新教師激活學(xué)生思維的教法初探
摘要:本文利用心理學(xué)原理,結(jié)合筆者在教學(xué)中的體會(huì),初步探討了新教師就激活學(xué)生思維的幾種教學(xué)方法,并以典型的課堂實(shí)例分析了激活學(xué)生思維的可行性及重要性。關(guān)鍵詞:思維品質(zhì)、思維能力,最近發(fā)現(xiàn)區(qū),評(píng)價(jià),遷移
從心理學(xué)角度講,思維品質(zhì)是思維產(chǎn)生和發(fā)展中所表現(xiàn)出來(lái)的個(gè)性差異。思維能力是在一定的思維品質(zhì)基礎(chǔ)上形成的分析問(wèn)題和解決問(wèn)題的能力。在數(shù)學(xué)教學(xué)活動(dòng)中,經(jīng)?梢砸姷接械膶W(xué)生善于思考,領(lǐng)悟力強(qiáng),很快就想出解決問(wèn)題的各種可能方案,理清解題思路;而有的學(xué)生遇到難題一籌莫展,找不到解題的門路,這就是思維能力的差異。數(shù)學(xué)思維能力是思維品質(zhì)在解題實(shí)踐中的具體化。因此,探索激活學(xué)生思維的教學(xué)方法具有重要意義。 那么,作為一位新教師,應(yīng)如何在中學(xué)數(shù)學(xué)教學(xué)中激活學(xué)生思維呢?下面就此談點(diǎn)看法和體會(huì),以作引玉之磚。
1、設(shè)計(jì)最近發(fā)現(xiàn)區(qū)
心理學(xué)研究表明,學(xué)生的學(xué)習(xí)過(guò)程,是他們?cè)械臄?shù)學(xué)認(rèn)識(shí)結(jié)構(gòu)與新知相互作用產(chǎn)生同化和順序的過(guò)程。在這一過(guò)程中,學(xué)生已有的觀念和意識(shí)往往難以解釋和接納新的概念和方法,此時(shí)教師若把教學(xué)內(nèi)容能動(dòng)地進(jìn)行加工,創(chuàng)設(shè)切合學(xué)生心理水平的最近發(fā)現(xiàn)區(qū)1,則能起到誘發(fā)學(xué)生思維的作用。如問(wèn)題與現(xiàn)實(shí)背景有關(guān)時(shí),我們可以提供與課題相聯(lián)系的實(shí)際模型讓學(xué)生觀察;如果內(nèi)容抽象難懂,我們可以先介紹其簡(jiǎn)單情形讓學(xué)生思考;在講授新概念、方法時(shí),可以在新舊知識(shí)之間適當(dāng)增設(shè)層次,減少思維坡度。創(chuàng)立這樣的思維最近發(fā)現(xiàn)區(qū),既能激起學(xué)生認(rèn)識(shí)上的不平衡,又能促使他們頭腦中新舊知識(shí)間的相互作用,從而達(dá)到新的平衡,最終促進(jìn)了學(xué)生思維的活躍與發(fā)展。
例如,在二項(xiàng)式定理的教學(xué)中,可依程序設(shè)計(jì)如下的教學(xué)方案:
。1)問(wèn)題:當(dāng)n屬于N時(shí),(a+b)n的展開式是怎樣的?
。2)可將問(wèn)題簡(jiǎn)化,要求同學(xué)們寫出n為具體數(shù)值2,3時(shí),(a+b)n按a的降冪排列的展開式。
(3)從上述展開式中,發(fā)現(xiàn)了什么規(guī)律?
設(shè)計(jì)上述問(wèn)題,為學(xué)生從理性上認(rèn)識(shí)二項(xiàng)式定理作了鋪墊,也就是說(shuō)創(chuàng)設(shè)了思維的“最近發(fā)現(xiàn)區(qū)”,學(xué)生思維逐漸趨向活躍。緊接著,話鋒一轉(zhuǎn)提出如下的系列問(wèn)題:
。4)如果學(xué)生還發(fā)現(xiàn)不了此規(guī)律,此時(shí)不妨提醒學(xué)生換一個(gè)角度思考問(wèn)題:
(a+b)4=(a+b)(a+b)(a+b)(a+b)
=a4+( )a3b+( 。゛2b2+( )ab3+( )b4
從組合的角度來(lái)考慮各項(xiàng)系數(shù)的來(lái)源及構(gòu)成,如ab的系數(shù),顯然是4個(gè)(a+b)中任選3個(gè)(a+b)中b與a相乘,有C34其余的系數(shù)同理可推出。
。5)讓學(xué)生照這思維路線寫出(a+b)5,(a+b)6的展開式,并驗(yàn)證其正確性。
。6)引導(dǎo)學(xué)生進(jìn)行猜想,(a+b)n的展開式形式為:(a+b)n=C0nanbn+……Crnan-rbr+……+Cnnbn
。7)再用數(shù)學(xué)歸納法證明二項(xiàng)式展開式的正確性,即可。
此教案的設(shè)計(jì)遵循了由特殊到一般的認(rèn)知規(guī)律,學(xué)生的思維隨著老師的提問(wèn)一步步深入,教師為學(xué)生的思維創(chuàng)造了“最近發(fā)現(xiàn)區(qū)”,它符合學(xué)生的認(rèn)識(shí)水平和規(guī)律,從而引起學(xué)生心理上的期待和渴望,使學(xué)生的思維由潛隱狀態(tài)轉(zhuǎn)變?yōu)榛钴S狀態(tài),實(shí)現(xiàn)了預(yù)期的教學(xué)目標(biāo)。
2、讓學(xué)生充分展現(xiàn)思維過(guò)程
課堂教學(xué)離不開學(xué)生的答問(wèn),怎樣處理好學(xué)生的課堂答問(wèn),以激發(fā)學(xué)生的思維,提高學(xué)習(xí)效率,應(yīng)該是我們每一位教師不斷深入探討的課題。學(xué)生課堂答問(wèn)后,我們教師不能僅用“對(duì)”或“錯(cuò)”予以
[1] [2] [3] [4] [5]