一级毛片免费不卡在线视频,国产日批视频免费在线观看,菠萝菠萝蜜在线视频免费视频,欧美日韩亚洲无线码在线观看,久久精品这里精品,国产成人综合手机在线播放,色噜噜狠狠狠综合曰曰曰,琪琪视频

高一數(shù)學(xué)教學(xué)計劃

時間:2022-12-14 12:00:51 教學(xué)計劃 我要投稿

人教版高一數(shù)學(xué)教學(xué)計劃(通用5篇)

  時間過得真快,總在不經(jīng)意間流逝,我們將帶著新的期許奔赴下一個挑戰(zhàn),是時候抽出時間寫寫教學(xué)計劃了。相信大家又在為寫教學(xué)計劃犯愁了吧,下面是小編精心整理的人教版高一數(shù)學(xué)教學(xué)計劃(通用5篇),供大家參考借鑒,希望可以幫助到有需要的朋友。

人教版高一數(shù)學(xué)教學(xué)計劃(通用5篇)

  高一數(shù)學(xué)教學(xué)計劃1

  平面上的直線就是由平面直角坐標(biāo)系中的一個二元一次方程所表示的圖形。

  教學(xué)目標(biāo)

  (1)掌握由一點和斜率導(dǎo)出直線方程的方法,掌握直線方程的點斜式、兩點式和直線方程的一般式,并能根據(jù)條件熟練地求出直線的方程。

  (2)理解直線方程幾種形式之間的內(nèi)在聯(lián)系,能在整體上把握直線的方程。

  (3)掌握直線方程各種形式之間的互化。

  (4)通過直線方程一般式的教學(xué)培養(yǎng)學(xué)生全面、系統(tǒng)、周密地分析、討論問題的能力。

  (5)通過直線方程特殊式與一般式轉(zhuǎn)化的教學(xué),培養(yǎng)學(xué)生靈活的思維品質(zhì)和辯證唯物主義觀點。

 。6)進(jìn)一步理解直線方程的概念,理解直線斜率的意義和解析幾何的思想方法。

  教學(xué)建議

  1、教材分析

 。1)知識結(jié)構(gòu)

  由直線方程的概念和直線斜率的概念導(dǎo)出直線方程的點斜式;由直線方程的點斜式分別導(dǎo)出直線方程的斜截式和兩點式;再由兩點式導(dǎo)出截距式;最后都可以轉(zhuǎn)化歸結(jié)為直線的一般式;同時一般式也可以轉(zhuǎn)化成特殊式。

 。2)重點、難點分析

 、俦竟(jié)的重點是直線方程的點斜式、兩點式、一般式,以及根據(jù)具體條件求出直線的方程。

  解析幾何有兩項根本性的任務(wù):一個是求曲線的方程;另一個就是用方程研究曲線。本節(jié)內(nèi)容就是求直線的方程,因此是非常重要的內(nèi)容,它對以后學(xué)習(xí)用方程討論直線起著直接的作用,同時也對曲線方程的學(xué)習(xí)起著重要的作用。

  直線的.點斜式方程是平面解析幾何中所求出的第一個方程,是后面幾種特殊形式的源頭。學(xué)生對點斜式學(xué)習(xí)的效果將直接影響后繼知識的學(xué)習(xí)。

  ②本節(jié)的難點是直線方程特殊形式的限制條件,直線方程的整體結(jié)構(gòu),直線與二元一次方程的關(guān)系證明。

  2、教法建議

 。1)教材中求直線方程采取先特殊后一般的思路,特殊形式的方程幾何特征明顯,但局限性強(qiáng);一般形式的方程無任何限制,但幾何特征不明顯。教學(xué)中各部分知識之間過渡要自然流暢,不生硬。

 。2)直線方程的一般式反映了直線方程各種形式之間的統(tǒng)一性,教學(xué)中應(yīng)充分揭示直線方程本質(zhì)屬性,建立二元一次方程與直線的對應(yīng)關(guān)系,為繼續(xù)學(xué)習(xí)曲線方程打下基礎(chǔ)。

  直線一般式方程都是字母系數(shù),在揭示這一概念深刻內(nèi)涵時,還需要進(jìn)行正反兩方面的分析論證。教學(xué)中應(yīng)重點分析思路,還應(yīng)抓住這一有利時使學(xué)生學(xué)會嚴(yán)謹(jǐn)科學(xué)的分類討論方法,從而培養(yǎng)學(xué)生全面、系統(tǒng)、辯證、周密地分析、討論問題的能力,特別是培養(yǎng)學(xué)生邏輯思維能力,同時培養(yǎng)學(xué)生辯證唯物主義觀點

 。3)在強(qiáng)調(diào)幾種形式互化時要向?qū)W生充分揭示各種形式的特點,它們的幾何特征,參數(shù)的意義等,使學(xué)生明白為什么要轉(zhuǎn)化,并加深對各種形式的理解。

 。4)教學(xué)中要使學(xué)生明白兩個獨立條件確定一條直線,如兩個點、一個點和一個方向或其他兩個獨立條件。兩點確定一條直線,這是學(xué)生很早就接觸的幾何公理,然而在解析幾何,平面向量等理論中,直線或向量的方向是極其重要的要素,解析幾何中刻畫直線方向的量化形式就是斜率。因此,直線方程的兩點式和點斜式在直線方程的幾種形式中占有很重要的地位,而已知兩點可以求得斜率,所以點斜式又可推出兩點式(斜截式和截距式僅是它們的特例),因此點斜式最重要。教學(xué)中應(yīng)突出點斜式、兩點式和一般式三個教學(xué)高潮。

  求直線方程需要兩個獨立的條件,要依不同的幾何條件選用不同形式的方程。根據(jù)兩個條件運(yùn)用待定系數(shù)法和方程思想求直線方程。

  (5)注意正確理解截距的概念,截距不是距離,截距是直線(也是曲線)與坐標(biāo)軸交點的相應(yīng)坐標(biāo),它是有向線段的數(shù)量,因而是一個實數(shù);距離是線段的長度,是一個正實數(shù)(或非負(fù)實數(shù))。

 。6)本節(jié)中有不少與函數(shù)、不等式、三角函數(shù)有關(guān)的問題,是函數(shù)、不等式、三角與直線的重要知識交匯點之一,教學(xué)中要適當(dāng)選擇一些有關(guān)的問題指導(dǎo)學(xué)生練習(xí),培養(yǎng)學(xué)生的綜合能力。

 。7)直線方程的理論在其他學(xué)科和生產(chǎn)生活實際中有大量的應(yīng)用。教學(xué)中注意聯(lián)系實際和其它學(xué)科,教師要注意引導(dǎo),增強(qiáng)學(xué)生用數(shù)學(xué)的意識和能力。

 。8)本節(jié)不少內(nèi)容可安排學(xué)生自學(xué)和討論,還要適當(dāng)增加練習(xí),使學(xué)生能更好地掌握,而不是僅停留在觀念上。

  高一數(shù)學(xué)教學(xué)計劃2

  教學(xué)目標(biāo)

  1通過對冪函數(shù)概念的學(xué)習(xí)以及對冪函數(shù)圖象和性質(zhì)的歸納與概括,讓學(xué)生體驗數(shù)學(xué)概念的形成過程,培養(yǎng)學(xué)生的抽象概括能力。

  2使學(xué)生理解并掌握冪函數(shù)的圖象與性質(zhì),并能初步運(yùn)用所學(xué)知識解決有關(guān)問題,培養(yǎng)學(xué)生的靈活思維能力。

  3培養(yǎng)學(xué)生觀察、分析、歸納能力。了解類比法在研究問題中的作用。

  教學(xué)重點、難點

  重點:冪函數(shù)的性質(zhì)及運(yùn)用

  難點:冪函數(shù)圖象和性質(zhì)的發(fā)現(xiàn)過程

  教學(xué)方法:

  問題探究法教具:多媒體

  教學(xué)過程

  一、創(chuàng)設(shè)情景,引入新課

  問題1:如果張紅購買了每千克1元的水果w千克,那么她需要付的錢數(shù)p(元)和購買的水果量w(千克)之間有何關(guān)系?

  (總結(jié):根據(jù)函數(shù)的定義可知,這里p是w的函數(shù))

  問題2:如果正方形的邊長為a,那么正方形的面積,這里S是a的函數(shù)。問題3:如果正方體的邊長為a,那么正方體的體積,這里V是a的函數(shù)。問題4:如果正方形場地面積為S,那么正方形的邊長,這里a是S的函數(shù)問題5:如果某人s內(nèi)騎車行進(jìn)了km,那么他騎車的速度,這里v是t的函數(shù)。

  以上是我們生活中經(jīng)常遇到的幾個數(shù)學(xué)模型,你能發(fā)現(xiàn)以上幾個函數(shù)解析式有什么共同點嗎?(右邊指數(shù)式,且底數(shù)都是變量)這只是我們生活中常用到的一類函數(shù)的幾個具體代表,如果讓你給他們起一個名字的話,你將會給他們起個什么名字呢?(變量在底數(shù)位置,解析式右邊都是冪的形式)(適當(dāng)引導(dǎo):從自變量所處的位置這個角度)(引入新課,書寫課題)

  二、新課講解

  由學(xué)生討論,(教師可提示p=w可看成p=w1)總結(jié),即可得出:p=w,s=a2,a=s,v=t-1都是自變量的若干次冪的形式。

  教師指出:我們把這樣的都是自變量的若干次冪的形式的函數(shù)稱為冪函數(shù)。

  冪函數(shù)的定義:一般地,我們把形如的'函數(shù)稱為冪函數(shù)(powerfunction),其中是自變量,是常數(shù)。1冪函數(shù)與指數(shù)函數(shù)有什么區(qū)別?(組織學(xué)生回顧指數(shù)函數(shù)的概念)結(jié)論:冪函數(shù)和指數(shù)函數(shù)都是我們高中數(shù)學(xué)中研究的兩類重要的基本初等函數(shù),從它們的解析式看有如下區(qū)別:對冪函數(shù)來說,底數(shù)是自變量,指數(shù)是常數(shù)對指數(shù)函數(shù)來說,指數(shù)是自變量,底數(shù)是常數(shù)例1判別下列函數(shù)中有幾個冪函數(shù)?

 、賧=②y=2x2③y=x④y=x2+x⑤y=-x3⑥⑦⑧⑨(由學(xué)生獨立思考、回答)

  2冪函數(shù)具有哪些性質(zhì)?研究函數(shù)應(yīng)該是哪些方面的內(nèi)容。前面指數(shù)函數(shù)、對數(shù)函數(shù)研究了哪些內(nèi)容?

  (學(xué)生討論,教師引導(dǎo)。學(xué)生回答。)

  3冪函數(shù)的定義域是否與對數(shù)函數(shù)、指數(shù)函數(shù)一樣,具有相同的定義域?

  (學(xué)生小組討論,得到結(jié)論。引導(dǎo)學(xué)生舉例研究。結(jié)論:冪指數(shù)不同,定義域并不完全相同,應(yīng)區(qū)別對待。)教師指出:冪函數(shù)y=xn中,當(dāng)n=0時,其表達(dá)式y(tǒng)=x0=1;定義域為(-∞,0)U(0,+∞),特別強(qiáng)調(diào),當(dāng)x為任何非零實數(shù)時,函數(shù)的值均為1,圖象是從點(0,1)出發(fā),平行于x軸的兩條射線,但點(0,1)要除外。)

  例2寫出下列函數(shù)的定義域,并指出它們的奇偶性:①y=x②y=③y=x④y=x

  (學(xué)生解答,并歸納解決辦法。引導(dǎo)學(xué)生與指數(shù)函數(shù)、對數(shù)函數(shù)對照比較。引導(dǎo)學(xué)生具體問題具體分析,并作簡單歸納:分?jǐn)?shù)指數(shù)應(yīng)化成根式,負(fù)指數(shù)寫成正數(shù)指數(shù)再寫出定義域。冪函數(shù)的奇偶性也應(yīng)具體分析。)

  4上述函數(shù)①y=x②y=③y=x④y=x的單調(diào)性如何?如何判斷?

  (學(xué)生思考,引導(dǎo)作圖可得。并加上y=x和y=x-1圖象)接下來,在同一坐標(biāo)系中學(xué)生作圖,教師巡視。將學(xué)生作圖用實物投影儀演示,指出優(yōu)點和錯誤之處。教師利用幾何畫板演示。見后附圖1

  讓學(xué)生觀察圖象,看單調(diào)性、以及還有哪些共同點?(學(xué)生思考,回答。教師注意學(xué)生敘述的嚴(yán)密性。)

  教師總評:冪函數(shù)的性質(zhì)

  (1)所有的冪函數(shù)在(0,+∞)上都有定義,并且圖象都過點(1,1),

  (2)如果a>0,則冪函數(shù)的圖象通過原點,并在區(qū)間[0,+∞)上是增函數(shù),

  (3)如果a<0,則冪函數(shù)在(0,+∞)上是減函數(shù),在第一區(qū)間內(nèi),當(dāng)x從右邊趨向于原點時,圖象在y軸右方無限地趨近y軸;當(dāng)x趨向于+∞,圖象在x軸上方無限地趨近x軸。

  5通過觀察例1,在冪函數(shù)y=xa中,當(dāng)a是(1)正偶數(shù)、(2)正奇數(shù)時,這一類函數(shù)有哪種性質(zhì)?

  學(xué)生思考,教師講評:

  (1)在冪函數(shù)y=xa中,當(dāng)a是正偶數(shù)時,函數(shù)都是偶函數(shù),在第一象限內(nèi)是增函數(shù)。

  (2)在冪函數(shù)y=xa中,當(dāng)a是正奇數(shù)時,函數(shù)都是奇函數(shù),在第一象限內(nèi)是增函數(shù)。

  例3鞏固練習(xí)寫出下列函數(shù)的定義域,并指出它們的奇偶性和單調(diào)性:①y=x②y=x③y=x。

  例4簡單應(yīng)用1:比較下列各組中兩個值的大小,并說明理由:

 、0.75,0.76;

 、(-0.95),(-0.96);

 、0.23,0.24;

 、0.31,0.31

  例5簡單應(yīng)用2:冪函數(shù)y=(m-3m-3)x在區(qū)間上是減函數(shù),求m的值。

  例6簡單應(yīng)用2:

  已知(a+1)<(3-2a),試求a的取值范圍。

  課堂小結(jié)

  今天的學(xué)習(xí)內(nèi)容和方法有哪些?你有哪些收獲和經(jīng)驗?

  1、冪函數(shù)的概念及其指數(shù)函數(shù)表達(dá)式的區(qū)別2、常見冪函數(shù)的圖象和冪函數(shù)的性質(zhì)。

  布置作業(yè):

  課本p.732、3、4、思考5

  高一數(shù)學(xué)教學(xué)計劃3

  一、指導(dǎo)思想:

  在新課程改革的教學(xué)理念下,以發(fā)展教育的觀念為指引,以學(xué)校和教導(dǎo)處的工作計劃為指南,改變教學(xué)觀念,改進(jìn)教學(xué)方法,更新教學(xué)手段,提高教學(xué)效率,提高學(xué)生的閱讀能力、解題能力,促進(jìn)學(xué)生學(xué)習(xí)態(tài)度、學(xué)習(xí)方式的轉(zhuǎn)變,培養(yǎng)學(xué)生自主學(xué)習(xí)、積極探究、樂于合作的精神,注重學(xué)生數(shù)學(xué)素養(yǎng)的提高,關(guān)注學(xué)生的思想情感和交流,培養(yǎng)學(xué)生的創(chuàng)新思維和創(chuàng)造能力,為學(xué)生的可持續(xù)發(fā)展奠定基礎(chǔ)。新課標(biāo)理念下的政治教學(xué)活動應(yīng)該不同于傳統(tǒng)的課堂教學(xué),改變教師的教法和學(xué)生的學(xué)法是在教學(xué)活動中體現(xiàn)最新教學(xué)理念的關(guān)鍵。

  “導(dǎo)學(xué)案”應(yīng)課堂教學(xué)改革與傳統(tǒng)教學(xué)模式的矛盾而生,它既可以將學(xué)生自主學(xué)習(xí)引入正軌,又將學(xué)生可以自主探究理解完成的知識點與題目在課下解決,這樣,課堂上教師就有足夠的時間與學(xué)生共同研究解決本節(jié)課的.重點與難點,從而提高了課堂效率。我們應(yīng)該認(rèn)識到改革是教學(xué)的生命,課程改革與課堂教學(xué)改革是一個不斷發(fā)展、不斷探索的過程。在這個過程中,要求教師能夠正確、深刻地理解新課程理念,辯證地分析和處理各種在課程改革中產(chǎn)生的觀念和做法,樹立正確的育人理念,開拓進(jìn)取,不斷尋求新的有效的方法促進(jìn)學(xué)生的全面發(fā)展。

  二、教材特點:

  我們所使用的教材是人教版《普通高中課程標(biāo)準(zhǔn)實驗教科書·數(shù)學(xué)(A版)》必修1、必修2,根據(jù)必修1、2設(shè)計的導(dǎo)學(xué)案。它在堅持我國數(shù)學(xué)教育優(yōu)良傳統(tǒng)的前提下,認(rèn)真處理繼承,借簽,發(fā)展,創(chuàng)新之間的關(guān)系,體現(xiàn)基礎(chǔ)性,時代性,典型性和可接受性,辯證地分析和處理各種在課程改革中產(chǎn)生的觀念和做法,樹立正確的育人理念,開拓進(jìn)取,不斷尋求新的有效的方法促進(jìn)學(xué)生的全面發(fā)展。

  三、學(xué)情分析:

  本學(xué)期任教高一(35、36)班的數(shù)學(xué),(35、36)班是平衡班,部分學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情較高漲,比較自覺,能認(rèn)真完成作業(yè),但數(shù)學(xué)層次并不相同,部分同學(xué)基礎(chǔ)薄弱,缺乏學(xué)習(xí)數(shù)學(xué)的方法。

  四、教學(xué)策略、教研活動:

  1、落實提高課堂效率,導(dǎo)學(xué)案的設(shè)計目的是為了將學(xué)生的導(dǎo)學(xué)案與教師的集體備課設(shè)計為一體,第一、課前預(yù)習(xí)。教師設(shè)計此部分內(nèi)容之前必須針對本課題的三維目標(biāo)與考綱認(rèn)真?zhèn)湔n,列出本節(jié)課的知識要點,對于重難點做特殊標(biāo)記,并針對預(yù)習(xí)提綱給出的內(nèi)容設(shè)計預(yù)習(xí)檢測題,預(yù)習(xí)檢測題難度不易過高,與本課題的重難點相關(guān)的知識點有選擇性的錄入此處,讓學(xué)生在做此部分時不能感覺太簡單了也不能感覺無從下手,要有一部分題目讓他能夠通過討論探究完成。第二,探究活動。第三、課堂檢測。此處設(shè)置的題目難度深度一定比預(yù)習(xí)檢測部分要更難更深。此部分不要求所有的學(xué)生都在課前做。從此處開始分“才”完成,有能力的同學(xué)可以提前嘗試著做,做題慢的同學(xué)可以先不必看,學(xué)生按照自己的情況自行決定。第四,拓展延伸。這里出現(xiàn)的題目屬于拔高題,一般很少有學(xué)生在課前能夠做對,所以此處也不要求學(xué)生課前做,當(dāng)然不排除有的同學(xué)想要挑戰(zhàn)一下,這是提倡并且大力表揚(yáng)的。第五,反思總結(jié)。學(xué)生利用這部分一方面可以小結(jié)本節(jié)課的內(nèi)容,另一方面可以對自己本課題從預(yù)習(xí)探究到課堂探究各個環(huán)節(jié)進(jìn)行反思,便于日后改進(jìn)。上課時要明確重點、難點,重點要突出,難點要分散,并且難點要解決好。課堂講新課的時間一定要控制在20分鐘之內(nèi),最好能在10分鐘之內(nèi)解決問題,多給時間學(xué)生練習(xí)或進(jìn)行與學(xué)習(xí)有關(guān)的活動。

  2、做到課后教學(xué)反思

  上完課之后需要思考三個問題:我這節(jié)課上得如何有沒有要糾正與改進(jìn)的?有誰的課比我還優(yōu)秀?怎樣上這節(jié)課更好、最好?并在學(xué)案、備課筆記上做好記錄,為以后的教育教學(xué)提供參考。

  3、落實好備課電子化,為加快對試驗課的理解和掌握,積極探索教改進(jìn)程,建立備課組資料庫,備課組成員要積極借助網(wǎng)絡(luò)信息收集和篩選資料存庫,發(fā)揮集體智慧,在備課組會議上整理,及時應(yīng)用到具體教學(xué)中。注重學(xué)案導(dǎo)學(xué),編好用好導(dǎo)學(xué)案。

  4、積極聽有經(jīng)驗的教師的課,認(rèn)真改進(jìn)課堂教學(xué)上的薄弱環(huán)節(jié)。注重研究教師如何講、注重研究學(xué)生如何學(xué),積極推進(jìn)新課改,提高課堂效率。

  五、教學(xué)措施:

  1、激發(fā)學(xué)生的學(xué)習(xí)興趣。由數(shù)學(xué)活動、故事、吸引人的課、合理的要求、師生交流等途徑樹立學(xué)生的學(xué)習(xí)信心,提高學(xué)習(xí)興趣,在主觀作用下上升和進(jìn)步。

  2、加強(qiáng)培養(yǎng)學(xué)生的邏輯思維能力就解決實際問題的能力,以及培養(yǎng)提高學(xué)生的自學(xué)能力,養(yǎng)成善于分析問題的習(xí)慣。

  3、抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強(qiáng)復(fù)習(xí)檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問題的能力。

  4、扎實基礎(chǔ)的同時重視數(shù)學(xué)應(yīng)用意識及應(yīng)用能力的培養(yǎng)。

  5、落實抓好平時的一周一限時訓(xùn)練,一周一綜合,注重知識的滲透

  6、落實競賽輔導(dǎo):主要利用下午第三節(jié)時間,一個星期進(jìn)行一至兩次輔導(dǎo)。

  高一數(shù)學(xué)教學(xué)計劃4

  一、指導(dǎo)思想

  準(zhǔn)確把握《教學(xué)大綱》和《考試大綱》的各項基本要求,立足于基礎(chǔ)知識和基本技能的教學(xué),注重滲透數(shù)學(xué)思想和方法.針對學(xué)生實際,不斷研究數(shù)學(xué)教學(xué),改進(jìn)教法,指導(dǎo)學(xué)法,奠定立足社會所需要的必備的基礎(chǔ)知識、基本技能和基本能力,著力于培養(yǎng)學(xué)生的創(chuàng)新精神,運(yùn)用數(shù)學(xué)的意識和能力,奠定他們終身學(xué)習(xí)的基礎(chǔ).

  二、高一上冊數(shù)學(xué)教學(xué)教材特點:

  我們所使用的教材是人教版《普通高中課程標(biāo)準(zhǔn)實驗教科書·數(shù)學(xué)(A版)》,它在堅持我國數(shù)學(xué)教育優(yōu)良傳統(tǒng)的前提下,認(rèn)真處理繼承、借簽、發(fā)展、創(chuàng)新之間的關(guān)系,體現(xiàn)基礎(chǔ)性、時代性、典型性和可接受性等,具有如下特點:

  1.“親和力”:以生動活潑的呈現(xiàn)方式,激發(fā)興趣和美感,引發(fā)學(xué)習(xí)激情.

  2.“問題性”:以恰時恰點的問題引導(dǎo)數(shù)學(xué)活動,培養(yǎng)問題意識,孕育創(chuàng)新精神.

  3.“科學(xué)性”與“思想性”:通過不同數(shù)學(xué)內(nèi)容的聯(lián)系與啟發(fā),強(qiáng)調(diào)類比、化歸等思想方法的運(yùn)用,學(xué)習(xí)數(shù)學(xué)地思考問題的方式,提高數(shù)學(xué)思維能力,培育理性精神.

  4.“時代性”與“應(yīng)用性”:以具有時代感和現(xiàn)實感的素材創(chuàng)設(shè)情境,加強(qiáng)數(shù)學(xué)活動,發(fā)展應(yīng)用意識.

  三、高一上冊數(shù)學(xué)教學(xué)教法分析:

  1.選取與內(nèi)容密切相關(guān)的、典型的、豐富的和學(xué)生熟悉的素材,用生動活潑的語言,創(chuàng)設(shè)能夠體現(xiàn)數(shù)學(xué)的概念和結(jié)論,數(shù)學(xué)的思想和方法,以及數(shù)學(xué)應(yīng)用的學(xué)習(xí)情境,使學(xué)生產(chǎn)生對數(shù)學(xué)的親切感,引發(fā)學(xué)生“看個究竟”的沖動,以達(dá)到培養(yǎng)其興趣的目的.

  2.通過“觀察”,“思考”,“探究”等欄目,引發(fā)學(xué)生的思考和探索活動,切實改進(jìn)學(xué)生的`學(xué)習(xí)方式.

  3.在教學(xué)中強(qiáng)調(diào)類比、化歸等數(shù)學(xué)思想方法,盡可能養(yǎng)成其邏輯思維的習(xí)慣.

  四、學(xué)情分析

  高一作為起始年級,作為從義務(wù)階段邁入應(yīng)試征程的適應(yīng)階段,該有的是一份執(zhí)著.他的特殊性就在于它的跨越性,理想的期盼與學(xué)法的突變,難度的加強(qiáng)與惰性的生成等等矛盾沖突伴隨著高一新生的成長.面對新教材的我們也是邊摸索邊改變,樹立新的教學(xué)理念,并落實在課堂教學(xué)的各個環(huán)節(jié),才能不負(fù)眾望.我們要從學(xué)生的認(rèn)識水平和實際能力出發(fā),研究學(xué)生的心理特征,做好初三與高一的銜接工作,幫助學(xué)生解決好從初中到高中學(xué)習(xí)方法的過渡.從高一起就注意培養(yǎng)學(xué)生良好的數(shù)學(xué)思維方法,良好的學(xué)習(xí)態(tài)度和學(xué)習(xí)習(xí)慣,以適應(yīng)高中領(lǐng)悟性的學(xué)習(xí)方法.

  五、高一上冊數(shù)學(xué)教學(xué)教學(xué)措施:

  1、激發(fā)學(xué)生的學(xué)習(xí)興趣.由數(shù)學(xué)活動、故事、吸引人的課、合理的要求、師生談話等途徑樹立學(xué)生的學(xué)習(xí)信心,提高學(xué)習(xí)興趣,在主觀作用下上升和進(jìn)步.

  2、注意從實例出發(fā),從感性提高到理性;注意運(yùn)用對比的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說明抽象的知識;注意從已有的知識出發(fā),啟發(fā)學(xué)生思考.

  高一數(shù)學(xué)教學(xué)計劃5

  一、學(xué)情分析

  這節(jié)課是在學(xué)生已經(jīng)學(xué)過的二維的平面直角坐標(biāo)系的基礎(chǔ)上的推廣,是以后學(xué)習(xí)空間向量等內(nèi)容的基礎(chǔ)。

  二、教學(xué)目標(biāo)

  1.讓學(xué)生經(jīng)歷用類比的數(shù)學(xué)思想方法探索空間直角坐標(biāo)系的建立方法,進(jìn)一步體會數(shù)學(xué)概念、方法產(chǎn)生和發(fā)展的過程,學(xué)會科學(xué)的思維方法。

  2.理解空間直角坐標(biāo)系與點的坐標(biāo)的意義,掌握由空間直角坐標(biāo)系內(nèi)的點確定其坐標(biāo)或由坐標(biāo)確定其在空間直角坐標(biāo)系內(nèi)的點,認(rèn)識空間直角坐標(biāo)系中的點與坐標(biāo)的關(guān)系。

  3.進(jìn)一步培養(yǎng)學(xué)生的空間想象能力與確定性思維能力。

  三、教學(xué)重點

  在空間直角坐標(biāo)系中點的坐標(biāo)的確定。

  四、教學(xué)難點

  通過建立空間直角坐標(biāo)系利用點的坐標(biāo)來確定點在空間內(nèi)的位置

  五、教學(xué)過程

  (一)、問題情景

  1.確定一個點在一條直線上的位置的方法。

  2.確定一個點在一個平面內(nèi)的位置的方法。

  3.如何確定一個點在三維空間內(nèi)的位置?

  例:如圖,在房間(立體空間)內(nèi)如何確定一個同學(xué)的頭所在位置?

  在學(xué)生思考討論的基礎(chǔ)上,教師明確:確定點在直線上,通過數(shù)軸需要一個數(shù);確定點在平面內(nèi),通過平面直角坐標(biāo)系需要兩個數(shù)。那么,要確定點在空間內(nèi),應(yīng)該需要幾個數(shù)呢?通過類比聯(lián)想,容易知道需要三個數(shù)。要確定同學(xué)的頭的位置,知道同學(xué)的頭到地面的距離、到相鄰的兩個墻面的距離即可。

  (此時學(xué)生只是意識到需要三個數(shù),還不能從坐標(biāo)的角度去思考,因此,教師在這兒要重點引導(dǎo))

  教師明晰:在地面上建立直角坐標(biāo)系xOy,則地面上任一點的位置只須利用x,y就可確定。為了確定不在地面內(nèi)的電燈的位置,須要用第三個數(shù)表示物體離地面的高度,即需第三個坐標(biāo)z.因此,只要知道電燈到地面的距離、到相鄰的兩個墻面的距離即可。例如,若這個電燈在平面xOy上的射影的兩個坐標(biāo)分別為4和5,到地面的距離為3,則可以用有序數(shù)組(4,5,3)確定這個電燈的位置(如圖26-3)。

  這樣,仿照初中平面直角坐標(biāo)系,就建立了空間直角坐標(biāo)系O-xyz,從而確定了空間點的位置。

  (二)、建立模型

  1.在前面研究的基礎(chǔ)上,先由學(xué)生對空間直角坐標(biāo)系予以抽象概括,然后由教師給出準(zhǔn)確的定義。

  從空間某一個定點O引三條互相垂直且有相同單位長度的數(shù)軸,這樣就建立了空間直角坐標(biāo)系O-xyz,點O叫作坐標(biāo)原點,x軸、y軸、z軸叫作坐標(biāo)軸,這三條坐標(biāo)軸中每兩條確定一個坐標(biāo)平面,分別稱為xOy平面,yOz平面,zOx平面。

  教師進(jìn)一步明確:

  (1)在空間直角坐標(biāo)系中,讓右手拇指指向x軸的正方向,食指指向y軸的正方向,若中指指向z軸的正方向則稱這個坐標(biāo)系為右手坐標(biāo)系,課本中建立的坐標(biāo)系都是右手坐標(biāo)系。

  (2)將空間直角坐標(biāo)系O-xyz畫在紙上時,x軸與y軸、x軸與z軸成135,而y軸垂直于z軸,y軸和z軸的單位長度相等,但x軸上的單位長度等于y軸和z軸上的單位長度的,這樣,三條軸上的單位長度直觀上大致相等。

  2.空間直角坐標(biāo)系O-xyz中點的坐標(biāo)。

  思考:在空間直角坐標(biāo)系中,空間任意一點A與有序數(shù)組(x,y,z)有什么樣的對應(yīng)關(guān)系?

  在學(xué)生充分討論思考之后,教師明確:

  (1)過點A作三個平面分別垂直于x軸,y軸,z軸,它們與x軸、y軸、z軸分別交于點P,Q,R,點P,Q,R在相應(yīng)數(shù)軸上的坐標(biāo)依次為x,y,z,這樣,對空間任意點A,就定義了一個有序數(shù)組(x,y,z)。

  (2)反之,對任意一個有序數(shù)組(x,y,z),按照剛才作圖的相反順序,在坐標(biāo)軸上分別作出點P,Q,R,使它們在x軸、y軸、z軸上的坐標(biāo)分別是x,y,z,再分別過這些點作垂直于各自所在的坐標(biāo)軸的平面,這三個平面的交點就是所求的點A.

  這樣,在空間直角坐標(biāo)系中,空間任意一點A與有序數(shù)組(x,y,z)之間就建立了一種一一對應(yīng)關(guān)系:A(x,y,z)。

  教師進(jìn)一步指出:空間直角坐標(biāo)系O-xyz中任意點A的坐標(biāo)的概念

  對于空間任意點A,作點A在三條坐標(biāo)軸上的射影,即經(jīng)過點A作三個平面分別垂直于x軸、y軸和z軸,它們與x軸、y軸、z軸分別交于點P,Q,R,點P,Q,R在相應(yīng)數(shù)軸上的坐標(biāo)依次為x,y,z,我們把有序數(shù)組(x,y,z)叫作點A的`坐標(biāo),記為A(x,y,z)。

  (三)、例題與練習(xí)

  1.課本135頁例1.

  注意:在分析中緊扣坐標(biāo)定義,強(qiáng)調(diào)三個步驟,第一步從原點出發(fā)沿x軸正方向移動5個單位,第二步沿與y軸平行的方向向右移動4個單位,第三步沿與z軸平行的方向向上移動6個單位(如圖26-5)。

  2.課本135頁例2

  探究:(1)在空間直角坐標(biāo)系中,坐標(biāo)平面xOy,xOz,yOz上點的坐標(biāo)有什么特點?

  (2)在空間直角坐標(biāo)系中,x軸、y軸、z軸上點的坐標(biāo)有什么特點?

  解:(1)xOy平面、xOz平面、yOz平面內(nèi)的點的坐標(biāo)分別形如(x,y,0),(x,0,z),(0,y,z)。

  (2)x軸、y軸、z軸上點的坐標(biāo)分別形如(x,0,0),(0,y,0),(0,0,z)。

  3.已知長方體ABCD-ABCD的邊長AB=12,AD=8,AA=5,以這個長方體的頂點A為坐標(biāo)原點,射線AB,AD,AA分別為x軸、y軸和z軸的正半軸,建立空間直角坐標(biāo)系,求這個長方體各個頂點的坐標(biāo)。

  注意:此題可以由學(xué)生口答,教師點評。

  解:A(0,0,0),B(12,0,0),D(0,8,0),A(0,0,5),C(12,8,0),B(12,0,5),D(0,8,5),C(12,8,5)。

  討論:若以C點為原點,以射線CB,CD,CC方向分別為x,y,z軸的正半軸,建立空間直角坐標(biāo)系,那么各頂點的坐標(biāo)又是怎樣的呢?

  得出結(jié)論:建立不同的坐標(biāo)系,所得的同一點的坐標(biāo)也不同。

  [練習(xí)]

  1.在空間直角坐標(biāo)系中,畫出下列各點:A(0,0,3),B(1,2,3),C(2,0,4),D(-1,2,-2)。

  2.已知:長方體ABCD-ABCD的邊長AB=12,AD=8,AA=7,以這個長方體的頂點B為坐標(biāo)原點,射線AB,BC,BB分別為x軸、y軸和z軸的正半軸,建立空間直角坐標(biāo)系,求這個長方體各個頂點的坐標(biāo)。

  3.寫出坐標(biāo)平面yOz上yOz平分線上的點的坐標(biāo)滿足的條件。

  (四)、拓展延伸

  分別寫出點(1,1,1)關(guān)于各坐標(biāo)軸和各個坐標(biāo)平面對稱的點的坐標(biāo)。

  六、評價設(shè)計

  1、練習(xí):課本P136.1、2、3

  2、課堂作業(yè):課本P138.1、2

【高一數(shù)學(xué)教學(xué)計劃】相關(guān)文章:

數(shù)學(xué)高一教學(xué)計劃03-10

高一數(shù)學(xué)教學(xué)計劃12-24

高一數(shù)學(xué)的教學(xué)計劃04-04

高一數(shù)學(xué)教學(xué)計劃12-30

高一數(shù)學(xué)教學(xué)計劃優(yōu)秀10-26

關(guān)于高一數(shù)學(xué)教學(xué)計劃01-29

高一數(shù)學(xué)教學(xué)教學(xué)計劃02-06

高一數(shù)學(xué)的教學(xué)計劃通用10-12

高一數(shù)學(xué)教學(xué)計劃(15篇)12-26

高一數(shù)學(xué)教學(xué)計劃15篇12-24