- 相關(guān)推薦
2016年考研數(shù)學(xué):16種求極限的方法
首先對(duì)極限的總結(jié)如下:
極限的保號(hào)性很重要就是說(shuō)在一定區(qū)間內(nèi)函數(shù)的正負(fù)與極限一致
1極限分為一般極限,還有個(gè)數(shù)列極限,(區(qū)別在于數(shù)列極限時(shí)發(fā)散的,是一般極限的一種)
2解決極限的方法如下:(我能列出來(lái)的全部列出來(lái)了。。。。∧氵能有補(bǔ)充么???)
1等價(jià)無(wú)窮小的轉(zhuǎn)化,(只能在乘除時(shí)候使用,但是不是說(shuō)一定在加減時(shí)候不能用但是前提是必須證明拆分后極限依然存在) e的X次方-1或者(1+x)的a次方-1等價(jià)于Ax等等。全部熟記
。▁趨近無(wú)窮的時(shí)候還原成無(wú)窮。
2落筆他法則(大題目有時(shí)候會(huì)有暗示要你使用這個(gè)方法)
首先他的使用有嚴(yán)格的使用前提。。。。。
必須是X趨近而不是N趨近。。。。。。。ㄋ悦鎸(duì)數(shù)列極限時(shí)候先要轉(zhuǎn)化成求x趨近情況下的極限,當(dāng)然n趨近是x趨近的一種情況而已,是必要條件
。ㄟ有一點(diǎn)數(shù)列極限的n當(dāng)然是趨近于正無(wú)窮的不可能是負(fù)無(wú)窮。
必須是函數(shù)的導(dǎo)數(shù)要存在。。。。。。。。偃绺嬖V你g(x),沒(méi)告訴你是否可導(dǎo),直接用無(wú)疑于找死!。
必須是0比0無(wú)窮大比無(wú)窮大。。。。。。。。
當(dāng)然還要注意分母不能為0
落筆他法則分為3中情況
1 0比0無(wú)窮比無(wú)窮時(shí)候直接用
2 0乘以無(wú)窮無(wú)窮減去無(wú)窮(應(yīng)為無(wú)窮大于無(wú)窮小成倒數(shù)的關(guān)系)所以無(wú)窮大都寫(xiě)成了無(wú)窮小的倒數(shù)形式了。通項(xiàng)之后這樣就能變成1中的形式了
3 0的0次方1的無(wú)窮次方無(wú)窮的0次方
對(duì)于(指數(shù)冪數(shù))方程方法主要是取指數(shù)還取對(duì)數(shù)的方法,這樣就能把冪上的函數(shù)移下來(lái)了,就是寫(xiě)成0與無(wú)窮的形式了,(這就是為什么只有3種形式的原因,LNx兩端都趨近于無(wú)窮時(shí)候他的冪移下來(lái)趨近于0當(dāng)他的冪移下來(lái)趨近于無(wú)窮的時(shí)候LNX趨近于0)
3泰勒公式(含有e的x次方的時(shí)候,尤其是含有正余旋的加減的時(shí)候要特變注意。。。。
E的x展開(kāi)sina展開(kāi)cos展開(kāi)ln1+x展開(kāi)
對(duì)題目簡(jiǎn)化有很好幫助
4面對(duì)無(wú)窮大比上無(wú)窮大形式的解決辦法
取大頭原則最大項(xiàng)除分子分母。。。。。。。。。。
看上去復(fù)雜處理很簡(jiǎn)單。。。。。。。。。
5無(wú)窮小于有界函數(shù)的處理辦法
面對(duì)復(fù)雜函數(shù)時(shí)候,尤其是正余旋的復(fù)雜函數(shù)與其他函數(shù)相乘的時(shí)候,一定要注意這個(gè)方法。
面對(duì)非常復(fù)雜的函數(shù)可能只需要知道它的范圍結(jié)果就出來(lái)了。!
6夾逼定理(主要對(duì)付的是數(shù)列極限!)
這個(gè)主要是看見(jiàn)極限中的函數(shù)是方程相除的形式,放縮和擴(kuò)大。
7等比等差數(shù)列公式應(yīng)用(對(duì)付數(shù)列極限) (q絕對(duì)值符號(hào)要小于1)
8各項(xiàng)的拆分相加(來(lái)消掉中間的大多數(shù)) (對(duì)付的還是數(shù)列極限)
可以使用待定系數(shù)法來(lái)拆分化簡(jiǎn)函數(shù)
9求左右求極限的方式(對(duì)付數(shù)列極限)例如知道Xn與Xn+1的關(guān)系,已知Xn的極限存在的情況下,xn的極限與xn+1的極限時(shí)一樣的,應(yīng)為極限去掉有限項(xiàng)目極限值不變化
10 2個(gè)重要極限的應(yīng)用。這兩個(gè)很重要。。。!對(duì)第一個(gè)而言是X趨近0時(shí)候的sinx與x比值。地2個(gè)就如果x趨近無(wú)窮大無(wú)窮小都有對(duì)有對(duì)應(yīng)的形式
。ǖ2個(gè)實(shí)際上是用于函數(shù)是1的無(wú)窮的形式)(當(dāng)?shù)讛?shù)是1的時(shí)候要特別注意可能是用地2個(gè)重要極限)
11還有個(gè)方法,非常方便的方法
就是當(dāng)趨近于無(wú)窮大時(shí)候
不同函數(shù)趨近于無(wú)窮的速度是不一樣的!。。。。。。。。。。。。!
x的x次方快于x!快于指數(shù)函數(shù)快于冪數(shù)函數(shù)快于對(duì)數(shù)函數(shù)(畫(huà)圖也能看出速率的快慢) 。。。。。
當(dāng)x趨近無(wú)窮的時(shí)候他們的比值的極限一眼就能看出來(lái)了
12換元法是一種技巧,不會(huì)對(duì)模一道題目而言就只需要換元,但是換元會(huì)夾雜其中
13假如要算的話四則運(yùn)算法則也算一種方法,當(dāng)然也是夾雜其中的
14還有對(duì)付數(shù)列極限的一種方法,
就是當(dāng)你面對(duì)題目實(shí)在是沒(méi)有辦法走投無(wú)路的時(shí)候可以考慮轉(zhuǎn)化為定積分。一般是從0到1的形式。
15單調(diào)有界的性質(zhì)
對(duì)付遞推數(shù)列時(shí)候使用證明單調(diào)性。。。。!
16直接使用求導(dǎo)數(shù)的定義來(lái)求極限,
(一般都是x趨近于0時(shí)候,在分子上f(x加減麼個(gè)值)加減f(x)的形式,看見(jiàn)了有特別注意)
(當(dāng)題目中告訴你F(0)=0時(shí)候f(0)導(dǎo)數(shù)=0的時(shí)候就是暗示你一定要用導(dǎo)數(shù)定義。。。。
【考研數(shù)學(xué):16種求極限的方法】相關(guān)文章:
2014考研數(shù)學(xué) 求極限十大方法總結(jié)05-02
2014考研數(shù)學(xué) 極限與導(dǎo)數(shù)復(fù)習(xí)方法05-02
例說(shuō)求極限的幾種方法04-29
2014考研數(shù)學(xué)極限、導(dǎo)數(shù)考查重點(diǎn)及備考方法05-02
2015考研數(shù)學(xué) 求簡(jiǎn)、求巧、求美04-27
2015年考研高等數(shù)學(xué)之極限復(fù)習(xí)方法04-29