積的含義,會(huì)用平面向量的數(shù)量積解決有關(guān)角度和垂直的問(wèn)題。
第三章 三角恒等變換
通過(guò)推導(dǎo)兩角和與差的余弦、正弦、正切公式,二倍角的正弦、余弦、正切公式以及積化和差、和差化積、半角公式的過(guò)程,讓學(xué)生在經(jīng)歷和參與數(shù)學(xué)發(fā)現(xiàn)活動(dòng)的基礎(chǔ)上,體會(huì)向量與三角函數(shù)的聯(lián)系、向量與三角恒等變換公式的聯(lián)系,理解并掌握三角變換的基本方法。
1.掌握兩角和與差的余弦、正弦、正切公式;
2.掌握二倍角的正弦、余弦、正切公式 ;
3.能正確運(yùn)用三角公式進(jìn)行簡(jiǎn)單的三角函數(shù)式的化簡(jiǎn)、求值和恒等式證明。
三、教學(xué)任務(wù)
本期授課內(nèi)容為必修1和必修4,必修1在期中考試前完成(約在11月5日前完成);必修4在期末考試前完成(約在12月31日前完成)。
四、教學(xué)質(zhì)量目標(biāo)新
1.獲得必要的數(shù)學(xué)基礎(chǔ)知識(shí)和基本技能,理解基本的數(shù)學(xué)概念、數(shù)學(xué)結(jié)論的本質(zhì),體會(huì)數(shù)學(xué)思想和方法。
2.提高空間想象、抽象概括、推理論證、運(yùn)算求解、數(shù)據(jù)處理等基本能力。
3.提高學(xué)生提出、分析和解決問(wèn)題(包括簡(jiǎn)單的實(shí)際問(wèn)題)的能力,數(shù)學(xué)表達(dá)和交流的能力,發(fā)展獨(dú)立獲取數(shù)學(xué)知識(shí)的能力。
4.發(fā)展數(shù)學(xué)應(yīng)用意識(shí)和創(chuàng)新意識(shí),力求對(duì)現(xiàn)實(shí)世界中蘊(yùn)涵的一些數(shù)學(xué)模式進(jìn)行思考和作出判斷。
5.提高學(xué)習(xí)數(shù)學(xué)的興趣,樹(shù)立學(xué)好數(shù)學(xué)的信心,形成鍥而不舍的鉆研精神和科學(xué)態(tài)度。
6.具有一定的數(shù)學(xué)視野,逐步認(rèn)識(shí)數(shù)學(xué)的科學(xué)價(jià)值、應(yīng)用價(jià)值和文化價(jià)值,體會(huì)數(shù)學(xué)的美學(xué)意義,從而進(jìn)一步樹(shù)立辯證唯物主義和歷史唯物主義世界觀。
五、促進(jìn)目標(biāo)達(dá)成的重點(diǎn)工作及措施
重點(diǎn)工作:
認(rèn)真貫徹高中數(shù)學(xué)新課標(biāo)精神,樹(shù)立新的教學(xué)理念,以“雙基”教學(xué)為主要內(nèi)容,堅(jiān)持“抓兩頭、帶中間、整體推進(jìn)”,使每個(gè)學(xué)生的數(shù)學(xué)能力都得到提高和發(fā)展。
分層推進(jìn)措施
1、重視學(xué)生非智力因素培養(yǎng),要經(jīng)常性地鼓勵(lì)學(xué)生,增強(qiáng)學(xué)生學(xué)習(xí)數(shù)學(xué)興趣,樹(shù)立勇于克服困難與戰(zhàn)勝困難的信心。
2、合理引入課題,由數(shù)學(xué)活動(dòng)、故事、提問(wèn)、師生交流等方式激發(fā)學(xué)生學(xué)習(xí)興趣,注意從實(shí)例出發(fā),從感性提高到理性;注意運(yùn)用對(duì)比的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說(shuō)明抽象的知識(shí);注意從已有的知識(shí)出發(fā),啟發(fā)學(xué)生思考。
3、培養(yǎng)能力是數(shù)學(xué)教學(xué)的落腳點(diǎn)。能力是在獲得和運(yùn)用知識(shí)的過(guò)程中逐步培養(yǎng)起來(lái)的。在銜接教學(xué)中,首先要加強(qiáng)基本概念和基本規(guī)律的教學(xué)。加強(qiáng)培養(yǎng)學(xué)生的邏輯思維能力和解決實(shí)際問(wèn)題的能力,以及培養(yǎng)提高學(xué)生的自學(xué)能力,養(yǎng)成善于分析問(wèn)題的習(xí)慣,進(jìn)行辨證唯物主義教育。
4、講清講透數(shù)學(xué)概念和規(guī)律,使學(xué)生掌握完整的基礎(chǔ)知識(shí),培養(yǎng)學(xué)生數(shù)學(xué)思維能力 ,抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強(qiáng)復(fù)習(xí)檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問(wèn)題的能力。
5、自始至終貫徹教學(xué)四環(huán)節(jié)(引入、探究、例析、反饋),針對(duì)不同的教材內(nèi)容選擇不同教法,提倡創(chuàng)新教學(xué)方法,把學(xué)生被動(dòng)接受知識(shí)轉(zhuǎn)化主動(dòng)學(xué)習(xí)知識(shí)。
6、重視數(shù)學(xué)應(yīng)用意識(shí)及應(yīng)用能力的培養(yǎng)。
高一下冊(cè)數(shù)學(xué)教學(xué)計(jì)劃 篇5
一、內(nèi)容及其解析
1。內(nèi)容:這是一節(jié)建立直線的點(diǎn)斜式方程(斜截式方程)的概念課。學(xué)生在此之前已學(xué)習(xí)了在直角坐標(biāo)系內(nèi)確定直線一條直線幾何要素,已知直線上的一點(diǎn)和直線的傾斜角(斜率)可以確定一條直線,已知兩點(diǎn)也可以確定一條直線。本節(jié)要求利用確定一條直線的幾何要素直線上的一點(diǎn)和直線的傾斜角,建立直線方程,通過(guò)方程研究直線。
2。解析:直線方程屬于解析幾何的基礎(chǔ)知識(shí),是研究解析幾何的開(kāi)始。從整體來(lái)看,直線方程初步體現(xiàn)了解析幾何的實(shí)質(zhì)用代數(shù)的知識(shí)研究幾何問(wèn)題。從集合與對(duì)應(yīng)的角度構(gòu)建了平面上的直線與二元一次方程的一一對(duì)應(yīng)關(guān)系,是學(xué)習(xí)解析幾何的基礎(chǔ)。對(duì)后續(xù)圓、直線與圓的位置關(guān)系等內(nèi)容的學(xué)習(xí),無(wú)論是知識(shí)上還是方法上都有著積極的意義。從本節(jié)來(lái)看,學(xué)生對(duì)直線既是熟悉的,又是陌生的。熟悉是學(xué)生知道一次函數(shù)的圖像是直線,陌生是用解析幾何的方法求直線的方程。直線的點(diǎn)斜式方程是推導(dǎo)其它直線方程的基礎(chǔ),在直線方程中占有重要地位。
二、目標(biāo)及其解析
1。目標(biāo)
掌握直線的點(diǎn)斜式和斜截式方程的推導(dǎo)過(guò)程,并能根據(jù)條件熟練求出直線的點(diǎn)斜式方程和斜截式方程。
2。解析
、僦乐本上的一點(diǎn)和直線的傾斜角的代數(shù)含義是這個(gè)點(diǎn)的坐標(biāo)和這條直線的斜率。知道建立直線方程就是將確定直線的幾何要素用代數(shù)形式表示出來(lái)。
、诶斫饨⒅本點(diǎn)斜式方程就是用直線上任意一點(diǎn)與已知點(diǎn)這兩個(gè)點(diǎn)的坐標(biāo)表示斜率。
③經(jīng)歷直線的點(diǎn)斜式方程的推導(dǎo)過(guò)程,體會(huì)直線和直線方程之間的關(guān)系,滲透解析幾何的基本思想。
④在討論直線的點(diǎn)斜式方程的應(yīng)用條件與建立直線的斜截式方程中,體會(huì)分類討論的思想,體會(huì)特殊與一般思想。
⑤在建立直線方程的過(guò)程中,體會(huì)數(shù)形結(jié)合思想。在直線的斜截式方程與一次函數(shù)的比較中,體會(huì)兩者區(qū)別與聯(lián)系,特別是體會(huì)兩者數(shù)形結(jié)合的區(qū)別,進(jìn)一步體會(huì)解析幾何的基本思想。
三、教學(xué)問(wèn)題診斷分析
1。學(xué)生在初中已經(jīng)學(xué)習(xí)了一次函數(shù),知道一次函數(shù)的圖像是一條直線,因此學(xué)生對(duì)研究直線的方程可能心存疑慮,產(chǎn)生疑慮的原因是學(xué)生初次接觸到解析幾何,不明確解析幾何的實(shí)質(zhì),因此應(yīng)跟學(xué)生講請(qǐng)解析幾何與函數(shù)的區(qū)別。
2。學(xué)生能聽(tīng)懂建立直線的點(diǎn)斜式的過(guò)程,但可能會(huì)不知道為什么要這么做。因此還是要跟學(xué)生講清坐標(biāo)法的實(shí)質(zhì)把幾何問(wèn)題轉(zhuǎn)化成代數(shù)問(wèn)題,用代數(shù)運(yùn)算研究幾何圖形性質(zhì)。
3。由于學(xué)生沒(méi)有學(xué)習(xí)曲線與方程,因此學(xué)生難以理解直線與直線的方程,甚至認(rèn)為驗(yàn)證直線是方程的直線是多余的。這里讓學(xué)生初步理解就行,隨著后面教學(xué)的深入和反復(fù)滲透,學(xué)生會(huì)逐步理解的。
四、教法與學(xué)法分析
1、教法分析
新課標(biāo)指出,學(xué)生是教學(xué)的主體。教師要以學(xué)生活動(dòng)為主線。在原有知識(shí)的基礎(chǔ)上,構(gòu)建新的知識(shí)體系。本節(jié)課可采用啟發(fā)式問(wèn)題教學(xué)法教學(xué)。通過(guò)問(wèn)題串,啟發(fā)學(xué)生自主探究來(lái)達(dá)到對(duì)知識(shí)的發(fā)現(xiàn)和接受。通過(guò)縱向挖掘知識(shí)的深度,橫向加強(qiáng)知識(shí)間的聯(lián)系,培養(yǎng)學(xué)生的創(chuàng)新精神。并且使學(xué)生的有效思維量加大,隨著對(duì)新知識(shí)和方法產(chǎn)生有意注意,使能力與知識(shí)的形成相伴而行,使學(xué)生在解決問(wèn)題的同時(shí),形成方法。
2、學(xué)法分析
改善學(xué)生的學(xué)習(xí)方式是高中數(shù)學(xué)課程追求的基本理念。學(xué)生的數(shù)學(xué)學(xué)習(xí)活動(dòng)不僅僅限于對(duì)概念結(jié)論和技能的記憶、模仿和積累。獨(dú)立思考,自主探索,動(dòng)手實(shí)踐,合作交流,閱讀自學(xué)等都是學(xué)習(xí)數(shù)學(xué)的重要方式,這些方式有助于發(fā)揮學(xué)生學(xué)習(xí)主觀能動(dòng)性,使學(xué)生的學(xué)習(xí)過(guò)程成為在教師引導(dǎo)下的再創(chuàng)造的過(guò)程。為學(xué)生形成積極主動(dòng)的、多樣的學(xué)習(xí)方式創(chuàng)造有利的條件。以激發(fā)學(xué)生的學(xué)習(xí)興趣和創(chuàng)新潛能,幫助學(xué)生養(yǎng)成獨(dú)立思考,積極探索的習(xí)慣。
通過(guò)直線的點(diǎn)斜式方程的推導(dǎo),加深對(duì)用坐標(biāo)求方程的理解;通過(guò)求直線的點(diǎn)斜式方程,理解一個(gè)點(diǎn)和方向可以確定一條直線;通過(guò)求直線的斜截式方程,熟悉用待定系數(shù)法求的過(guò)程,讓學(xué)生利用圖形直觀啟迪思維,實(shí)現(xiàn)從感性認(rèn)識(shí)到理性思維質(zhì)的飛躍。讓學(xué)生從問(wèn)題中質(zhì)疑、嘗試、歸納、總結(jié),培養(yǎng)學(xué)生發(fā)現(xiàn)問(wèn)題、研究問(wèn)題和分析解決問(wèn)題的能力。
五、教學(xué)過(guò)程設(shè)計(jì)
問(wèn)題1:在直角坐標(biāo)系內(nèi)確定直線一條直線幾何要素是什么?如何將這些幾何要素代數(shù)化?
[設(shè)計(jì)意圖]讓學(xué)生理解直線上的一點(diǎn)和直線的傾斜角的代數(shù)含義是這個(gè)點(diǎn)的坐標(biāo)和這條直線的斜率。
問(wèn)題2:建立直線方程的實(shí)質(zhì)是什么?
[設(shè)計(jì)意圖]建立直線方程就是將確定直線的幾何要素用代數(shù)形式表示出來(lái)。也就是將直線上點(diǎn)的.坐標(biāo)滿足的條件用方程表示出來(lái)。
引例:若直線經(jīng)過(guò)點(diǎn),斜率為,點(diǎn)在直線上運(yùn)動(dòng),那么點(diǎn)的坐標(biāo)滿足什么條件?
[設(shè)計(jì)意圖]讓學(xué)生通過(guò)具體例子經(jīng)歷求直線的點(diǎn)斜式方程的過(guò)程,初步了解求直線方程的步驟。
問(wèn)題2。1要得到坐標(biāo)滿足什么條件,就是找出與、斜率為之間的關(guān)系,它們之間有何種關(guān)系?
。ㄟ^(guò)與兩點(diǎn)的直線的斜率為)
[設(shè)計(jì)意圖]讓學(xué)生尋找確定直線的條件,體會(huì)動(dòng)中找靜。
問(wèn)題2。2如何將上述條件用代數(shù)形式表示出來(lái)?
[設(shè)計(jì)意圖]讓學(xué)生理解和體會(huì)用坐標(biāo)表示確定直線的條件。
用代數(shù)式表示出來(lái)就是,即。
問(wèn)題2。3為什么說(shuō)是滿足條件的直線方程?
[設(shè)計(jì)意圖]讓學(xué)生初步感受直線與直線方程的關(guān)系。
此時(shí)的坐標(biāo)也滿足此方程。所以當(dāng)點(diǎn)在直線上運(yùn)動(dòng)時(shí),其坐標(biāo)滿足。
另外以方程的解為坐標(biāo)的點(diǎn)也在直線上。
所以我們得到經(jīng)過(guò)點(diǎn),斜率為的直線方程是。
問(wèn)題2。4:能否說(shuō)方程是經(jīng)過(guò),斜率為的直線方程?
[設(shè)計(jì)意圖]讓學(xué)生初步感受直線(曲線)方程的完備性。盡管學(xué)生不可能深刻理解直線(曲線)方程的完備性,但在這里仍要滲透,為后因理解曲線方程的埋下伏筆。
問(wèn)題3:推廣:已知一直線過(guò)一定點(diǎn),且斜率為k,怎樣求直線的方程?
[設(shè)計(jì)意圖]由特殊到一般的學(xué)習(xí)思路,培養(yǎng)學(xué)生的是歸納概括能力。
問(wèn)題4:直線上有無(wú)數(shù)個(gè)點(diǎn),如何才能選取所有的點(diǎn)?以前學(xué)習(xí)中有沒(méi)有類似的處理問(wèn)題的方法?
[設(shè)計(jì)意圖]引導(dǎo)學(xué)生掌握解析幾何取點(diǎn)的方法。
引導(dǎo)學(xué)生求出直線的點(diǎn)斜式方程
注:在求直線方程的過(guò)程中要說(shuō)明直線上的點(diǎn)的坐標(biāo)滿足方程,也要說(shuō)明以方程的解為坐標(biāo)的點(diǎn)在直線上,即方程的解與直線上的點(diǎn)的坐標(biāo)是一一對(duì)應(yīng)的。為以后學(xué)習(xí)曲線與方程打好基礎(chǔ)。教學(xué)中讓學(xué)生感覺(jué)到這一點(diǎn)就可以。不必做過(guò)多解釋。
問(wèn)題5:從求直線方程的過(guò)程中,你知道了求幾何圖形的方程的步驟有哪些嗎?
[設(shè)計(jì)意圖]讓學(xué)生初步感受解析幾何求曲線方程的步驟。
、僭O(shè)點(diǎn)———用表示曲線上任一點(diǎn)的坐標(biāo);
②尋找條件————寫出適合條件;
③列出方程————用坐標(biāo)表示條件,列出方程
、芑(jiǎn)———化方程為最簡(jiǎn)形式;
、葑C明————證明以化簡(jiǎn)后的方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn)。
例1分別求經(jīng)過(guò)點(diǎn),且滿足下列條件的直線的方程,并畫出直線。
⑴傾斜角
、菩甭
⑶與軸平行;
、扰c軸平行。
[設(shè)計(jì)意圖]讓學(xué)生掌握直線的點(diǎn)斜式的使用條件,把直線的點(diǎn)斜式方程作公式用,讓學(xué)生熟練掌握直線的點(diǎn)斜式方程,并理解直線的點(diǎn)斜式方程使用條件。
注:⑴應(yīng)用直線的點(diǎn)斜式方程的條件是:①定點(diǎn),②斜率存在,即直線的傾斜角。
、婆c的區(qū)別。后者表示過(guò),且斜率為k的直線方程,而前者不包括。
、钱(dāng)直線的傾斜角時(shí),直線的斜率,直線方程是。
、犬(dāng)直線的傾斜角時(shí),此時(shí)不能直線的點(diǎn)斜式方程表示直線,直線方程是。
練習(xí):1。。
2。已知直線的方程是,則直線的斜率為,傾斜角為,這條直線經(jīng)過(guò)的一個(gè)已知點(diǎn)為。
[設(shè)計(jì)意圖]在直線的點(diǎn)斜式方程的逆用過(guò)程中,進(jìn)一步體會(huì)和理解直線的點(diǎn)斜式方程。
問(wèn)題6:特別地,如果直線的斜率為,且與軸的交點(diǎn)坐標(biāo)為(0,b),求直線的方程。
[設(shè)計(jì)意圖]由一般到特殊,培養(yǎng)學(xué)生的推理能力,同時(shí)引出截距的概念和直線斜截式方程。
將斜率與定點(diǎn)代入點(diǎn)斜式直線方程可得:
說(shuō)明:我們把直線與y軸交點(diǎn)(0,b)的縱坐標(biāo)b叫做直線在y軸上的截距。這個(gè)方程是由直線的斜率與它在y軸上的截距b確定,所以叫做直線的斜截式方程。
注(1)截距可取任意實(shí)數(shù),它不同于距離。直線在軸上截距的是。
。2)斜截式方程中的k和b有明顯的幾何意義。
。3)斜截式方程的使用范圍和斜截式一樣。
問(wèn)題7:直線的斜截式方程與我們學(xué)過(guò)的一次函數(shù)的類似。我們知道,一次函數(shù)的圖像是一條直線。你如何從直線方程的角度認(rèn)識(shí)一次函數(shù)?一次函數(shù)中k和b的幾何意義是什么?
[設(shè)計(jì)意圖]讓學(xué)生理解直線方程與一次函數(shù)的區(qū)別與聯(lián)系,進(jìn)一步理解解析幾何的實(shí)質(zhì)。函數(shù)圖像是以形助數(shù),而解析幾何是以數(shù)論形。
練習(xí):1。。
2。直線的斜率為2,在軸上的截距為,求直線的方程。
[設(shè)計(jì)意圖]讓學(xué)生明確截距的含義。
3。直線過(guò)點(diǎn),它的斜率與直線的斜率相等,求直線的方程。
[設(shè)計(jì)意圖]讓學(xué)生進(jìn)一步理解直線斜截式方程的結(jié)構(gòu)特征。
4。已知直線過(guò)兩點(diǎn)和,求直線的方程。
[設(shè)計(jì)意圖]讓學(xué)生能合理選擇直線方程的不同形式求直線方程,同時(shí)為下節(jié)學(xué)習(xí)直線的兩點(diǎn)式方程埋下伏筆。
例2:已知直線,試討論
(1)與平行的條件是什么?
。2)與重合的條件是什么?
。3)與垂直的條件是什么?
說(shuō)明:①平行、重合、垂直都是幾何上位置關(guān)系,如何用代數(shù)的數(shù)量關(guān)系來(lái)刻畫。
②教學(xué)中從兩個(gè)方面來(lái)說(shuō)明,若兩直線平行,則且反過(guò)來(lái),若且,則兩直線平行。
、廴糁本的斜率不存在,與之平行、垂直的條件分別是什么?
練習(xí):
問(wèn)題8:本節(jié)課你有哪些收獲?
要點(diǎn):
。1)直線方程的點(diǎn)斜式、斜截式的命名都是顧名思義的,要會(huì)加以區(qū)別。
。2)兩種形式的方程要在熟記的基礎(chǔ)上靈活運(yùn)用。
總結(jié):制定教學(xué)計(jì)劃的主要目的是為了全面了解學(xué)生的數(shù)學(xué)學(xué)習(xí)歷程,激勵(lì)學(xué)生的學(xué)習(xí)和改進(jìn)教師的教學(xué)。
【高一下冊(cè)數(shù)學(xué)教學(xué)計(jì)劃】相關(guān)文章:
高一下冊(cè)數(shù)學(xué)教學(xué)計(jì)劃08-17
數(shù)學(xué)下冊(cè)教學(xué)計(jì)劃02-09
數(shù)學(xué)高一教學(xué)計(jì)劃03-10
高一下冊(cè)數(shù)學(xué)教學(xué)計(jì)劃6篇03-19
高一下冊(cè)數(shù)學(xué)教學(xué)計(jì)劃11篇01-09
高一下冊(cè)數(shù)學(xué)教學(xué)計(jì)劃(精選8篇)01-13
高一下冊(cè)數(shù)學(xué)教學(xué)計(jì)劃(通用14篇)03-01
高一數(shù)學(xué)教學(xué)計(jì)劃12-24