- 相關(guān)推薦
2014考研數(shù)學(xué)極限、導(dǎo)數(shù)考查重點(diǎn)及備考方法
2014考研數(shù)學(xué)極限、導(dǎo)數(shù)考查重點(diǎn)及備考方法
2014考研數(shù)學(xué)復(fù)習(xí)第一階段主要是“三基”即基本概念、基本理論、基本方法的學(xué)習(xí),學(xué)習(xí)的主要目的是夯實(shí)基礎(chǔ),了解考研數(shù)學(xué)的基本內(nèi)容,掌握考研數(shù)學(xué)的基本方法和技巧,建立清晰而完善的邏輯知識(shí)體系,為第二階段的強(qiáng)化復(fù)習(xí)打下基礎(chǔ)。
考研強(qiáng)化復(fù)習(xí)階段主要是依據(jù)考試大綱和歷年真題,通過(guò)題目的剖析歸納總結(jié)常見(jiàn)的解題思路和解題方法。以下是對(duì)考研數(shù)學(xué)中高等數(shù)學(xué)極限與導(dǎo)數(shù)部分做一個(gè)解析,希望通過(guò)解析讓考生了解極限、導(dǎo)數(shù)考查的重點(diǎn)、題型及方法。
一、極限
極限是考研數(shù)學(xué)每年必考的內(nèi)容,在客觀題和主觀題中都有可能會(huì)涉及到平均每年直接考查所占的分值在10分左右,而事實(shí)上,由于這一部分內(nèi)容的基礎(chǔ)性,每年間接考查或與其他章節(jié)結(jié)合出題的比重也很大。極限的計(jì)算是核心考點(diǎn),考題所占比重最大。熟練掌握求解極限的方法是得高分的關(guān)鍵。
極限的計(jì)算常用方法:四則運(yùn)算、洛必達(dá)法則、等價(jià)無(wú)窮小代換、兩個(gè)重要極限、利用泰勒公式求極
限、夾逼定理、利用定積分求極限、單調(diào)有界收斂定理、利用連續(xù)性求極限等方法。
四則運(yùn)算、洛必達(dá)法則、等價(jià)無(wú)窮小代換、兩個(gè)重要極限是常用方法,在基礎(chǔ)階段的學(xué)習(xí)中是重點(diǎn),考生應(yīng)該已經(jīng)非常熟悉,進(jìn)入強(qiáng)化復(fù)習(xí)階段這些內(nèi)容還應(yīng)繼續(xù)練習(xí)達(dá)到熟練的程度;在強(qiáng)化復(fù)習(xí)階段考生會(huì)遇到一些較為復(fù)雜的極限計(jì)算,此時(shí)運(yùn)用泰勒公式代替洛必達(dá)法則來(lái)求極限會(huì)簡(jiǎn)化計(jì)算,熟記一些常見(jiàn)的麥克勞林公式往往可以達(dá)到事半功倍之效;夾逼定理、利用定積分定義常常用來(lái)計(jì)算某些和式的極限,如果最大的分母和最小的分母相除的極限等于1,則使用夾逼定理進(jìn)行計(jì)算,如果最大的分母和最小的分母相除的極限不等于1,則湊成定積分的定義的形式進(jìn)行計(jì)算;單調(diào)有界收斂定理可用來(lái)證明數(shù)列極限存在,并求遞歸數(shù)列的極限。
與極限計(jì)算相關(guān)知識(shí)點(diǎn)包括:1、連續(xù)、間斷點(diǎn)以及間斷點(diǎn)的分類(lèi):判斷間斷點(diǎn)類(lèi)型的
1
二、導(dǎo)數(shù)
求導(dǎo)與求微分每年直接考查的知識(shí)所占分值平均在10分到13分左右。常考題型:(1)利用定義計(jì)算導(dǎo)數(shù)或討論函數(shù)可導(dǎo)性;(2)導(dǎo)數(shù)與微分的計(jì)算(包括高階導(dǎo)數(shù));(3)切線與法線;(4)對(duì)單調(diào)性與凹凸性的考查;(5)求函數(shù)極值與拐點(diǎn);(6)對(duì)函數(shù)及其導(dǎo)數(shù)相關(guān)性質(zhì)的考查。
對(duì)于導(dǎo)數(shù)與微分,首先對(duì)于它們的定義要給予足夠的重視,按定義求導(dǎo)在分段函數(shù)求導(dǎo)中是特別重要的。應(yīng)該熟練掌握可導(dǎo)、可微與連續(xù)性的關(guān)系。求導(dǎo)計(jì)算中常用的方法是四則運(yùn)算法則和復(fù)合函數(shù)求導(dǎo)法則,一元函數(shù)微分法則中最重要的是復(fù)合函數(shù)求導(dǎo)法及相應(yīng)的一階微分形式不變性,利用求導(dǎo)的四則運(yùn)算法則與復(fù)合函數(shù)求導(dǎo)法可求初等函數(shù)的任意階導(dǎo)數(shù).冪指函數(shù)求導(dǎo)法、隱函數(shù)求導(dǎo)法、參數(shù)式求導(dǎo)法、反函數(shù)求導(dǎo)法及變限積分求導(dǎo)法等都是復(fù)合函數(shù)求導(dǎo)法的應(yīng)用。
導(dǎo)數(shù)計(jì)算中需要掌握的常見(jiàn)類(lèi)型有以下幾種:1、基本函數(shù)類(lèi)型的求導(dǎo);2、復(fù)合函數(shù)求導(dǎo);3、隱函數(shù)求導(dǎo),對(duì)于隱函數(shù)求導(dǎo),不要刻意記憶公式,記住計(jì)算方法即可,計(jì)算的時(shí)候要注意結(jié)合各種求導(dǎo)法則;4、由參數(shù)方程所確定的函數(shù)求導(dǎo),不必記憶公式,要掌握其計(jì)算方法,依據(jù)復(fù)合函數(shù)求導(dǎo)法則計(jì)算即可;5、反函數(shù)的導(dǎo)數(shù);6、求分段函數(shù)的導(dǎo)數(shù),關(guān)鍵是求分界點(diǎn)處的導(dǎo)數(shù);7、變上限積分求導(dǎo),關(guān)鍵是從積分號(hào)下把提出;8、偏導(dǎo)數(shù)的計(jì)算,求偏導(dǎo)數(shù)的基本法則是固定其余變量,只對(duì)一個(gè)變量求導(dǎo),在此法則下,基本計(jì)算公式與一元函數(shù)類(lèi)似。
導(dǎo)數(shù)的計(jì)算需要考生不斷練習(xí),直到對(duì)所有題目一見(jiàn)到就能夠熟練、正確地解答出來(lái)。
以上是對(duì)考研數(shù)學(xué)極限、導(dǎo)數(shù)部分的一個(gè)簡(jiǎn)單分析,希望能夠?qū)?014年考研的同學(xué)起到一定的作用。
【考研數(shù)學(xué)極限、導(dǎo)數(shù)考查重點(diǎn)及備考方法】相關(guān)文章:
2015年考研數(shù)學(xué)重點(diǎn)考點(diǎn) 極限的運(yùn)算04-29
2015年考研數(shù)學(xué)備考 高數(shù)之極限復(fù)習(xí)04-29
考研英語(yǔ)首輪復(fù)習(xí)的五個(gè)考查重點(diǎn)!04-30
考研數(shù)學(xué)后期備考 重點(diǎn)放在歷年真題05-02
導(dǎo)數(shù)及其應(yīng)用考查新動(dòng)向04-29
考研數(shù)學(xué)高數(shù) 要掌握重點(diǎn)及方法04-28