- 相關(guān)推薦
在幾何初步知識教學(xué)中滲透數(shù)學(xué)思想 論文
鎮(zhèn)江市潤州區(qū)教科室,束宗德
數(shù)學(xué)的思想方法是數(shù)學(xué)的精髓,在初中數(shù)學(xué)新大綱中已把它列入基礎(chǔ)知識的范疇,因此在小學(xué)數(shù)學(xué)教學(xué)中 適當(dāng)滲透一些數(shù)學(xué)思想方法,對于開發(fā)學(xué)生智力,培養(yǎng)良好的思維品質(zhì)以及加強中小學(xué)數(shù)學(xué)教學(xué)的銜接都將是 十分有益的。
一、滲透轉(zhuǎn)化思想,構(gòu)建知識網(wǎng)絡(luò)
事物在一定條件下相互轉(zhuǎn)化是最基本的唯物主義思想,可以及早讓學(xué)生有所了解。例如梯形上底為3cm,下 底為7cm,高為4cm, 面積是多
1 1
少?S=─(3+7)×4=20(cm[2])。若上底為0呢?S=─×(0+7)
2 2
1
×4=14(cm[2]), 這時梯形轉(zhuǎn)化成三角形,S△=─×7×4=14(cm
2
1
[2]),結(jié)果一致。若上底也為7cm呢?S=─×(7+7)×4=28(cm[2]
2
),這時梯形轉(zhuǎn)化成平行四邊形,
附圖{圖}
這樣就構(gòu)建了三角形、梯形、平行四邊形的知識網(wǎng)絡(luò),讓學(xué)生看到它們之間的內(nèi)在聯(lián)系,加深了知識的理 解和記憶。
二、滲透整體思想,優(yōu)化解題過程
整體思想注重問題的整體結(jié)構(gòu),將題中的某些元素或組合看成一個整體,從而化繁為簡,化難為易。例如 已知
附圖{圖}
像這樣把問題放到整體結(jié)構(gòu)中去考慮, 就可以開拓解題思路,優(yōu)化解題過程。
三、滲透化歸思想,促進知識遷移
將生疏的問題轉(zhuǎn)化成熟悉的、已知的問題,這是運用化歸思想解題的真諦。隨著問題的解決,認(rèn)知不斷拓 展,促進了知識的正遷移。例如三角形的內(nèi)角和是180°,任意四邊形的內(nèi)角和是多少度呢? 連接對角線將四 邊形分割成兩個三角形, 這樣就得到四邊形的內(nèi)角和是360°,以此類推不難求出凸五邊形、凸六邊形……的 內(nèi)角和,學(xué)生很容易接受。
四、滲透函數(shù)思想,展示變化觀點
函數(shù)研究兩個變量之間相互依存、相互制約的規(guī)律。我們可以通過具體問題、具體數(shù)值向?qū)W生展示運動變 化的觀點。例如當(dāng)長方形周長為20cm時,長和寬可以如何取值?面積各是多少?其中哪個面積最大?列出表來 讓學(xué)生填寫: 周長cm 長cm 寬cm 面積cm[2]
20 1 9 9
20 2 8 16
20 3 7 21
20 4 6 24
20 5 5 25
20 6 4 24
20 7 3 21
20 8 2 16
20 9 1 9
20 …… …… ……
&nb
[1] [2]
【在幾何初步知識教學(xué)中滲透數(shù)學(xué)思想 論文】相關(guān)文章:
數(shù)學(xué)思想方法在數(shù)學(xué)教學(xué)中的滲透04-30
淺析數(shù)學(xué)思想方法在教學(xué)中的滲透04-28
數(shù)學(xué)教學(xué)中如何滲透新理念和創(chuàng)新思想05-01
數(shù)學(xué)思想方法滲透教學(xué)之我見04-30
中學(xué)體育教學(xué)中的德育滲透的論文04-27
幼兒教學(xué)中的德育滲透的學(xué)科論文04-27
談數(shù)學(xué)教學(xué)中的德育滲透04-29
以圓柱的認(rèn)識為例,談數(shù)學(xué)思想在教學(xué)中的滲透04-27
解析幾何初步教學(xué)反思04-28