一级毛片免费不卡在线视频,国产日批视频免费在线观看,菠萝菠萝蜜在线视频免费视频,欧美日韩亚洲无线码在线观看,久久精品这里精品,国产成人综合手机在线播放,色噜噜狠狠狠综合曰曰曰,琪琪视频

高一數(shù)學(xué)教學(xué)計劃

時間:2022-12-28 11:46:51 教學(xué)計劃 我要投稿

高一數(shù)學(xué)教學(xué)計劃(合集15篇)

  時間的腳步是無聲的,它在不經(jīng)意間流逝,迎接我們的將是新的生活,新的挑戰(zhàn),立即行動起來寫一份計劃吧。想學(xué)習(xí)擬定計劃卻不知道該請教誰?以下是小編為大家整理的高一數(shù)學(xué)教學(xué)計劃,希望對大家有所幫助。

高一數(shù)學(xué)教學(xué)計劃(合集15篇)

高一數(shù)學(xué)教學(xué)計劃1

  一、教材分析(結(jié)構(gòu)系統(tǒng)、單元內(nèi)容、重難點)

  必修5第一章:解三角形;重點是正弦定理與余弦定理;難點是正弦定理與余弦定理的應(yīng)用;第二章:數(shù)列;重點是等差數(shù)列與等比數(shù)列的前n項的和;難點是等差數(shù)列與等比數(shù)列前n項的和與應(yīng)用;第三章:不等式;重點是一元二次不等式及其解法、二元一次不等式(組)與簡單的線性規(guī)劃問題、基本不等式;難點是二元一次不等式(組)與簡單的線性規(guī)劃問題及應(yīng)用;

  必修2第一章:空間幾何體;重點是空間幾何體的三視圖和直觀圖及表面積與體積;難點是空間幾何體的三視圖;第二章:點、直線、平面之間的位置關(guān)系;重點與難點都是直線與平面平行及垂直的判定及其性質(zhì);第三章:直線與方程;重點是直線的傾斜角與斜率及直線方程;難點是如何選擇恰當(dāng)?shù)闹本方程求解題目;第四章:圓與方程;重點是圓的方程及直線與圓的位置關(guān)系;難點是直線與圓的位置關(guān)系;

  二、學(xué)生分析(雙基智能水平、學(xué)習(xí)態(tài)度、方法、紀(jì)律)

  較去年而言,今年的學(xué)生的素質(zhì)有了比較大的提高,學(xué)生的基礎(chǔ)知識水平與基本學(xué)習(xí)方法比較扎實,大部分的學(xué)生對學(xué)習(xí)都有很大的興趣,學(xué)習(xí)紀(jì)律比較自覺。

  三、教學(xué)目的要求

  1.通過對任意三角形邊長和角度關(guān)系的'探索,掌握正弦定理、余弦定理,并能解決一些簡單的三角形度量問題和與測量及幾何計算有關(guān)的實際問題。

  2.通過日常生活中的實例,了解數(shù)列的概念和幾種簡單的表示方法,了解數(shù)列是一種特殊的函數(shù);理解等差數(shù)列、等比數(shù)列的概念,探索并掌握2種數(shù)列的通項公式與前n項和的公式,能用有關(guān)的知識解決相應(yīng)的問題。

  3.理解不等式(組)對于刻畫不等關(guān)系的意義和價值;掌握求解一元二次不等式的基本方法,并能解決一些實際問題;能用一元二次不等式組表示平面區(qū)域,并嘗試解決簡單的二元線性規(guī)劃問題。

  4.幾何學(xué)研究現(xiàn)實世界中物體的形狀、大小與位置的學(xué)科。直觀感知、操作確認(rèn)、思辨論證、度量計算是認(rèn)識和探索幾何圖形及其性質(zhì)的方法。先從對空間幾何體的整體觀察入手,認(rèn)識空間圖形及其直觀圖的畫法;再以長方體為載體,直觀認(rèn)識和理解空間中點、直線、平面之間的位置關(guān)系,并利用數(shù)學(xué)語言表述有關(guān)平行、垂直的性質(zhì)與判定,對某些結(jié)論進(jìn)行論證。另外了解一些簡單幾何體的表面積與體積的計算方法。在解析幾何初步中,在平面直角坐標(biāo)系中建立直線和圓的代數(shù)方程,運用代數(shù)方法研究它們的幾何性質(zhì)及其相互關(guān)系,了解空間直角坐標(biāo)系。體會數(shù)形結(jié)合的思想,初步形成用代數(shù)方法解決幾何問題的能力。

  四、完成教學(xué)任務(wù)和提高教學(xué)質(zhì)量的具體措施

  積極做好集體備課工作,達(dá)到內(nèi)容統(tǒng)一、進(jìn)度統(tǒng)一、目標(biāo)統(tǒng)一、例題統(tǒng)一、習(xí)題統(tǒng)一、資料統(tǒng)一;上好每一節(jié)課,及時對學(xué)生的思想進(jìn)行觀察與指導(dǎo);課后進(jìn)行有效的輔導(dǎo);進(jìn)行有效的課堂反思。

  五、教學(xué)進(jìn)度

周次

課、章、節(jié)

教 學(xué) 內(nèi) 容

備 注

1

1.1,1.2

解三角形


2

1.2

解三角形


3

2.1,2.2

數(shù)列的概念與簡單表示法,等差數(shù)列


4

2.3

等差數(shù)列的前n項和


5

2.4,2.5

等比數(shù)列及前n項和


6

2.5

考試


7

3.1,3.2

不等關(guān)系與不等式,一元二次不等式及其解法


8


3.3,3.4


二元一次不等式(組)與簡單線性規(guī)劃問題,基本不等式


9


考試,復(fù)習(xí)


10


期中考試


11

1.1,1.2

空間幾何體的結(jié)構(gòu),三視圖,直觀圖


12

1.3

空間幾何體的表面積與體積


13

2.1,2.2

空間點、直線、平面的位置關(guān)系,直線、平面平行的判定及其性質(zhì)


14

2.3

直線、平面的判定及其性質(zhì)


15

3.1,3.2

直線的傾斜角與斜率,直線方程


16

3.3

直線的交點坐標(biāo)與距離公式


17

4.1,4.2

圓的方程,直線、圓的位置關(guān)系


18

4.3

空間直角坐標(biāo)系


19


復(fù)習(xí)


20


考試


高一數(shù)學(xué)教學(xué)計劃2

  教學(xué)目標(biāo)

  1通過對冪函數(shù)概念的學(xué)習(xí)以及對冪函數(shù)圖象和性質(zhì)的歸納與概括,讓學(xué)生體驗數(shù)學(xué)概念的形成過程,培養(yǎng)學(xué)生的抽象概括能力。

  2使學(xué)生理解并掌握冪函數(shù)的圖象與性質(zhì),并能初步運用所學(xué)知識解決有關(guān)問題,培養(yǎng)學(xué)生的靈活思維能力。

  3培養(yǎng)學(xué)生觀察、分析、歸納能力。了解類比法在研究問題中的作用。

  教學(xué)重點、難點

  重點:冪函數(shù)的性質(zhì)及運用

  難點:冪函數(shù)圖象和性質(zhì)的發(fā)現(xiàn)過程

  教學(xué)方法:問題探究法 教具:多媒體

  教學(xué)過程

  一、創(chuàng)設(shè)情景,引入新課

  問題1:如果張紅購買了每千克1元的水果w千克,那么她需要付的錢數(shù)p(元)和購買的水果量w(千克)之間有何關(guān)系?

  (總結(jié):根據(jù)函數(shù)的定義可知,這里p是w的函數(shù))

  問題2:如果正方形的邊長為a,那么正方形的面積 ,這里S是a的函數(shù)。 問題3:如果正方體的邊長為a,那么正方體的體積 ,這里V是a的函數(shù)。 問題4:如果正方形場地面積為S,那么正方形的邊長 ,這里a是S的函數(shù) 問題5:如果某人 s內(nèi)騎車行進(jìn)了 km,那么他騎車的速度 ,這里v是t的函數(shù)。

  以上是我們生活中經(jīng)常遇到的幾個數(shù)學(xué)模型,你能發(fā)現(xiàn)以上幾個函數(shù)解析式有什么共同點嗎?(右邊指數(shù)式,且底數(shù)都是變量) 這只是我們生活中常用到的'一類函數(shù)的幾個具體代表,如果讓你給他們起一個名字的話,你將會給他們起個什么名字呢?(變量在底數(shù)位置,解析式右邊都是冪的形式)(適當(dāng)引導(dǎo):從自變量所處的位置這個角度)(引入新課,書寫課題)

  二、新課講解

  由學(xué)生討論,(教師可提示p=w可看成p=w1)總結(jié),即可得出:p=w, s=a2, a=s , v=t-1都是自變量的若干次冪的形式。

  教師指出:我們把這樣的都是自變量的若干次冪的形式的函數(shù)稱為冪函數(shù)。

  冪函數(shù)的定義:一般地,我們把形如 的函數(shù)稱為冪函數(shù)(power function),其中 是自變量, 是常數(shù)。 1冪函數(shù)與指數(shù)函數(shù)有什么區(qū)別?(組織學(xué)生回顧指數(shù)函數(shù)的概念) 結(jié)論:冪函數(shù)和指數(shù)函數(shù)都是我們高中數(shù)學(xué)中研究的兩類重要的基本初等函數(shù),從它們的解析式看有如下區(qū)別: 對冪函數(shù)來說,底數(shù)是自變量,指數(shù)是常數(shù) 對指數(shù)函數(shù)來說,指數(shù)是自變量,底數(shù)是常數(shù) 例1判別下列函數(shù)中有幾個冪函數(shù)?

 、 y= ②y=2x2 ③y=x ④y=x2+x ⑤y=-x3 ⑥ ⑦ ⑧ ⑨ (由學(xué)生獨立思考、回答)

  2冪函數(shù)具有哪些性質(zhì)?研究函數(shù)應(yīng)該是哪些方面的內(nèi)容。前面指數(shù)函數(shù)、對數(shù)函數(shù)研究了哪些內(nèi)容?

  (學(xué)生討論,教師引導(dǎo)。學(xué)生回答。)

  3冪函數(shù)的定義域是否與對數(shù)函數(shù)、指數(shù)函數(shù)一樣,具有相同的定義域?

  (學(xué)生小組討論,得到結(jié)論。引導(dǎo)學(xué)生舉例研究。結(jié)論:冪指數(shù) 不同,定義域并不完全相同,應(yīng)區(qū)別對待。)教師指出:冪函數(shù)y=xn中,當(dāng)n=0時,其表達(dá)式y(tǒng)=x0=1;定義域為(-∞,0)U(0,+∞),特別強調(diào),當(dāng)x為任何非零實數(shù)時,函數(shù)的值均為1,圖象是從點(0,1)出發(fā),平行于x軸的兩條射線,但點(0,1)要除外。)

  例2寫出下列函數(shù)的定義域,并指出它們的奇偶性:①y=x ②y= ③y=x ④y=x

  (學(xué)生解答,并歸納解決辦法。引導(dǎo)學(xué)生與指數(shù)函數(shù)、對數(shù)函數(shù)對照比較。引導(dǎo)學(xué)生具體問題具體分析,并作簡單歸納:分?jǐn)?shù)指數(shù)應(yīng)化成根式,負(fù)指數(shù)寫成正數(shù)指數(shù)再寫出定義域。冪函數(shù)的奇偶性也應(yīng)具體分析。)

  4上述函數(shù)①y=x ②y= ③y=x ④y=x 的單調(diào)性如何?如何判斷?

  (學(xué)生思考,引導(dǎo)作圖可得。并加上y=x 和y=x-1圖象)接下來, 在同一坐標(biāo)系中學(xué)生作圖,教師巡視。將學(xué)生作圖用實物投影儀演示,指出優(yōu)點和錯誤之處。教師利用幾何畫板演示。見后附圖1

  讓學(xué)生觀察圖象,看單調(diào)性、以及還有哪些共同點?(學(xué)生思考,回答。教師注意學(xué)生敘述的嚴(yán)密性。)

  教師總評:冪函數(shù)的性質(zhì)

  (1)所有的冪函數(shù)在(0,+∞)上都有定義,并且圖象都過點(1,1),

  (2)如果a>0,則冪函數(shù)的圖象通過原點,并在區(qū)間[0,+∞)上是增函數(shù),

  (3)如果a<0,則冪函數(shù)在(0,+∞)上是減函數(shù),在第一區(qū)間內(nèi),當(dāng)x從右邊趨向于原點時,圖象在y軸右方無限地趨近y軸;當(dāng)x趨向于+∞,圖象在x軸上方無限地趨近x軸。

  5通過觀察例1,在冪函數(shù)y=xa中,當(dāng)a是(1)正偶數(shù)、(2)正奇數(shù)時,這一類函數(shù)有哪種性質(zhì)?

  學(xué)生思考,教師講評:(1)在冪函數(shù)y=xa中,當(dāng)a是正偶數(shù)時,函數(shù)都是偶函數(shù),在第一象限內(nèi)是增函數(shù)。(2)在冪函數(shù)y=xa中,當(dāng)a是正奇數(shù)時,函數(shù)都是奇函數(shù),在第一象限內(nèi)是增函數(shù)。

  例3鞏固練習(xí) 寫出下列函數(shù)的定義域,并指出它們的奇偶性和單調(diào)性:①y=x ②y=x ③y=x 。

  例4簡單應(yīng)用1:比較下列各組中兩個值的大小,并說明理由:

 、0.75 ,0.76 ;

  ②(-0.95) ,(-0.96) ;

 、0.23 ,0.24 ;

 、0.31 ,0.31

  例5簡單應(yīng)用2:冪函數(shù)y=(m -3m-3)x 在區(qū)間 上是減函數(shù),求m的值。

  例6簡單應(yīng)用2:

  已知(a+1)<(3-2a) ,試求a的取值范圍。

  課堂小結(jié)

  今天的學(xué)習(xí)內(nèi)容和方法有哪些?你有哪些收獲和經(jīng)驗?

  1、 冪函數(shù)的概念及其指數(shù)函數(shù)表達(dá)式的區(qū)別 2、 常見冪函數(shù)的圖象和冪函數(shù)的性質(zhì)。

布置作業(yè):

  課本p.73 2、3、4、思考5

高一數(shù)學(xué)教學(xué)計劃3

  一、學(xué)生情景分析

  本學(xué)期擔(dān)任高一森林班的數(shù)學(xué)教學(xué)工作,學(xué)生共有66人,大部分學(xué)生學(xué)習(xí)習(xí)慣好,學(xué)習(xí)目標(biāo)明確、勤奮、主動,學(xué)習(xí)動力足,少數(shù)同學(xué)質(zhì)疑“學(xué)習(xí)是否有用”;另外,少數(shù)學(xué)生不能正確評價自我,這給教學(xué)工作帶來了必須的難度,在學(xué)習(xí)中取得長足的提高,必須要引導(dǎo)他們,擺正學(xué)習(xí)態(tài)度,讓他們體會到學(xué)習(xí)的樂趣,學(xué)習(xí)給他們帶來的成就感,提高他們學(xué)習(xí)的進(jìn)取性,還要不斷的鼓勵他們,培養(yǎng)他們良好的學(xué)習(xí)習(xí)慣。

  二、教學(xué)目標(biāo)

  1、由數(shù)學(xué)活動、故事等等,經(jīng)過分析問題的方法的教學(xué),提高學(xué)習(xí)數(shù)學(xué)的興趣,樹立學(xué)好數(shù)學(xué)的信心,構(gòu)成鍥而不舍的鉆研精神和科學(xué)態(tài)度。

  2、注意從實例出發(fā),從感性提高到理性,供給生活背景,經(jīng)過動手建立幾何模型,讓學(xué)生體會數(shù)學(xué)就在身邊,培養(yǎng)學(xué)數(shù)學(xué)用數(shù)學(xué)的意識。

  3、獲得必要的數(shù)學(xué)基礎(chǔ)知識和基本技能,理解基本的.數(shù)學(xué)概念、數(shù)學(xué)結(jié)論的本質(zhì),了解概念、結(jié)論等產(chǎn)生的背景、應(yīng)用,體會其中所蘊涵的數(shù)學(xué)思想和方法,以及它們在后續(xù)學(xué)習(xí)中的作用。經(jīng)過不一樣形式的自主學(xué)習(xí)、探究活動,體驗數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程。

  4、提高空間想象、抽象概括、推理論證、運算求解、數(shù)據(jù)處理等基本本事。

  5、提高數(shù)學(xué)地提出、分析和解決問題(包括簡單的實際問題)的本事,數(shù)學(xué)表達(dá)和交流的本事,發(fā)展獨立獲取數(shù)學(xué)知識的本事。

  6、經(jīng)過定義、命題的總體結(jié)構(gòu)教學(xué),揭示其本質(zhì)特點和相互關(guān)系,培養(yǎng)對數(shù)學(xué)本質(zhì)問題的背景事實及具體數(shù)據(jù)的記憶。發(fā)展數(shù)學(xué)應(yīng)用意識和創(chuàng)新意識,力求對現(xiàn)實世界中蘊涵的一些數(shù)學(xué)模式進(jìn)行思考和作出確定。

  7、加強知識的橫向聯(lián)系,培養(yǎng)學(xué)生的數(shù)形結(jié)合的本事。

  8、具有必須的數(shù)學(xué)視野,逐步認(rèn)識數(shù)學(xué)的科學(xué)價值、應(yīng)用價值和文化價值,構(gòu)成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的理性精神,體會數(shù)學(xué)的美學(xué)意義,從而進(jìn)一步樹立辯證唯物主義和歷史唯物主義世界觀。

  三、教材分析

  本學(xué)期學(xué)習(xí)的資料主要有集合,函數(shù)和空間幾何體,這些都是高中數(shù)學(xué)的基礎(chǔ)知識,其中函數(shù)更是高中數(shù)學(xué)的學(xué)習(xí)重點,也是學(xué)習(xí)其他資料的必備基礎(chǔ),空間幾何是高考中不可忽略的重要部分,在教學(xué)上要注重學(xué)生的邏輯思維本事、空間想象本事的培養(yǎng)及自學(xué)本事的逐步構(gòu)成。

  四、教學(xué)措施

  1、激發(fā)學(xué)生的學(xué)習(xí)興趣。由數(shù)學(xué)活動、故事、吸引人的課、合理的要求、師生談話等途徑樹立學(xué)生的學(xué)習(xí)信心,提高學(xué)習(xí)興趣,在主觀作用下上升和提高。

  2、注意從實例出發(fā),從感性提高到理性;注意運用比較的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說明抽象的知識;注意從已有的知識出發(fā),啟發(fā)學(xué)生思考。

  3、加強培養(yǎng)學(xué)生的邏輯思維本事就解決實際問題的本事,以及培養(yǎng)提高學(xué)生的自學(xué)本事,養(yǎng)成善于分析問題的習(xí)慣,進(jìn)行辨證唯物主義教育。

  4、抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強復(fù)習(xí)檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問題的本事。

  5、自始至終貫徹教學(xué)四環(huán)節(jié),針對不一樣的教材資料選擇不一樣教法。

  6、重視數(shù)學(xué)應(yīng)用意識及應(yīng)用本事的培養(yǎng)。

高一數(shù)學(xué)教學(xué)計劃4

  教學(xué)目標(biāo) :

  (1)理解子集、真子集、補集、兩個集合相等概念;

  (2)了解全集、空集的意義,

  (3)掌握有關(guān)的符號及表示方法,會用它們正確表示一些簡單的集合,培養(yǎng)學(xué)生的符號表示的能力;

  (4)會求已知集合的子集、真子集,會求全集中子集在全集中的補集;

  (5)能判斷兩集合間的包含、相等關(guān)系,并會用符號及圖形(文氏圖)準(zhǔn)確地表示出來,培養(yǎng)學(xué)生的數(shù)學(xué)結(jié)合的數(shù)學(xué)思想;

  (6)培養(yǎng)學(xué)生用集合的觀點分析問題、解決問題的能力.

  教學(xué)重點:子集、補集的概念

  教學(xué)難點 :弄清元素與子集、屬于與包含之間的區(qū)別

  教學(xué)用具:幻燈機(jī)

  教學(xué)過程 設(shè)計

  (一)導(dǎo)入 新課

  上節(jié)課我們學(xué)習(xí)了集合、元素、集合中元素的三性、元素與集合的關(guān)系等知識.

  【提出問題】(投影打出)

  已知 , , ,問:

  1.哪些集合表示方法是列舉法.

  2.哪些集合表示方法是描述法.

  3.將集M、集從集P用圖示法表示.

  4.分別說出各集合中的元素.

  5.將每個集合中的元素與該集合的關(guān)系用符號表示出來.將集N中元素3與集M的關(guān)系用符號表示出來.

  6.集M中元素與集N有何關(guān)系.集M中元素與集P有何關(guān)系.

  【找學(xué)生回答】

  1.集合M和集合N;(口答)

  2.集合P;(口答)

  3.(筆練結(jié)合板演)

  4.集M中元素有-1,1;集N中元素有-1,1,3;集P中元素有-1,1.(口答)

  5. , , , , , , , (筆練結(jié)合板演)

  6.集M中任何元素都是集N的元素.集M中任何元素都是集P的元素.(口答)

  【引入】在上面見到的集M與集N;集M與集P通過元素建立了某種關(guān)系,而具有這種關(guān)系的兩個集合在今后學(xué)習(xí)中會經(jīng)常出現(xiàn),本節(jié)將研究有關(guān)兩個集合間關(guān)系的問題.

  (二)新授知識

  1.子集

  (1)子集定義:一般地,對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,我們就說集合A包含于集合B,或集合B包含集合A。

  記作: 讀作:A包含于B或B包含A

  當(dāng)集合A不包含于集合B,或集合B不包含集合A時,則記作:A B或B A.

  性質(zhì):① (任何一個集合是它本身的子集)

 、 (空集是任何集合的子集)

  【置疑】能否把子集說成是由原來集合中的'部分元素組成的集合?

  【解疑】不能把A是B的子集解釋成A是由B中部分元素所組成的集合.

  因為B的子集也包括它本身,而這個子集是由B的全體元素組成的.空集也是B的子集,而這個集合中并不含有B中的元素.由此也可看到,把A是B的子集解釋成A是由B的部分元素組成的集合是不確切的.

  (2)集合相等:一般地,對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,記作A=B。

  例: ,可見,集合 ,是指A、B的所有元素完全相同.

  (3)真子集:對于兩個集合A與B,如果 ,并且 ,我們就說集合A是集合B的真子集,記作: (或 ),讀作A真包含于B或B真包含A。

  【思考】能否這樣定義真子集:“如果A是B的子集,并且B中至少有一個元素不屬于A,那么集合A叫做集合B的真子集.”

  集合B同它的真子集A之間的關(guān)系,可用文氏圖表示,其中兩個圓的內(nèi)部分別表示集合A,B.

  【提問】

  (1) 寫出數(shù)集N,Z,Q,R的包含關(guān)系,并用文氏圖表示。

  (2) 判斷下列寫法是否正確

 、 A ② A ③ ④A A

  性質(zhì):

  (1)空集是任何非空集合的真子集。若 A ,且A≠ ,則 A;

  (2)如果 , ,則 .

  例1 寫出集合 的所有子集,并指出其中哪些是它的真子集.

  解:集合 的所有的子集是 , , , ,其中 , , 是 的真子集.

  【注意】(1)子集與真子集符號的方向。

  (2)易混符號

  ①“ ”與“ ”:元素與集合之間是屬于關(guān)系;集合與集合之間是包含關(guān)系。如 R,{1} {1,2,3}

 、趝0}與 :{0}是含有一個元素0的集合, 是不含任何元素的集合。

  如: {0}。不能寫成 ={0}, ∈{0}

  例2 見教材P8(解略)

  例3 判斷下列說法是否正確,如果不正確,請加以改正.

  (1) 表示空集;

  (2)空集是任何集合的真子集;

  (3) 不是 ;

  (4) 的所有子集是 ;

  (5)如果 且 ,那么B必是A的真子集;

  (6) 與 不能同時成立.

  解:(1) 不表示空集,它表示以空集為元素的集合,所以(1)不正確;

  (2)不正確.空集是任何非空集合的真子集;

  (3)不正確. 與 表示同一集合;

  (4)不正確. 的所有子集是 ;

  (5)正確

  (6)不正確.當(dāng) 時, 與 能同時成立.

  例4 用適當(dāng)?shù)姆? , )填空:

  (1) ; ; ;

  (2) ; ;

  (3) ;

  (4)設(shè) , , ,則A B C.

  解:(1)0 0 ;

  (2) = , ;

  (3) , ∴ ;

  (4)A,B,C均表示所有奇數(shù)組成的集合,∴A=B=C.

  【練習(xí)】教材P9

  用適當(dāng)?shù)姆? , )填空:

  (1) ; (5) ;

  (2) ; (6) ;

  (3) ; (7) ;

  (4) ; (8) .

  解:(1) ;(2) ;(3) ;(4) ;(5)=;(6) ;(7) ;(8) .

  提問:見教材P9例子

  (二) 全集與補集

  1.補集:一般地,設(shè)S是一個集合,A是S的一個子集(即 ),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集),記作 ,即

  .

  A在S中的補集 可用右圖中陰影部分表示.

  性質(zhì): S( SA)=A

  如:(1)若S={1,2,3,4,5,6},A={1,3,5},則 SA={2,4,6};

  (2)若A={0},則 NA=N*;

  (3) RQ是無理數(shù)集。

  2.全集:

  如果集合S中含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集,全集通常用表示.

  注: 是對于給定的全集 而言的,當(dāng)全集不同時,補集也會不同.

  例如:若 ,當(dāng) 時, ;當(dāng) 時,則 .

  例5 設(shè)全集 , , ,判斷 與 之間的關(guān)系.

高一數(shù)學(xué)教學(xué)計劃5

  一、指導(dǎo)思想

  準(zhǔn)確把握《教學(xué)大綱》和《考試大綱》的各項基本要求,立足于基礎(chǔ)知識和基本技能的教學(xué),注意參透教學(xué)思想和方法,針對學(xué)生實際,不斷研究數(shù)學(xué)教學(xué),改進(jìn)教法,指導(dǎo)學(xué)法。

  數(shù)學(xué)目標(biāo)要求

  1、理解集合及充要條件的有關(guān)知識,掌握不等式的性質(zhì),一元二次不等式、絕對值不等的解法,掌握函數(shù)的概念及指數(shù)函數(shù),對函數(shù)和幕函數(shù)的性質(zhì)和圖象。

  2、理解角的概念的推廣和三角函數(shù)的定義,掌握基本的三角函數(shù)公式和三角函數(shù)巔峰性質(zhì)、圖像,理解三角函數(shù)的周期性

  3、理解數(shù)列的概念,掌握等差數(shù)列和等比數(shù)列的性質(zhì),并會求等差數(shù)列、等比數(shù)列前n項的和。

  4、掌握平面向量時有關(guān)概念和運算,掌握直線和圓的方程的求法。

  5、掌握空間幾何直線、平面之間的位置關(guān)系及其判定方法。

  6、掌握概率與統(tǒng)計初步里的計數(shù)原理,理解三種抽樣方法,會求簡單問題的概率。

  二、教學(xué)建議

  1、深入鉆研教材。以教材為核心,深入研究教材中章節(jié)知識的內(nèi)外結(jié)構(gòu),熟練掌握知識和邏輯體系,細(xì)致領(lǐng)悟教材改革的精髓,逐步明確教材教學(xué)形式,內(nèi)容和教學(xué)目標(biāo)的影響。

  2、準(zhǔn)確吧握新大綱。新大綱修改了部分內(nèi)容的教學(xué)要求層次,把握新大綱對知識點的基本要求,防止自覺不自覺地對教材加深加寬。同時,在整體上要重視數(shù)學(xué)應(yīng)用;重視教學(xué)思想方法的參透。

  3、樹立以學(xué)生為主體的教育觀念。學(xué)生的發(fā)展是課程實施的出發(fā)點和歸宿,教師必須面向全體學(xué)生因材施材,以學(xué)生為賬戶提,構(gòu)建新的認(rèn)識體系,營造有利于學(xué)生的氛圍。

  4、發(fā)揮教材的.多種教學(xué)功能。用好章頭圖,激發(fā)學(xué)生學(xué)習(xí)興趣;發(fā)揮閱讀材料的功能,培養(yǎng)學(xué)生用數(shù)學(xué)的意識;組織好研究性課題的教學(xué),讓學(xué)生感受社會生活之所需;小結(jié)和復(fù)習(xí)是培養(yǎng)學(xué)生自學(xué)的好材料。

  5、加強課堂研究,科學(xué)設(shè)計教學(xué)方法。根據(jù)教材的內(nèi)容和特征,實行啟發(fā)式和討論式教學(xué)。發(fā)揚教學(xué)民主,師生雙方親切合作,交流互動,讓學(xué)生感受、理解知識的產(chǎn)生和發(fā)展的過程。根據(jù)材料個章節(jié)的重難點制定教學(xué)專題,積累教學(xué)經(jīng)驗。

  6、落實課外活動內(nèi)容,組織和加強數(shù)學(xué)興趣小組的活動內(nèi)容,加強對高層次學(xué)生的競賽輔導(dǎo),培養(yǎng)拔尖人才。

  三、教學(xué)進(jìn)度

  高一上學(xué)期

  高一下學(xué)期

  周次內(nèi)容

  周次內(nèi)容

  1-4復(fù)習(xí)初中知識和集合1-3數(shù)列

  5充要條件

  4-6平面向量

  6-7不等式7-9直線的方程

  8-10

  函數(shù)10期中考試

  11

  期中考試11-12圓的方程

  12-14指數(shù)函數(shù)與對數(shù)函數(shù)13-15

  立體幾何

  15-18三角函數(shù)16-18概率與統(tǒng)計初步

  19-20期末、總復(fù)習(xí)、考試19-20

  總復(fù)習(xí)與期末考試

  總結(jié):制定教學(xué)計劃的主要目的是為了全面了解學(xué)生的數(shù)學(xué)學(xué)習(xí)歷程,激勵學(xué)生的學(xué)習(xí)和改進(jìn)教師的教學(xué)。

高一數(shù)學(xué)教學(xué)計劃6

  一、學(xué)生狀況分析

  學(xué)生整體水平一般,成績以中等為主,中上不多,后進(jìn)生也有一些。幾個班中,從上課一周來看,學(xué)生的學(xué)習(xí)進(jìn)取性還是比較高,愛問問題的同學(xué)比較多,但由于基礎(chǔ)知識不太牢固,上課效率不是很高。

  二、教材分析

  使用北師大版《普通高中課程標(biāo)準(zhǔn)實驗教科書·數(shù)學(xué)》,教材在堅持我國數(shù)學(xué)教育優(yōu)良傳統(tǒng)的前提下,認(rèn)真處理繼承、借鑒、發(fā)展、創(chuàng)新之間的關(guān)系,體現(xiàn)基礎(chǔ)性、時代性、典型性和可理解性等,具有親和力、問題性、科學(xué)性、思想性、應(yīng)用性、聯(lián)系性等特點。必修1有三章(集合與函數(shù)概念;基本初等函數(shù);函數(shù)的應(yīng)用);必修2有四章(空間幾何體;點線平面間的位置關(guān)系;直線與方程;圓與方程)。

  三、教學(xué)任務(wù)

  本期授課資料為必修1和必修2,必修1在期中考試前完成(約在11月5日前完成);必修2在期末考試前完成(約在12月31日前完成)。

  四、教學(xué)質(zhì)量目標(biāo)

  1、獲得必要的數(shù)學(xué)基礎(chǔ)知識和基本技能,理解基本的數(shù)學(xué)概念、數(shù)學(xué)結(jié)論的本質(zhì),體會數(shù)學(xué)思想和方法。

  2、提高空間想象、抽象概括、推理論證、運算求解、數(shù)據(jù)處理等基本本事。

  3、提高學(xué)生提出、分析和解決問題(包括簡單的實際問題)的本事,數(shù)學(xué)表達(dá)和交流的本事,發(fā)展獨立獲取數(shù)學(xué)知識的本事。

  4、發(fā)展數(shù)學(xué)應(yīng)用意識和創(chuàng)新意識,力求對現(xiàn)實世界中蘊涵的一些數(shù)學(xué)模式進(jìn)行思考和作出確定。

  5、提高學(xué)習(xí)數(shù)學(xué)的興趣,樹立學(xué)好數(shù)學(xué)的信心,構(gòu)成鍥而不舍的鉆研精神和科學(xué)態(tài)度。

  6、具有必須的數(shù)學(xué)視野,逐步認(rèn)識數(shù)學(xué)的科學(xué)價值、應(yīng)用價值和文化價值,體會數(shù)學(xué)的美學(xué)意義,從而進(jìn)一步樹立辯證唯物主義和歷史唯物主義世界觀。

  五、促進(jìn)目標(biāo)達(dá)成的重點工作

  認(rèn)真貫徹高中數(shù)學(xué)新課標(biāo)精神,樹立新的教學(xué)理念,以“雙基”教學(xué)為主要資料,堅持“抓兩頭、帶中間、整體推進(jìn)”,使每個學(xué)生的數(shù)學(xué)本事都得到提高和發(fā)展。

  教學(xué)方法及推進(jìn)措施

  六、相關(guān)措施:

  高一作為起始年級,作為從義務(wù)階段邁入應(yīng)試征程的適應(yīng)階段,該有的是一份執(zhí)著。他的特殊性就在于它的跨越性,夢想的期盼與學(xué)法的突變,難度的加強與惰性的生成等等矛盾沖突伴隨著高一新生的成長,應(yīng)對新教材的我們也是邊摸索邊改變,樹立新的教學(xué)理念,并落實在課堂教學(xué)的各個環(huán)節(jié),才能不負(fù)眾望。我們要從學(xué)生的認(rèn)識水平和實際本事出發(fā),研究學(xué)生的心理特征,做好初三與高一的銜接工作,幫忙學(xué)生解決好從初中到高中學(xué)習(xí)方法的過渡。從高一齊就注意培養(yǎng)學(xué)生良好的數(shù)學(xué)思維方法,良好的學(xué)習(xí)態(tài)度和學(xué)習(xí)習(xí)慣,以適應(yīng)高中領(lǐng)悟性的學(xué)習(xí)方法。具體措施如下:

 。1)注意研究學(xué)生,做好初、高中學(xué)習(xí)方法的銜接工作。

  (2)集中精力打好基礎(chǔ),分項突破難點。所列基礎(chǔ)知識依據(jù)課程標(biāo)準(zhǔn)設(shè)計,著眼于基礎(chǔ)知識與重點資料,要充分重視基礎(chǔ)知識、基本技能、基本方法的教學(xué),為進(jìn)一步的學(xué)習(xí)打好堅實的基礎(chǔ),切勿忙于過早的拔高,上難題。同時應(yīng)放眼高中教學(xué)全局,注意高考命題中的知識要求,本事要求及新趨勢,這樣才能統(tǒng)籌安排,循序漸進(jìn),使高一的數(shù)學(xué)教學(xué)與高中教學(xué)的全局有機(jī)結(jié)合。

  (3)培養(yǎng)學(xué)生解答考題的本事,經(jīng)過例題,從形式和資料兩方應(yīng)對所學(xué)知識進(jìn)行本事方面的分析,引導(dǎo)學(xué)生了解數(shù)學(xué)需要哪些本事要求。

  (4)讓學(xué)生經(jīng)過單元考試,檢測自我的實際應(yīng)用本事,從而及時總結(jié)經(jīng)驗,找出不足,做好充分的準(zhǔn)備

 。5)抓好尖子生與后進(jìn)生的輔導(dǎo)工作,提前展開數(shù)學(xué)奧競選拔和數(shù)學(xué)基礎(chǔ)輔導(dǎo)。

 。6)重視數(shù)學(xué)應(yīng)用意識及應(yīng)用本事的.培養(yǎng)。

 。7)重視學(xué)生非智力因素培養(yǎng),要經(jīng)常性地鼓勵學(xué)生,增強學(xué)生學(xué)習(xí)數(shù)學(xué)興趣,樹立勇于克服困難與戰(zhàn)勝困難的信心。

 。8)合理引入課題,由數(shù)學(xué)活動、故事、提問、師生交流等方式激發(fā)學(xué)生學(xué)習(xí)興趣,注意從實例出發(fā),從感性提高到理性;注意運用比較的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說明抽象的知識;注意從已有的知識出發(fā),啟發(fā)學(xué)生思考。

 。9)加強培養(yǎng)學(xué)生的邏輯思維本事和解決實際問題的本事,以及培養(yǎng)提高學(xué)生的自學(xué)本事,養(yǎng)成善于分析問題的習(xí)慣,進(jìn)行辨證唯物主義教育。

 。10)抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強復(fù)習(xí)檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問題的本事。

 。11)自始至終貫徹教學(xué)四環(huán)節(jié)(引入、探究、例析、反饋),針對不一樣的教材資料選擇不一樣教法,提倡創(chuàng)新教學(xué)方法,把學(xué)生被動理解知識轉(zhuǎn)化主動學(xué)習(xí)知識。

  七、教學(xué)進(jìn)度安排:

 。裕

高一數(shù)學(xué)教學(xué)計劃7

  一 指導(dǎo)思想

  為了使學(xué)生在九年義務(wù)教育數(shù)學(xué)課程的基礎(chǔ)上,進(jìn)一步提高作為未來公民所必要的數(shù)學(xué)素養(yǎng),以滿足個人發(fā)展與社會進(jìn)步的需要。具體目標(biāo)如下:

  1.提高空間想像、抽象概括、推理論證、運算求解、數(shù)據(jù)處理等基本能力。

  2.提高數(shù)學(xué)地提出、分析和解決問題(包括簡單的實際問題)的能力,數(shù)學(xué)表達(dá)和交流的能力,發(fā)展獨立獲取數(shù)學(xué)知識的能力

  3.發(fā)展數(shù)學(xué)應(yīng)用意識和創(chuàng)新意識,力求對現(xiàn)實世界中蘊涵的一些數(shù)學(xué)模式進(jìn)行思考和作出判斷。

  4.提高學(xué)習(xí)的興趣,樹立學(xué)好數(shù)學(xué)的信心,形成鍥而不舍的鉆研精神和科學(xué)態(tài)度。

  二 學(xué)情分析

  1. 基本情況:班共人,男生人,女生人;本班相對而言,數(shù)學(xué)尖子約人,中上等生約人,中等生約人,中下生約 人,后進(jìn)生約人。

  2.我所執(zhí)教的215班均屬普高班,學(xué)生自覺性差,自我控制能力弱,因此在教學(xué)中需時時提醒學(xué)生,培養(yǎng)其自覺性。同時,由于初中課改的原因,高中教材與初中教材銜接力度不夠,需在新授時適機(jī)補充一些內(nèi)容。因此時間上可能仍然吃緊。同時,其底子薄弱,因此在教學(xué)時只能注重基礎(chǔ)再基礎(chǔ),爭取每一堂課落實一個知識點,掌握一個知識點。

  三 教材分析

  我們采用的教材是人教版必修教材,本冊教材共分兩章:第四章《三角函數(shù)》和第五章《平面向量》。三角函數(shù)的主要內(nèi)容有:任意角的三角函數(shù)概念、弧度制、同角三角函數(shù)間的關(guān)系、誘導(dǎo)公式、兩角和與差的三角函數(shù)、二倍角的三角函數(shù)以及三角函數(shù)的圖象和性質(zhì)、已知三角函數(shù)值求角等。難點是弧度制的概念、綜合運用本章公式進(jìn)行簡單三角函數(shù)式的化簡及恒等式的證明周期函數(shù)的概念,函數(shù)y=Asin(x+)的圖象與正弦曲線的關(guān)系。平面向量主要內(nèi)容是向量及其運算和解斜三角形,向量的幾何表示和坐標(biāo)表示、向量的線性運算,平面向量的數(shù)量積,平面兩點間的距離公式,線段的定比分點和中點坐標(biāo)公式,平移公式,解斜三角形是本章的重點,而向量運算法則的理解和運用,已知兩邊和其中一邊的對角解斜三角形等是本章的難點。

  四 教法分析

  在教學(xué)過程中盡量做到以下幾個方面:

  1. 選取與內(nèi)容密切相關(guān)的,典型的,豐富的和學(xué)生熟悉的素材,用生動活潑的語言,創(chuàng)設(shè)能夠體現(xiàn)數(shù)學(xué)的概念和結(jié)論,數(shù)學(xué)的思想和方法,以及數(shù)學(xué)應(yīng)用的學(xué)習(xí)情境,使學(xué)生產(chǎn)生對數(shù)學(xué)的親切感,引發(fā)學(xué)生看個究竟的沖動,以達(dá)到培養(yǎng)其興趣的目的。

  2. 通過觀察,思考,探究等欄目,引發(fā)學(xué)生的思考和探索活動,切實改進(jìn)學(xué)生的學(xué)習(xí)方式。

  3. 在教學(xué)中強調(diào)類比,推廣,特殊化,化歸等數(shù)學(xué)思想方法,盡可能養(yǎng)成其邏輯思維的習(xí)慣。

  五 教學(xué)及輔導(dǎo)措施

  1. 激發(fā)學(xué)生的學(xué)習(xí)興趣。由數(shù)學(xué)活動、故事、吸引人的課、合理的要求、師生談話等途徑樹立學(xué)生的學(xué)習(xí)信心,提高學(xué)習(xí)興趣,在主觀作用下上升和進(jìn)步。

  2. 注意從實例出發(fā),從感性提高到理性;注意運用對比的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說明抽象的知識;注意從已有的知識出發(fā),啟發(fā)學(xué)生思考。

  3. 加強培養(yǎng)學(xué)生的邏輯思維能力就解決實際問題的能力,以及培養(yǎng)提高學(xué)生的自學(xué)能力,養(yǎng)成善于分析問題的習(xí)慣,進(jìn)行辨證唯物主義教育。

  4. 抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強復(fù)習(xí)檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問題的能力。

  5. 自始至終貫徹教學(xué)四環(huán)節(jié),針對不同的教材內(nèi)容選擇不同教法。

  6. 重視數(shù)學(xué)應(yīng)用意識及應(yīng)用能力的培養(yǎng)。

  六 優(yōu)、差生名單及輔導(dǎo)措施

  1. 對于優(yōu)生:學(xué)生自愿成立興趣小組,興趣小組可以在老師的指導(dǎo)下由學(xué)生自己不定期的開展活動,圍繞數(shù)學(xué)競賽拓展他們的知識面,加深對所學(xué)知識的理解和應(yīng)用,在原有基礎(chǔ)上,穩(wěn)定班級在數(shù)學(xué)學(xué)習(xí)鐘的尖子學(xué)生,進(jìn)一步培養(yǎng)他們自主學(xué)習(xí)的意識。

  2. 對于待發(fā)展生:對于成績較差的學(xué)生,針對他們的基礎(chǔ)差異和個性差異,耐心細(xì)致的進(jìn)行個別輔導(dǎo),有問題隨時解決,并多予以鼓勵。在作業(yè)中體現(xiàn)分層。盡量做到因材施教。

  七 教學(xué)進(jìn)度安排

周 次




課時




內(nèi) 容




重 點、難 點




第1周




5




任意角和弧度制(2)




任意角的三角函數(shù)(3)




了解任意角的概念和弧度制,能進(jìn)行弧度與角度的互化。任意角三角函數(shù)的`定義。




第2周




5




同角三角函數(shù)的基本關(guān)系式(3)




三角函數(shù)的誘導(dǎo)公式(2)




誘導(dǎo)公式的探究。運用誘導(dǎo)公式。




第3周




5




兩角和與差的正弦、余弦、正切 (5)




兩角和與差的公式及其應(yīng)用與求值、化簡




第4周




5




二倍角的正弦、余弦、正切 (3)




正、余弦函數(shù)的圖象(2)




三角函數(shù)的倍角公式、和差化積公式




正、余弦函數(shù)圖象的畫法




第5周




5




三角函數(shù)圖象與性質(zhì)(4)




三角函數(shù)的圖象及其性質(zhì)。函數(shù)思想。




第6周




5




函數(shù)y=sin(+)的圖象(2)、三角函數(shù)模型的簡單應(yīng)用(2)




用參數(shù)思想討論圖象的變換過程。用三角模型解決一些具有周期變化規(guī)律的實際問題。難點:實際問題抽象為三角函數(shù)模型




第7周




5




正切函數(shù)的圖象和性質(zhì)(3)




已知三角函數(shù)值求角(2)




正切函數(shù)的圖象和性質(zhì)




反三角函數(shù)的表示




第8周




5




三角函數(shù)單元復(fù)習(xí)




知識點的復(fù)習(xí)+練習(xí)卷




第9周




5




平面向量的實際背景及基本概念(2)、平面向量的線性運算(2)




向量的概念。相等向量的概念。向量的幾何表示。向量加、減法的運算及幾何意義。向量數(shù)乘運算及幾何意義。




第10周




5




平面向量的基本定理及坐標(biāo)表示(2)




平面向量的數(shù)量積(2)




平面向量基本定理。會用平面向量數(shù)量積的表示向量的模與夾角。




第11周




5




平面向量的應(yīng)用舉例(2)




用向量方法解決實際問題的方法。向量方法解決幾何問題的三步曲。




第12周




5




向量平移、正弦定理、余弦定理




向量平移的公式




第13周




5




簡單的三角恒等變換(3)




第三章小結(jié)(1)




以11個公式為依據(jù),推導(dǎo)和差化積、積化和差等公式,會進(jìn)行三角變換。




第14周




5




期末復(fù)習(xí)





第15周




5




期末復(fù)習(xí)




分章歸納復(fù)習(xí)+3套模擬測試




高一數(shù)學(xué)教學(xué)計劃8

  一、具體目標(biāo):

  1、獲得必要的數(shù)學(xué)基礎(chǔ)知識和基本技能,理解基本的數(shù)學(xué)概念、數(shù)學(xué)結(jié)論的本質(zhì),了解概念、結(jié)論等產(chǎn)生的背景、應(yīng)用,體會其中所蘊涵的數(shù)學(xué)思想和方法,以及它們在后續(xù)學(xué)習(xí)中的作用。經(jīng)過不一樣形式的自主學(xué)習(xí)、探究活動,體驗數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程。

  2、提高空間想像、抽象概括、推理論證、運算求解、數(shù)據(jù)處理等基本本事。

  3、提高數(shù)學(xué)地提出、分析和解決問題(包括簡單的實際問題)的本事,數(shù)學(xué)表達(dá)和交流的本事,發(fā)展獨立獲取數(shù)學(xué)知識的本事。

  4、發(fā)展數(shù)學(xué)應(yīng)用意識和創(chuàng)新意識,力求對現(xiàn)實世界中蘊涵的一些數(shù)學(xué)模式進(jìn)行思考和作出確定。

  5、提高學(xué)習(xí)數(shù)學(xué)的興趣,樹立學(xué)好數(shù)學(xué)的信心,構(gòu)成鍥而不舍的'鉆研精神和科學(xué)態(tài)度。

  6、具有必須的數(shù)學(xué)視野,逐步認(rèn)識數(shù)學(xué)的科學(xué)價值、應(yīng)用價值和文化價值,構(gòu)成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的理性精神,體會數(shù)學(xué)……

  二、本學(xué)期要到達(dá)的教學(xué)目標(biāo)

  1、雙基要求:

  在基礎(chǔ)知識方面讓學(xué)生掌握高一有關(guān)的概念、性質(zhì)、法則、公式、定理以及由其資料反映出來的數(shù)學(xué)思想和方法。在基本技能方面能按照必須的程序與步驟進(jìn)行運算、處理數(shù)據(jù)、能使用計數(shù)器及簡單的推理、畫圖。

  2、本事培養(yǎng):

  能運用數(shù)學(xué)概念、思想方法,辨明數(shù)學(xué)關(guān)系,構(gòu)成良好的思維品質(zhì);會根據(jù)法則、公式正確的進(jìn)行運算、處理數(shù)據(jù),并能根據(jù)問題的情景設(shè)計運算途徑;會提出、分析和解決簡單的帶有實際意義的或在相關(guān)學(xué)科、生產(chǎn)和生活的數(shù)學(xué)問題,并進(jìn)行交流,構(gòu)成數(shù)學(xué)的意思;從而經(jīng)過獨立思考,會從數(shù)學(xué)的角度發(fā)現(xiàn)和提出問題,進(jìn)行探索和研究。

  3、思想教育:

  培養(yǎng)高一學(xué)生,學(xué)習(xí)數(shù)學(xué)的興趣、信心和毅力及實事求是的科學(xué)態(tài)度,勇于探索創(chuàng)新的精神,及欣賞數(shù)學(xué)的美學(xué)價值,并懂的數(shù)學(xué)來源于實踐又反作用于實踐的觀點;數(shù)學(xué)中普遍存在的對立統(tǒng)一、運動變化、相互聯(lián)系、相互轉(zhuǎn)化等觀點。

  三、進(jìn)度授課計劃及進(jìn)度表

 。裕

高一數(shù)學(xué)教學(xué)計劃9

  新學(xué)期已開始,為使新學(xué)期的工作有條不紊的進(jìn)行,使教學(xué)工作更加科學(xué)合理,使學(xué)生對知識的接收更加得心應(yīng)手,特訂新學(xué)期個人教學(xué)計劃如下

  一,指導(dǎo)思想

  加強現(xiàn)代教育理論的學(xué)習(xí),提高自身的素質(zhì),轉(zhuǎn)變教育觀念,以教育科研為先導(dǎo),以培養(yǎng)學(xué)生的創(chuàng)新精神和實踐能力為重點,深化課堂教學(xué)改革,大力推進(jìn)素質(zhì)教育。

  二,教材分析

  本冊教材具有以下幾個明顯的特點:

  1。為學(xué)生的數(shù)學(xué)學(xué)習(xí)構(gòu)筑起點

  教科書提供了大量數(shù)學(xué)活動的線索,作為所有學(xué)生從事數(shù)學(xué)學(xué)習(xí)的出發(fā)點。目的是使學(xué)生能夠在所提供的學(xué)習(xí)情景中,通過探索與交流等活動,獲得必要的發(fā)展。

  2,向?qū)W生提供現(xiàn)實,有趣,富有挑戰(zhàn)性的學(xué)習(xí)素材

  教科書從學(xué)生實際出發(fā),用他們熟悉或感興趣的問題情景引入學(xué)習(xí)主題,并提供了眾多有趣而富有數(shù)學(xué)含義的問題,以展開數(shù)學(xué)探究。

  3,為學(xué)生提供探索,交流的時間與空間

  教科書依據(jù)學(xué)生已有的知識背景和活動經(jīng)驗,提供了大量的操作,思考與交流的機(jī)會,幫助學(xué)生通過思考與交流,梳理所學(xué)的知識,建立符合個體認(rèn)知特點的知識結(jié)構(gòu)。

  4,展現(xiàn)數(shù)學(xué)知識的形成與應(yīng)用過程

  教科書采用"問題情境—建立模型—解釋,應(yīng)用與拓展"的模式展開,有利于學(xué)生更好地理解數(shù)學(xué),應(yīng)用數(shù)學(xué),增強學(xué)好數(shù)學(xué)的信心。

  5,滿足不同學(xué)生的發(fā)展需求

  教科書中"讀一讀"給學(xué)生以更多了解數(shù)學(xué),研究數(shù)學(xué)的機(jī)會。教科書中的習(xí)題分為兩類:一類面向全體學(xué)生;另一類面向有更多數(shù)學(xué)需求的學(xué)生。

  三,教材的重點和難點

  本冊教材從內(nèi)容上看,教學(xué)重點是三角形和四邊形的性質(zhì)定理

  和判定定理的應(yīng)用以及一元二次方程的應(yīng)用。教學(xué)難點是對反

  比例函數(shù)的理解及應(yīng)用;用試驗或模擬試驗的方法估計一些復(fù)

  雜的隨機(jī)時間發(fā)生的概率。

  四,教學(xué)措施:

  1,根據(jù)學(xué)生實際,創(chuàng)造性地使用教材,積極開發(fā)和利用各種教學(xué)資源,為學(xué)生提供豐富多彩的學(xué)習(xí)素材。

  2,加強直觀教學(xué),充分利用教具,學(xué)具等多媒體教學(xué),以豐富學(xué)生感知認(rèn)識對象的途徑,促使他們更加樂意接近數(shù)學(xué),更好地理解數(shù)學(xué)。

  3,關(guān)注學(xué)生的個體差異,有效的實施有差異的教學(xué),使每個學(xué)生都能得到充分的發(fā)展。

  4,加強學(xué)生學(xué)習(xí)習(xí)慣的培養(yǎng),主要培養(yǎng)學(xué)生的書寫,認(rèn)真分析問題的習(xí)慣。同時注意學(xué)習(xí)態(tài)度的培養(yǎng)。

  五,時間安排

  4月1日——4月20日一元二次方程

  5月16日——5月31日反比例函數(shù)

  6月1日——6月10日頻率與概率

  6月11日——7月11日復(fù)習(xí)考試

  >高中數(shù)學(xué)教學(xué)計劃10

  本學(xué)期我擔(dān)任高一(5)、(16)班的數(shù)學(xué)教學(xué)工作,本學(xué)期的教學(xué)工作計劃如下。

  一、指導(dǎo)思想:

 。1)隨著素質(zhì)教育的深入展開,《課程方案》提出了“教育要面向世界,面向未來,面向現(xiàn)代化”和“教育必須為社會主義現(xiàn)代化建設(shè)服務(wù),必須與生產(chǎn)勞動相結(jié)合,培養(yǎng)德、智、體等方面全面發(fā)展的社會主義事業(yè)的建設(shè)者和接班人”的指導(dǎo)思想和課程理念和改革要點。使學(xué)生掌握從事社會主義現(xiàn)代化建設(shè)和進(jìn)一步學(xué)習(xí)現(xiàn)代化科學(xué)技術(shù)所需要的數(shù)學(xué)知識和基本技能。其內(nèi)容包括代數(shù)、幾何、三角的基本概念、規(guī)律和它們反映出來的思想方法,概率、統(tǒng)計的初步知識,計算機(jī)的使用等。

  (2)培養(yǎng)學(xué)生的邏輯思維能力、運算能力、空間想象能力,以及綜合運用有關(guān)數(shù)學(xué)知識分析問題和解決問題的能力。使學(xué)生逐步地學(xué)會觀察、分析、綜合、比較、抽象、概括、探索和創(chuàng)新的能力;運用歸納、演繹和類比的方法進(jìn)行推理,并正確地、有條理地表達(dá)推理過程的能力。

  (3)根據(jù)數(shù)學(xué)的學(xué)科特點,加強學(xué)習(xí)目的性的教育,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的自覺心和興趣,培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣,實事求是的科學(xué)態(tài)度,頑強的學(xué)習(xí)毅力和獨立思考、探索創(chuàng)新的精神。

  (4)使學(xué)生具有一定的數(shù)學(xué)視野,逐步認(rèn)識數(shù)學(xué)的科學(xué)價值、應(yīng)用價值和文化價值,形成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的理性精神,體會數(shù)學(xué)的美學(xué)意義,理解數(shù)學(xué)中普遍存在著的運動、變化、相互聯(lián)系和相互轉(zhuǎn)化的情形,從而進(jìn)一步樹立辯證唯物主義和歷史唯物主義世界觀。

  (5)學(xué)會通過收集信息、處理數(shù)據(jù)、制作圖像、分析原因、推出結(jié)論來解決實際問題的思維方法和操作方法。

 。6)本學(xué)期是高一的重要時期,教師承擔(dān)著雙重責(zé)任,既要不斷夯實基礎(chǔ),加強綜合能力的培養(yǎng),又要滲透有關(guān)高考的思想方法,為三年的學(xué)習(xí)做好準(zhǔn)備。

  二、學(xué)情分析及相關(guān)措施:

  高一作為起始年級,作為從義務(wù)階段邁入應(yīng)試征程的適應(yīng)階段,該有的是一份執(zhí)著。他的特殊性就在于它的跨越性,理想的期盼與學(xué)法的突變,難度的加強與惰性的`生成等等矛盾沖突伴隨著高一新生的成長,面對新教材的我們也是邊摸索邊改變,樹立新的教學(xué)理念,并落實在課堂教學(xué)的各個環(huán)節(jié),才能不負(fù)眾望。我們要從學(xué)生的認(rèn)識水平和實際能力出發(fā),研究學(xué)生的心理特征,做好初三與高一的銜接工作,幫助學(xué)生解決好從初中到高中學(xué)習(xí)方法的過渡。從高一起就注意培養(yǎng)學(xué)生良好的數(shù)學(xué)思維方法,良好的學(xué)習(xí)態(tài)度和學(xué)習(xí)習(xí)慣,以適應(yīng)高中領(lǐng)悟性的學(xué)習(xí)方法。具體措施如下:

  (1)注意研究學(xué)生,做好初、高中學(xué)習(xí)方法的銜接工作。

  (2)集中精力打好基礎(chǔ),分項突破難點。所列基礎(chǔ)知識依據(jù)課程標(biāo)準(zhǔn)設(shè)計,著眼于基礎(chǔ)知識與重點內(nèi)容,要充分重視基礎(chǔ)知識、基本技能、基本方法的教學(xué),為進(jìn)一步的學(xué)習(xí)打好堅實的基礎(chǔ),切勿忙于過早的拔高,上難題。同時應(yīng)放眼高中教學(xué)全局,注意高考命題中的知識要求,能力要求及新趨勢,這樣才能統(tǒng)籌安排,循序漸進(jìn),使高一的數(shù)學(xué)教學(xué)與高中教學(xué)的全局有機(jī)結(jié)合。。

 。3)培養(yǎng)學(xué)生解答考題的能力,通過例題,從形式和內(nèi)容兩方面對所學(xué)知識進(jìn)行能力方面的分析,引導(dǎo)學(xué)生了解數(shù)學(xué)需要哪些能力要求。

 。4)讓學(xué)生通過單元考試,檢測自己的實際應(yīng)用能力,從而及時總結(jié)經(jīng)驗,找出不足,做好充分的準(zhǔn)備

 。5)抓好尖子生與后進(jìn)生的輔導(dǎo)工作,提前展開數(shù)學(xué)奧競選拔和數(shù)學(xué)基礎(chǔ)輔導(dǎo)。

 。6)注意運用現(xiàn)代化教學(xué)手段輔助數(shù)學(xué)教學(xué);注意運用投影儀、電腦軟件等現(xiàn)代化教學(xué)手段輔助教學(xué),提高課堂效率,激發(fā)學(xué)生學(xué)習(xí)興趣。

高一數(shù)學(xué)教學(xué)計劃10

  一、教材分析(結(jié)構(gòu)系統(tǒng)、單元內(nèi)容、重難點)

  必修5第一章:解三角形。重點是正弦定理與余弦定理。難點是正弦定理與余弦定理的應(yīng)用。第二章:數(shù)列。重點是等差數(shù)列與等比數(shù)列的前n項的和。難點是等差數(shù)列與等比數(shù)列前n項的和與應(yīng)用。第三章:不等式。重點是一元二次不等式及其解法、二元一次不等式(組)與簡單的線性規(guī)劃問題、基本不等式。難點是二元一次不等式(組)與簡單的線性規(guī)劃問題及應(yīng)用。

  必修2第一章:空間幾何體。重點是空間幾何體的三視圖和直觀圖及表面積與體積。難點是空間幾何體的三視圖。第二章:點、直線、平面之間的位置關(guān)系。重點與難點都是直線與平面平行及垂直的判定及其性質(zhì)。第三章:直線與方程。重點是直線的傾斜角與斜率及直線方程。難點是如何選擇恰當(dāng)?shù)闹本方程求解題目。第四章:圓與方程。重點是圓的方程及直線與圓的位置關(guān)系。難點是直線與圓的位置關(guān)系。

  二、學(xué)生分析(雙基智能水平、學(xué)習(xí)態(tài)度、方法、紀(jì)律)

  較去年而言,今年的學(xué)生的素質(zhì)有了比較大的提高,學(xué)生的基礎(chǔ)知識水平與基本學(xué)習(xí)方法比較扎實,大部分的學(xué)生對學(xué)習(xí)都有很大的興趣,學(xué)習(xí)紀(jì)律比較自覺。

  三、教學(xué)目的要求

  1、通過對任意三角形邊長和角度關(guān)系的探索,掌握正弦定理、余弦定理,并能解決一些簡單的三角形度量問題和與測量及幾何計算有關(guān)的實際問題。

  2、通過日常生活中的實例,了解數(shù)列的概念和幾種簡單的表示方法,了解數(shù)列是一種特殊的函數(shù)。理解等差數(shù)列、等比數(shù)列的概念,探索并掌握2種數(shù)列的通項公式與前n項和的公式,能用有關(guān)的知識解決相應(yīng)的問題。

  3、理解不等式(組)對于刻畫不等關(guān)系的意義和價值。掌握求解一元二次不等式的基本方法,并能解決一些實際問題。能用一元二次不等式組表示平面區(qū)域,并嘗試解決簡單的二元線性規(guī)劃問題。

  4、幾何學(xué)研究現(xiàn)實世界中物體的形狀、大小與位置的學(xué)科。直觀感知、操作確認(rèn)、思辨論證、度量計算是認(rèn)識和探索幾何圖形及其性質(zhì)的方法。先從對空間幾何體的整體觀察入手,認(rèn)識空間圖形及其直觀圖的畫法。再以長方體為載體,直觀認(rèn)識和理解空間中點、直線、平面之間的位置關(guān)系,并利用數(shù)學(xué)語言表述有關(guān)平行、垂直的`性質(zhì)與判定,對某些結(jié)論進(jìn)行論證。另外了解一些簡單幾何體的表面積與體積的計算方法。在解析幾何初步中,在平面直角坐標(biāo)系中建立直線和圓的代數(shù)方程,運用代數(shù)方法研究它們的幾何性質(zhì)及其相互關(guān)系,了解空間直角坐標(biāo)系。體會數(shù)形結(jié)合的思想,初步形成用代數(shù)方法解決幾何問題的能力。

  四、完成教學(xué)任務(wù)和提高教學(xué)質(zhì)量的具體措施

  積極做好集體備課工作,達(dá)到內(nèi)容統(tǒng)一、進(jìn)度統(tǒng)一、目標(biāo)統(tǒng)一、例題統(tǒng)一、習(xí)題統(tǒng)一、資料統(tǒng)一。上好每一節(jié)課,及時對學(xué)生的思想進(jìn)行觀察與指導(dǎo)。課后進(jìn)行有效的輔導(dǎo)。進(jìn)行有效的課堂反思。

高一數(shù)學(xué)教學(xué)計劃11

  一、教學(xué)目標(biāo):

  1.通過高速公路上的實際例子,引起積極的思考和交流,從而認(rèn)識到生活中處處可以遇到變量間的依賴關(guān)系.能夠利用初中對函數(shù)的認(rèn)識,了解依賴關(guān)系中有的是函數(shù)關(guān)系,有的則不是函數(shù)關(guān)系.

  2.培養(yǎng)廣泛聯(lián)想的能力和熱愛數(shù)學(xué)的態(tài)度.

  二、教學(xué)重點:

  在于讓學(xué)生領(lǐng)悟生活中處處有變量,變量之間充滿了關(guān)系

  教學(xué)難點:培養(yǎng)廣泛聯(lián)想的能力和熱愛數(shù)學(xué)的態(tài)度

  三、教學(xué)方法:

  探究交流法

  四、教學(xué)過程

  (一)、知識探索:

  閱讀課文P25頁。實例:書上在高速公路情境下的問題。

  在高速公路情景下,你能發(fā)現(xiàn)哪些函數(shù)關(guān)系?

  2.對問題3,儲油量v對油面高度h、油面寬度w都存在依賴關(guān)系,兩種依賴關(guān)系都有函數(shù)關(guān)系嗎?

  問題小結(jié):

  1.生活中變量及變量之間的依賴關(guān)系隨處可見,并非有依賴關(guān)系的兩個變量都有函數(shù)關(guān)系,只有滿足對于一個變量的每一個值,另一個變量都有確定的值與之對應(yīng),才稱它們之間有函數(shù)關(guān)系。

  2.構(gòu)成函數(shù)關(guān)系的兩個變量,必須是對于自變量的每一個值,因變量都有確定的y值與之對應(yīng)。

  3.確定變量的依賴關(guān)系,需分清誰是自變量,誰是因變量,如果一個變量隨著另一個變量的變化而變化,那么這個變量是因變量,另一個變量是自變量。

  (二)、新課探究——函數(shù)概念

  1.初中關(guān)于函數(shù)的定義:

  2.從集合的觀點出發(fā),函數(shù)定義:

  給定兩個非空數(shù)集A和B,如果按照某個對應(yīng)關(guān)系f,對于A中的任何一個數(shù)x,在集合B中都存在確定的`數(shù)f(x)與之對應(yīng),那么就把這種對應(yīng)關(guān)系f叫做定義在A上的函數(shù),記作或f:A→B,或y=f(x),x∈A.;

  此時x叫做自變量,集合A叫做函數(shù)的定義域,集合{f(x)︱x∈A}叫作函數(shù)的值域。習(xí)慣上我們稱y是x的函數(shù)。

  定義域,值域,對應(yīng)法則

  4.函數(shù)值

  當(dāng)x=a時,我們用f(a)表示函數(shù)y=f(x)的函數(shù)值。

高一數(shù)學(xué)教學(xué)計劃12

  本學(xué)期我擔(dān)任高一(3)、(4)兩班的數(shù)學(xué)教學(xué)工作,兩班學(xué)生共有138人。大部分學(xué)生初中的基礎(chǔ)較差,整體水平不高。從上課兩周來看,學(xué)生的學(xué)習(xí)進(jìn)取性還比較高,愛問問題的學(xué)生比較多;但由于基礎(chǔ)知識不太牢固,沒有良好的學(xué)習(xí)習(xí)慣,自控本事較差,不能正確地定位自我;所以上課效率一般,教學(xué)工作有必須的難度,為把本學(xué)期教學(xué)工作做好,制定如下教學(xué)工作計劃。

  一、教學(xué)質(zhì)量目標(biāo)

 。1)獲得必要的數(shù)學(xué)基礎(chǔ)知識和基本技能,理解基本的數(shù)學(xué)概念、數(shù)學(xué)結(jié)論的本質(zhì),體會數(shù)學(xué)思想和方法。

 。2)培養(yǎng)學(xué)生的邏輯思維本事、運算本事、空間想象本事,以及綜合運用有關(guān)數(shù)學(xué)知識分析問題和解決問題的本事。使學(xué)生逐步地學(xué)會觀察、分析、綜合、比較、抽象、概括、探索和創(chuàng)新的本事;運用歸納、演繹和類比的方法進(jìn)行推理,并正確地、有條理地表達(dá)推理過程的本事。

  (3)根據(jù)數(shù)學(xué)的學(xué)科特點,加強學(xué)習(xí)目的性的教育,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的自覺心和興趣,培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣,實事求是的科學(xué)態(tài)度,頑強的學(xué)習(xí)毅力和獨立思考、探索創(chuàng)新的精神。

  (4)使學(xué)生具有必須的數(shù)學(xué)視野,逐步認(rèn)識數(shù)學(xué)的科學(xué)價值、應(yīng)用價值和文化價值,構(gòu)成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的理性精神,體會數(shù)學(xué)的美學(xué)意義,理解數(shù)學(xué)中普遍存在著的運動、變化、相互聯(lián)系和相互轉(zhuǎn)化的情形,從而進(jìn)一步樹立辯證唯物主義和歷史唯物主義世界觀。

  (5)學(xué)會經(jīng)過收集信息、處理數(shù)據(jù)、制作圖像、分析原因、推出結(jié)論來解決實際問題的思維方法和操作方法。

 。6)本學(xué)期是高一的重要時期,教師承擔(dān)著雙重職責(zé),既要不斷夯實基礎(chǔ),加強綜合本事的培養(yǎng),又要滲透有關(guān)高考的思想方法,為三年的學(xué)習(xí)做好準(zhǔn)備。

  二、教學(xué)目標(biāo)、

  (一)情感目標(biāo)

 。1)經(jīng)過分析問題的方法的教學(xué),培養(yǎng)學(xué)生的學(xué)習(xí)的興趣。

 。2)供給生活背景,經(jīng)過數(shù)學(xué)建模,讓學(xué)生體會數(shù)學(xué)就在身邊,培養(yǎng)學(xué)數(shù)學(xué)用數(shù)學(xué)的意識。

 。3)在探究基本函數(shù)的性質(zhì),體驗獲得數(shù)學(xué)規(guī)律的艱辛和樂趣,在分組研究合作學(xué)習(xí)中學(xué)會交流、相互評價,提高學(xué)生的合作意識。

  (4)基于情意目標(biāo),調(diào)控教學(xué)流程,堅定學(xué)習(xí)信念和學(xué)習(xí)信心。

 。5)還時間和空間給學(xué)生、還課堂給學(xué)生、還探索和發(fā)現(xiàn)權(quán)給學(xué)生,給予學(xué)生自主探索與合作交流的機(jī)會,在發(fā)展他們思維本事的同時,發(fā)展他們的數(shù)學(xué)情感、學(xué)好數(shù)學(xué)的自信心和追求數(shù)學(xué)的科學(xué)精神。

 。6)讓學(xué)生體驗發(fā)現(xiàn)挫折矛盾頓悟新的發(fā)現(xiàn)這一科學(xué)發(fā)現(xiàn)歷程法。

 。ǘ┍臼乱

  1、培養(yǎng)學(xué)生記憶本事。

 。1)經(jīng)過定義、命題的總體結(jié)構(gòu)教學(xué),揭示其本質(zhì)特點和相互關(guān)系,培養(yǎng)對數(shù)學(xué)本質(zhì)問題的背景事實及具體數(shù)據(jù)的記憶。

 。2)經(jīng)過揭示立體集合、函數(shù)、數(shù)列有關(guān)概念、公式和圖形的對應(yīng)關(guān)系,培養(yǎng)記憶本事。

  2、培養(yǎng)學(xué)生的運算本事。

 。1)經(jīng)過概率的訓(xùn)練,培養(yǎng)學(xué)生的運算本事。

  (2)加強對概念、公式、法則的明確性和靈活性的教學(xué),培養(yǎng)學(xué)生的運算本事。

 。3)經(jīng)過函數(shù)、數(shù)列的教學(xué),提高學(xué)生是運算過程具有明晰性、合理性、簡捷性本事。

 。4)經(jīng)過一題多解、一題多變培養(yǎng)正確、迅速與合理、靈活的運算本事,促使知識間的滲透和遷移。

 。5)利用數(shù)形結(jié)合,另辟蹊徑,提高學(xué)生運算本事。

  三、學(xué)情分析

  高一作為起始年級,作為從義務(wù)階段邁入應(yīng)試征程的適應(yīng)階段,該有的是一份執(zhí)著。他的特殊性就在于它的跨越性,夢想的期盼與學(xué)法的突變,難度的加強與惰性的生成等等矛盾沖突伴隨著高一新生的成長,應(yīng)對新教材的我們也是邊摸索邊改變,樹立新的教學(xué)理念,并落實在課堂教學(xué)的各個環(huán)節(jié),才能不負(fù)眾望。我們要從學(xué)生的認(rèn)識水平和實際本事出發(fā),研究學(xué)生的心理特征,做好初三與高一的銜接工作,幫忙學(xué)生解決好從初中到高中學(xué)習(xí)方法的過渡。從高一齊就注意培養(yǎng)學(xué)生良好的數(shù)學(xué)思維方法,良好的學(xué)習(xí)態(tài)度和學(xué)習(xí)習(xí)慣,以適應(yīng)高中領(lǐng)悟性的學(xué)習(xí)方法。

  四、促進(jìn)目標(biāo)達(dá)成的重點工作及措施

  重點工作:

  認(rèn)真貫徹高中數(shù)學(xué)新課標(biāo)精神,樹立新的.教學(xué)理念,以雙基教學(xué)為主要資料,堅持抓兩頭、帶中間、整體推進(jìn),使每個學(xué)生的數(shù)學(xué)本事都得到提高和發(fā)展。

  分層推進(jìn)措施

  1、重視學(xué)生非智力因素培養(yǎng),要經(jīng)常性地鼓勵學(xué)生,增強學(xué)生學(xué)習(xí)數(shù)學(xué)興趣,樹立勇于克服困難與戰(zhàn)勝困難的信心。

  2、合理引入課題,由數(shù)學(xué)活動、故事、提問、師生交流等方式激發(fā)學(xué)生學(xué)習(xí)興趣,注意從實例出發(fā),從感性提高到理性;注意運用比較的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說明抽象的知識;注意從已有的知識出發(fā),啟發(fā)學(xué)生思考。

  3、培養(yǎng)學(xué)生解答考題的本事,經(jīng)過例題,從形式和資料兩方應(yīng)對所學(xué)知識進(jìn)行本事方面的分析,引導(dǎo)學(xué)生了解數(shù)學(xué)需要哪些本事要求。

  4、讓學(xué)生經(jīng)過單元考試,檢測自我的實際應(yīng)用本事,從而及時總結(jié)經(jīng)驗,找出不足,做好充分的準(zhǔn)備

  5、抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強復(fù)習(xí)檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問題的本事。

  6、加強培養(yǎng)學(xué)生的邏輯思維本事和解決實際問題的本事,以及培養(yǎng)提高學(xué)生的自學(xué)本事,養(yǎng)成善于分析問題的習(xí)慣,進(jìn)行辨證唯物主義教育;同時重視數(shù)學(xué)應(yīng)用意識及應(yīng)用本事的培養(yǎng)。

  7、自始至終貫徹教學(xué)四環(huán)節(jié)(引入、探究、例析、反饋),針對不一樣的教材資料選擇不一樣教法,提倡創(chuàng)新教學(xué)方法,把學(xué)生被動理解知識轉(zhuǎn)化主動學(xué)習(xí)知識。

  8、注意研究學(xué)生,做好初、高中學(xué)習(xí)方法的銜接工作。集中精力打好基礎(chǔ),分項突破難點、所列基礎(chǔ)知識依據(jù)課程標(biāo)準(zhǔn)設(shè)計,著眼于基礎(chǔ)知識與重點資料,要充分重視基礎(chǔ)知識、基本技能、基本方法的教學(xué),為進(jìn)一步的學(xué)習(xí)打好堅實的基礎(chǔ),切勿忙于過早的拔高,上難題。同時應(yīng)放眼高中教學(xué)全局,注意高考命題中的知識要求,本事要求及新趨勢,這樣才能統(tǒng)籌安排,循序漸進(jìn),使高一的數(shù)學(xué)教學(xué)與高中教學(xué)的全局有機(jī)結(jié)合。

高一數(shù)學(xué)教學(xué)計劃13

  指導(dǎo)思想:

  (1)隨著素質(zhì)教育的深入展開,《課程方案》提出了教育要面向世界,面向未來,面向現(xiàn)代化和教育必須為社會主義現(xiàn)代化建設(shè)服務(wù),必須與生產(chǎn)勞動相結(jié)合,培養(yǎng)德、智、體等方面全面發(fā)展的社會主義事業(yè)的建設(shè)者和接班人的指導(dǎo)思想和課程理念和改革要點。使學(xué)生掌握從事社會主義現(xiàn)代化建設(shè)和進(jìn)一步學(xué)習(xí)現(xiàn)代化科學(xué)技術(shù)所需要的數(shù)學(xué)知識和基本技能。其內(nèi)容包括代數(shù)、幾何、三角的基本概念、規(guī)律和它們反映出來的思想方法,概率、統(tǒng)計的初步知識,計算機(jī)的使用等。

  (2)培養(yǎng)學(xué)生的邏輯思維能力、運算能力、空間想象能力,以及綜合運用有關(guān)數(shù)學(xué)知識分析問題和解決問題的能力。使學(xué)生逐步地學(xué)會觀察、分析、綜合、比較、抽象、概括、探索和創(chuàng)新的能力;運用歸納、演繹和類比的方法進(jìn)行推理,并正確地、有條理地表達(dá)推理過程的能力。

  (3) 根據(jù)數(shù)學(xué)的學(xué)科特點,加強學(xué)習(xí)目的性的教育,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的自覺心和興趣,培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣,實事求是的科學(xué)態(tài)度,頑強的學(xué)習(xí)毅力和獨立思考、探索創(chuàng)新的精神。

  (4) 使學(xué)生具有一定的數(shù)學(xué)視野,逐步認(rèn)識數(shù)學(xué)的科學(xué)價值、應(yīng)用價值和文化價值,形成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的理性精神,體會數(shù)學(xué)的美學(xué)意義,理解數(shù)學(xué)中普遍存在著的運動、變化、相互聯(lián)系和相互轉(zhuǎn)化的情形,從而進(jìn)一步樹立辯證唯物主義和歷史唯物主義世界觀。

  (5)學(xué)會通過收集信息、處理數(shù)據(jù)、制作圖像、分析原因、推出結(jié)論來解決實際問題的思維方法和操作方法。

  (6)本學(xué)期是高一的`重要時期,教師承擔(dān)著雙重責(zé)任,既要不斷夯實基礎(chǔ),加強綜合能力的培養(yǎng),又要滲透有關(guān)高考的思想方法,為三年的學(xué)習(xí)做好準(zhǔn)備。

  學(xué)情分析及相關(guān)措施:

  高一作為起始年級,作為從義務(wù)階段邁入應(yīng)試征程的適應(yīng)階段,該有的是一份執(zhí)著。他的特殊性就在于它的跨越性,理想的期盼與學(xué)法的突變,難度的加強與惰性的生成等等矛盾沖突伴隨著高一新生的成長,面對新教材的我們也是邊摸索邊改變,樹立新的教學(xué)理念,并落實在課堂教學(xué)的各個環(huán)節(jié),才能不負(fù)眾望。我們要從學(xué)生的認(rèn)識水平和實際能力出發(fā),研究學(xué)生的心理特征,做好初三與高一的銜接工作,幫助學(xué)生解決好從初中到高中學(xué)習(xí)方法的過渡。從高一起就注意培養(yǎng)學(xué)生良好的數(shù)學(xué)思維方法,良好的學(xué)習(xí)態(tài)度和學(xué)習(xí)習(xí)慣,以適應(yīng)高中領(lǐng)悟性的學(xué)習(xí)方法。具體措施如下:

  (1)注意研究學(xué)生,做好初、高中學(xué)習(xí)方法的銜接工作。

  (2)集中精力打好基礎(chǔ),分項突破難點.所列基礎(chǔ)知識依據(jù)課程標(biāo)準(zhǔn)設(shè)計,著眼于基礎(chǔ)知識與重點內(nèi)容,要充分重視基礎(chǔ)知識、基本技能、基本方法的教學(xué),為進(jìn)一步的學(xué)習(xí)打好堅實的基礎(chǔ),切勿忙于過早的拔高,上難題。同時應(yīng)放眼高中教學(xué)全局,注意高考命題中的知識要求,能力要求及新趨勢,這樣才能統(tǒng)籌安排,循序漸進(jìn),使高一的數(shù)學(xué)教學(xué)與高中教學(xué)的全局有機(jī)結(jié)合。.

  (3)培養(yǎng)學(xué)生解答考題的能力,通過例題,從形式和內(nèi)容兩方面對所學(xué)知識進(jìn)行能力方面的分析,引導(dǎo)學(xué)生了解數(shù)學(xué)需要哪些能力要求。

  (4)讓學(xué)生通過單元考試,檢測自己的實際應(yīng)用能力,從而及時總結(jié)經(jīng)驗,找出不足,做好充分的準(zhǔn)備

  (5)抓好尖子生與后進(jìn)生的輔導(dǎo)工作,提前展開數(shù)學(xué)奧競選拔和數(shù)學(xué)基礎(chǔ)輔導(dǎo)。

  (6)注意運用現(xiàn)代化教學(xué)手段輔助數(shù)學(xué)教學(xué);注意運用投影儀、電腦軟件等現(xiàn)代化教學(xué)手段輔助教學(xué),提高課堂效率,激發(fā)學(xué)生學(xué)習(xí)興趣。

  教學(xué)進(jìn)度安排:

  周 次 時 內(nèi) 容 重 點、難 點

  第1周

  9.2~9.6 5 集合的含義與表示、

  集合間的基本關(guān)系、

  會求兩個簡單集合的并集與交集;會求給定子集的補集;。難點:理解概念

  第2周

  9.7~9.13 5 集合的基本運算

  函數(shù)的概念、

  函數(shù)的表示法 能使用Venn圖表達(dá)集合的關(guān)系及運算,會求一些簡單函數(shù)的定義域和值域;能簡單應(yīng)用

  第3周

  9.14~9.20 5 單調(diào)性與最值、

  奇偶性、實習(xí)、小結(jié) 學(xué)會運用函數(shù)圖象理解和研究函數(shù)的性質(zhì),理解函數(shù)單調(diào)性、最大(小)值及幾何意義

  第4周

  9.21~9.27 5 指數(shù)與指數(shù)冪的運算、

  指數(shù)函數(shù)及其性質(zhì) 掌握冪的運算;探索并理解指數(shù)函數(shù)的單調(diào)性與特殊點。難點:理解概念

  第5周

  9.28~10.4 5 (9月月考?、國慶放假)

  第6周

  10.5~10.11 5 對數(shù)與對數(shù)運算、

  對數(shù)函數(shù)及其性質(zhì) 理解對數(shù)的概念及其運算性質(zhì),知道用換底公式;探索并了解對數(shù)函數(shù)單調(diào)性與特殊點;知道指數(shù)函數(shù)與對數(shù)函數(shù)互為反函數(shù)

  第7周

  10.12~10.18 5 冪函數(shù) 從五個具體的冪函數(shù)(y=x,y=x2, y=x3, y=x-1, y=x1/2)圖象中認(rèn)識冪函數(shù)的一些性質(zhì)

  第8周

  10.19~10.25 5 方程的根與函數(shù)零點,

  二分法求方程近似解, 能夠借助計算器用二分法求相應(yīng)方程的近似解;

  第9周

  10.26~11.1 5 幾類不同增長的模型、函數(shù)模型應(yīng)用舉例 對比指數(shù)函數(shù)、對數(shù)函數(shù)以及冪函數(shù)增長差異;結(jié)合實例體會直線上升、指數(shù)爆炸、對數(shù)增長等不同函數(shù)類型增長的含義

  第10周

  11.2~11.8 期中復(fù)習(xí)及考試 分章歸納復(fù)習(xí)+1套模擬測試

  第11周

  11.9~11.15 5 任意角和弧度制

  任意角的三角函數(shù) 了解任意角的概念和弧度制,能進(jìn)行弧度和度的互化;借助單位圓理解任意角三角函數(shù)的定義

  第12周

  11.16~11.22 5 三角函數(shù)的誘導(dǎo)公式

  三角函數(shù)的圖像和性質(zhì) 借助三角函數(shù)線推導(dǎo)出誘導(dǎo)公式,能畫出y=sinx,y=cosx,y=tanx的圖像,了解三角函數(shù)的周期性

  第13周

  11.23~11.29 5 函數(shù)y=Asin(wx+q)的圖像 借助圖像理解正弦函數(shù)余弦函數(shù)正切函數(shù)的性質(zhì),借助計算機(jī)畫出圖像觀察A w q對函數(shù)圖像變化的影響

  第14周

  11.30~12.6 5 三角函數(shù)模型的簡單應(yīng)用 單元考試 會用三角函數(shù)解決一些簡單實際問題,體會三角函數(shù)是描述周期變化的重要函數(shù)模型

  第15周

  12.7~12.13 5 平面向量的實際背景及基本概念,平面向量的線性運算 掌握向量加、減法的運算,理解其幾何意義掌握數(shù)乘運算及兩個向量共線的含義了解平面向量的基本定理掌握正交分解及坐標(biāo)表示、會用坐標(biāo)表示平面向量的加減及數(shù)乘運算

  第16周

  12.14~12.20 5 平面向量的基本定理及坐標(biāo)表示,平面向量的數(shù)量積, 理解用坐標(biāo)表示的平面向量共線的條件,理解平面向量數(shù)量積德含義及其物理意義,體會平面向量數(shù)量積與向量投影的關(guān)系,掌握數(shù)量積的坐標(biāo)表達(dá)式,會進(jìn)行平面,向量數(shù)量積的運算、求夾角、及垂直關(guān)系

  第17周

  12.21~12.27 5 平面向量應(yīng)用舉例,

  小結(jié) 用向量方法解決莫些簡單的平面幾何問題、力學(xué)問題與其他一些實際問題的過程,體會向量是一種幾何問題,物理問題的工具,發(fā)展運算能力和解決實際問題的能力

  第18周

  12.28~1.3 5 兩角和與差點正弦、余弦和正切公式 能以兩角差點余弦公式導(dǎo)出兩角和與差點正弦、余弦和正切公式,二倍角的正弦、余弦和正切公式,了解它們的內(nèi)在聯(lián)系

  第19周

  1.4~1.10 5 簡單的三角恒等變換

  期末復(fù)習(xí)

高一數(shù)學(xué)教學(xué)計劃14

  一 設(shè)計思想:

  函數(shù)與方程是中學(xué)數(shù)學(xué)的重要內(nèi)容,是銜接初等數(shù)學(xué)與高等數(shù)學(xué)的紐帶,再加上函數(shù)與方程還是中學(xué)數(shù)學(xué)四大數(shù)學(xué)思想之一,是具體事例與抽象思想相結(jié)合的體現(xiàn),在教學(xué)過程中,我采用了自主探究教學(xué)法。通過教學(xué)情境的設(shè)置,讓學(xué)生由特殊到一般,有熟悉到陌生,讓學(xué)生從現(xiàn)象中發(fā)現(xiàn)本質(zhì),以此激發(fā)學(xué)生的成就感,激發(fā)學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)熱情。在現(xiàn)實生活中函數(shù)與方程都有著十分重要的應(yīng)用,因此函數(shù)與方程在整個高中數(shù)學(xué)教學(xué)中占有非常重要的地位。

  二 教學(xué)內(nèi)容分析:

  本節(jié)課是《普通高中課程標(biāo)準(zhǔn)》的新增內(nèi)容之一,選自《普通高中課程標(biāo)準(zhǔn)實驗教課書數(shù)學(xué)I必修本(A版)》第94—95頁的第三章第一課時3。1。1方程的根與函數(shù)的的零點。

  本節(jié)通過對二次函數(shù)的圖象的研究判斷一元二次方程根的存在性以及根的個數(shù)的判斷建立一元二次方程的根與相應(yīng)的二次函數(shù)的零點的聯(lián)系,然后由特殊到一般,將其推廣到一般方程與相應(yīng)的函數(shù)的情形。它既揭示了初中一元二次方程與相應(yīng)的二次函數(shù)的內(nèi)在聯(lián)系,也引出對函數(shù)知識的`總結(jié)拓展。之后將函數(shù)零點與方程的根的關(guān)系在利用二分法解方程中(3。1。2)加以應(yīng)用,通過建立函數(shù)模型以及模型的求解(3。2)更全面地體現(xiàn)函數(shù)與方程的關(guān)系,逐步建立起函數(shù)與方程的聯(lián)系。滲透“方程與函數(shù)”思想。

  總之,本節(jié)課滲透著重要的數(shù)學(xué)思想“特殊到一般的歸納思想”“方程與函數(shù)”和“數(shù)形結(jié)合”的思想,教好本節(jié)課可以為學(xué)好中學(xué)數(shù)學(xué)打下一個良好基礎(chǔ),因此教好本節(jié)是至關(guān)重要的。

  三 教學(xué)目標(biāo)分析:

  知識與技能:

  1。結(jié)合方程根的幾何意義,理解函數(shù)零點的定義;

  2。結(jié)合零點定義的探究,掌握方程的實根與其相應(yīng)函數(shù)零點之間的等價關(guān)系;

  3。結(jié)合幾類基本初等函數(shù)的圖象特征,掌握判斷函數(shù)的零點個數(shù)和所在區(qū)間 的方法

  情感、態(tài)度與價值觀:

  1。讓學(xué)生體驗化歸與轉(zhuǎn)化、數(shù)形結(jié)合、函數(shù)與方程這三大數(shù)學(xué)思想在解決數(shù)學(xué)問題時的意義與價值;

  2。培養(yǎng)學(xué)生鍥而不舍的探索精神和嚴(yán)密思考的良好學(xué)習(xí)習(xí)慣;

  3。使學(xué)生感受學(xué)習(xí)、探索發(fā)現(xiàn)的樂趣與成功感

  教學(xué)重點:函數(shù)零點與方程根之間的關(guān)系;連續(xù)函數(shù)在某區(qū)間上存在零點的判定方法。

  教學(xué)難點:發(fā)現(xiàn)與理解方程的根與函數(shù)零點的關(guān)系;探究發(fā)現(xiàn)函數(shù)存在零點的方法。

  四 教學(xué)準(zhǔn)備

  導(dǎo)學(xué)案,自主探究,合作學(xué)習(xí),電子交互白板。

  五 教學(xué)過程設(shè)計:

  六、探索研究(可根據(jù)時間和學(xué)生對知識的接受程度適當(dāng)調(diào)整)

  討論:請大家給方程的一個解的大約范圍,看誰找得范圍更?

  [師生互動]

  師:把學(xué)生分成小組共同探究,給學(xué)生足夠的自主學(xué)習(xí)時間,讓學(xué)生充分研究,發(fā)揮其主觀能動性。也可以讓各組把這幾個題做為小課題來研究,激發(fā)學(xué)生學(xué)習(xí)潛能和熱情。老師用多媒體演示,直觀地演示根的存在性及根存在的區(qū)間大小情況。

  生:分組討論,各抒己見。在探究學(xué)習(xí)中得到數(shù)學(xué)能力的提高

  第五階段設(shè)計意圖:

  一是為用二分法求方程的近似解做準(zhǔn)備

  二是小組探究合作學(xué)習(xí)培養(yǎng)學(xué)生的創(chuàng)新能力和探究意識,本組探究題目就是為了培養(yǎng)學(xué)生的探究能力,此組題目具有較強的開放性,探究性,基本上可以達(dá)到上述目的。

  七、課堂小結(jié):

  零點概念

  零點存在性的判斷

  零點存在性定理的應(yīng)用注意點:零點個數(shù)判斷以及方程根所在區(qū)間

  八、鞏固練習(xí)(略)

  小編為大家提供的高一上學(xué)期數(shù)學(xué)教學(xué)計劃格式,大家仔細(xì)閱讀了嗎?最后祝同學(xué)們學(xué)習(xí)進(jìn)步。

高一數(shù)學(xué)教學(xué)計劃15

  (一)教學(xué)目標(biāo)

  1.知識與技能

  (1)理解兩個集合的并集與交集的含義,會求兩個簡單集合的并集和交集.

  (2)能使用Venn圖表示集合的并集和交集運算結(jié)果,體會直觀圖對理解抽象概念的作用。

  (3)掌握的關(guān)的術(shù)語和符號,并會用它們正確進(jìn)行集合的并集與交集運算。

  2.過程與方法

  通過對實例的分析、思考,獲得并集與交集運算的法則,感知并集和交集運算的實質(zhì)與內(nèi)涵,增強學(xué)生發(fā)現(xiàn)問題,研究問題的創(chuàng)新意識和能力.

  3.情感、態(tài)度與價值觀

  通過集合的并集與交集運算法則的發(fā)現(xiàn)、完善,增強學(xué)生運用數(shù)學(xué)知識和數(shù)學(xué)思想認(rèn)識客觀事物,發(fā)現(xiàn)客觀規(guī)律的興趣與能力,從而體會數(shù)學(xué)的應(yīng)用價值.

  (二)教學(xué)重點與難點

  重點:交集、并集運算的含義,識記與運用.

  難點:弄清交集、并集的含義,認(rèn)識符號之間的區(qū)別與聯(lián)系

  (三)教學(xué)方法

  在思考中感知知識,在合作交流中形成知識,在獨立鉆研和探究中提升思維能力,嘗試實踐與交流相結(jié)合.

  (四)教學(xué)過程

  教學(xué)環(huán)節(jié) 教學(xué)內(nèi)容 師生互動 設(shè)計意圖

  提出問題引入新知 思考:觀察下列各組集合,聯(lián)想實數(shù)加法運算,探究集合能否進(jìn)行類似“加法”運算.

  (1)A = {1,3,5},B = {2,4,6},C = {1,2,3,4,5,6}

  (2)A = {x | x是有理數(shù)},

  B = {x | x是無理數(shù)},

  C = {x | x是實數(shù)}.

  師:兩數(shù)存在大小關(guān)系,兩集合存在包含、相等關(guān)系;實數(shù)能進(jìn)行加減運算,探究集合是否有相應(yīng)運算.

  生:集合A與B的元素合并構(gòu)成C.

  師:由集合A、B元素組合為C,這種形式的組合就是為集合的并集運算. 生疑析疑,

  導(dǎo)入新知

  形成

  概念

  思考:并集運算.

  集合C是由所有屬于集合A或?qū)儆诩螧的元素組成的,稱C為A和B的并集.

  定義:由所有屬于集合A或集合B的元素組成的集合. 稱為集合A與B的并集;記作:A∪B;讀作A并B,即A∪B = {x | x∈A,或x∈B},Venn圖表示為:

  師:請同學(xué)們將上述兩組實例的共同規(guī)律用數(shù)學(xué)語言表達(dá)出來.

  學(xué)生合作交流:歸納→回答→補充或修正→完善→得出并集的定義. 在老師指導(dǎo)下,學(xué)生通過合作交流,探究問題共性,感知并集概念,從而初步理解并集的含義.

  應(yīng)用舉例 例1 設(shè)A = {4,5,6,8},B = {3,5,7,8},求A∪B.

  例2 設(shè)集合A = {x | –1

  例1解:A∪B = {4, 5, 6, 8}∪{3, 5, 7, 8} = {3, 4, 5, 6, 7, 8}.

  例2解:A∪B = {x |–1

  師:求并集時,兩集合的相同元素如何在并集中表示.

  生:遵循集合元素的互異性.

  師:涉及不等式型集合問題.

  注意利用數(shù)軸,運用數(shù)形結(jié)合思想求解.

  生:在數(shù)軸上畫出兩集合,然后合并所有區(qū)間. 同時注意集合元素的互異性. 學(xué)生嘗試求解,老師適時適當(dāng)指導(dǎo),評析.

  固化概念

  提升能力

  探究性質(zhì) ①A∪A = A, ②A∪ = A,

  ③A∪B = B∪A,

 、 ∪B, ∪B.

  老師要求學(xué)生對性質(zhì)進(jìn)行合理解釋. 培養(yǎng)學(xué)生數(shù)學(xué)思維能力.

  形成概念 自學(xué)提要:

 、儆蓛杉系乃性睾喜⒖傻脙杉系腵并集,而由兩集合的公共元素組成的集合又會是兩集合的一種怎樣的運算?

 、诮患\算具有的運算性質(zhì)呢?

  交集的定義.

  由屬于集合A且屬于集合B的所有元素組成的集合,稱為A與B的交集;記作A∩B,讀作A交B.

  即A∩B = {x | x∈A且x∈B}

  Venn圖表示

  老師給出自學(xué)提要,學(xué)生在老師的引導(dǎo)下自我學(xué)習(xí)交集知識,自我體會交集運算的含義. 并總結(jié)交集的性質(zhì).

  生:①A∩A = A;

 、贏∩ = ;

 、跘∩B = B∩A;

  ④A∩ ,A∩ .

  師:適當(dāng)闡述上述性質(zhì).

  自學(xué)輔導(dǎo),合作交流,探究交集運算. 培養(yǎng)學(xué)生的自學(xué)能力,為終身發(fā)展培養(yǎng)基本素質(zhì).

  應(yīng)用舉例 例1 (1)A = {2,4,6,8,10},

  B = {3,5,8,12},C = {8}.

  (2)新華中學(xué)開運動會,設(shè)

  A = {x | x是新華中學(xué)高一年級參加百米賽跑的同學(xué)},

  B = {x | x是新華中學(xué)高一年級參加跳高比賽的同學(xué)},求A∩B.

  例2 設(shè)平面內(nèi)直線l1上點的集合為L1,直線l2上點的集合為L2,試用集合的運算表示l1,l2的位置關(guān)系. 學(xué)生上臺板演,老師點評、總結(jié).

  例1 解:(1)∵A∩B = {8},

  ∴A∩B = C.

  (2)A∩B就是新華中學(xué)高一年級中那些既參加百米賽跑又參加跳高比賽的同學(xué)組成的集合. 所以,A∩B = {x | x是新華中學(xué)高一年級既參加百米賽跑又參加跳高比賽的同學(xué)}.

  例2 解:平面內(nèi)直線l1,l2可能有三種位置關(guān)系,即相交于一點,平行或重合.

  (1)直線l1,l2相交于一點P可表示為 L1∩L2 = {點P};

  (2)直線l1,l2平行可表示為

  L1∩L2 = ;

  (3)直線l1,l2重合可表示為

  L1∩L2 = L1 = L2. 提升學(xué)生的動手實踐能力.

  歸納總結(jié) 并集:A∪B = {x | x∈A或x∈B}

  交集:A∩B = {x | x∈A且x∈B}

  性質(zhì):①A∩A = A,A∪A = A,

 、贏∩ = ,A∪ = A,

 、跘∩B = B∩A,A∪B = B∪A. 學(xué)生合作交流:回顧→反思→總理→小結(jié)

  老師點評、闡述 歸納知識、構(gòu)建知識網(wǎng)絡(luò)

  課后作業(yè) 1.1第三課時 習(xí)案 學(xué)生獨立完成 鞏固知識,提升能力,反思升華

  備選例題

  例1 已知集合A = {–1,a2 + 1,a2 – 3},B = {– 4,a – 1,a + 1},且A∩B = {–2},求a的值.

  【解析】法一:∵A∩B = {–2},∴–2∈B,

  ∴a – 1 = –2或a + 1 = –2,

  解得a = –1或a = –3,

  當(dāng)a = –1時,A = {–1,2,–2},B = {– 4,–2,0},A∩B = {–2}.

  當(dāng)a = –3時,A = {–1,10,6},A不合要求,a = –3舍去

  ∴a = –1.

  法二:∵A∩B = {–2},∴–2∈A,

  又∵a2 + 1≥1,∴a2 – 3 = –2,

  解得a =±1,

  當(dāng)a = 1時,A = {–1,2,–2},B = {– 4,0,2},A∩B≠{–2}.

  當(dāng)a = –1時,A = {–1,2,–2},B = {– 4,–2,0},A∩B ={–2},∴a = –1.

  例2 集合A = {x | –1

  (1)若A∩B = ,求a的取值范圍;

  (2)若A∪B = {x | x<1},求a的取值范圍.

  【解析】(1)如下圖所示:A = {x | –1

  ∴數(shù)軸上點x = a在x = – 1左側(cè).

  ∴a≤–1.

  (2)如右圖所示:A = {x | –1

  ∴數(shù)軸上點x = a在x = –1和x = 1之間.

  ∴–1

  例3 已知集合A = {x | x2 – ax + a2 – 19 = 0},B = {x | x2 – 5x + 6 = 0},C = {x | x2 + 2x – 8 = 0},求a取何實數(shù)時,A∩B 與A∩C = 同時成立?

  【解析】B = {x | x2 – 5x + 6 = 0} = {2,3},C = {x | x2 + 2x – 8 = 0} = {2,– 4}.

  由A∩B 和A∩C = 同時成立可知,3是方程x2 – ax + a2 – 19 = 0的解. 將3代入方程得a2 – 3a – 10 = 0,解得a = 5或a = –2.

  當(dāng)a = 5時,A = {x | x2 – 5x + 6 = 0} = {2,3},此時A∩C = {2},與題設(shè)A∩C = 相矛盾,故不適合.

  當(dāng)a = –2時,A = {x | x2 + 2x – 15 = 0} = {3,5},此時A∩B 與A∩C = ,同時成立,∴滿足條件的實數(shù)a = –2.

  例4 設(shè)集合A = {x2,2x – 1,– 4},B = {x – 5,1 – x,9},若A∩B = {9},求A∪B.

  【解析】由9∈A,可得x2 = 9或2x – 1 = 9,解得x =±3或x = 5.

  當(dāng)x = 3時,A = {9,5,– 4},B = {–2,–2,9},B中元素違背了互異性,舍去.

  當(dāng)x = –3時,A = {9,–7,– 4},B = {–8,4,9},A∩B = {9}滿足題意,故A∪B = {–7,– 4,–8,4,9}.

  當(dāng)x = 5時,A = {25,9,– 4},B = {0,– 4,9},此時A∩B = {– 4,9}與A∩B = {9}矛盾,故舍去.

  綜上所述,x = –3且A∪B = {–8,– 4,4,–7,9}.

【高一數(shù)學(xué)教學(xué)計劃】相關(guān)文章:

數(shù)學(xué)高一教學(xué)計劃03-10

高一數(shù)學(xué)教學(xué)計劃11-02

高一數(shù)學(xué)教學(xué)計劃12-24

高一數(shù)學(xué)的教學(xué)計劃04-04

高一數(shù)學(xué)教學(xué)計劃05-29

高一數(shù)學(xué)教學(xué)教學(xué)計劃02-06

關(guān)于高一數(shù)學(xué)教學(xué)計劃01-29

高一數(shù)學(xué)的教學(xué)計劃通用10-12

高一數(shù)學(xué)教學(xué)計劃范本01-22

高一數(shù)學(xué)教學(xué)計劃優(yōu)秀10-26