- 相關(guān)推薦
小學(xué)數(shù)學(xué)教學(xué)中發(fā)散性思維的培養(yǎng)
小學(xué)數(shù)學(xué)教學(xué)中發(fā)散性思維的培養(yǎng)思維有多種特性,如積極性、求異性、廣闊性、聯(lián)想性等,他在教學(xué)中有意識(shí)地抓住這些特性進(jìn)行訓(xùn)練與培養(yǎng),既可提高學(xué)生的發(fā)散思維能力,又是提高小學(xué)數(shù)學(xué)教學(xué)質(zhì)量的重要一環(huán)。
一、激發(fā)求知欲,訓(xùn)練思維的積極性。
思維的惰性是影響發(fā)散思維的障礙,而思維的積極性是思維惰性的克星。所以,培養(yǎng)思維的積極性是培養(yǎng)發(fā)散思維的極其重要的基矗在教學(xué)中,教師要十分注意激起學(xué)生強(qiáng)烈的學(xué)習(xí)興趣和對(duì)知識(shí)的渴求,使他們能帶著一種高漲的情緒從事學(xué)習(xí)和思考。例如:在二年級(jí)《乘法初步認(rèn)識(shí)》一課中,教師可先出示幾道連加算式讓學(xué)生改寫為乘法算式。由于有乘法意義已經(jīng)掌握,雖然是二年級(jí)小學(xué)生,仍能較順暢地完成了上述練習(xí)。而后,教師又出示3+3+3+3+2,讓學(xué)生思考、討論能否改寫成一道含有乘法的算式呢?經(jīng)過(guò)學(xué)生的討論與教師及時(shí)予以點(diǎn)撥,學(xué)生列出了3+3+3+3+2=3×5-1=3×4+2=2×7……雖然課堂費(fèi)時(shí)多,但這樣的訓(xùn)練卻有效地激發(fā)了學(xué)生尋求新方法的積極情緒。我們?cè)跀?shù)學(xué)教學(xué)中還經(jīng)常利用“障礙性引入”、“沖突性引入”、“問(wèn)題性引入”、“趣味性引入”等,以激發(fā)學(xué)生對(duì)新知識(shí)、新方法的探知思維活動(dòng),這將有利于激發(fā)學(xué)生的學(xué)習(xí)動(dòng)機(jī)和求知欲。在學(xué)生不斷地解決知與不知的矛盾過(guò)程中,還要善于引導(dǎo)他們一環(huán)接一環(huán)地發(fā)現(xiàn)問(wèn)題、思考問(wèn)題、解決問(wèn)題。例如,在學(xué)習(xí)“直線”的認(rèn)識(shí)時(shí),學(xué)生列舉了生活中見(jiàn)過(guò)的直線,例如:一條筆直的公路、一根電線、一支鉛筆等,從而使學(xué)生的學(xué)習(xí)時(shí)始終處于興奮狀態(tài),這樣有利于思維活動(dòng)的積極開展與深入探尋。
二、轉(zhuǎn)換角度思考,訓(xùn)練思維的求異性。
發(fā)散思維活動(dòng)的展開,重要的一點(diǎn)是要能改變已習(xí)慣了的思維方式,而從多方位多角度——即從新的思維角度去思考問(wèn)題,以求得問(wèn)題的解決,這也就是思維的求異性。從認(rèn)知心理學(xué)的角度來(lái)看,小學(xué)生在進(jìn)行抽象的思維活動(dòng)過(guò)程中由于年齡的特征,往往表現(xiàn)出難以擺脫已有的思維方式,也就是說(shuō)學(xué)生個(gè)體的思維方式往往影響了對(duì)新問(wèn)題的解決,以至于產(chǎn)生錯(cuò)覺(jué)。所以要培養(yǎng)與發(fā)展小學(xué)生的抽象思維能力,必須十分注意培養(yǎng)思維求異性,使學(xué)生在訓(xùn)練中逐漸形成具有多角度、多方位的思維方法與能力。例如,四則運(yùn)算之間是有其內(nèi)在聯(lián)系的。減法是加法的逆運(yùn)算,除法是乘法的逆運(yùn)算,加與乘之間則是轉(zhuǎn)換的關(guān)系。當(dāng)加數(shù)相同時(shí),加法轉(zhuǎn)換成乘法,所有的乘法都可以轉(zhuǎn)換成加法。加減、乘除、加乘之間都有內(nèi)在的聯(lián)系。如24—6可以連續(xù)減多少個(gè)6等于0?應(yīng)要求學(xué)生變換角度思考,從減與除的關(guān)系去考慮。這道題可以看作24里包含幾個(gè)6,問(wèn)題就迎刃而解了。這樣的訓(xùn)練,既防止了片面、孤立、靜止看問(wèn)題,使學(xué)生對(duì)所學(xué)知識(shí)進(jìn)一步掌握,從中進(jìn)一步理解與掌握了數(shù)學(xué)知識(shí)之間的內(nèi)在聯(lián)系,又進(jìn)行了求異性思維訓(xùn)練。在教學(xué)中,我們還經(jīng)常發(fā)現(xiàn)一部分學(xué)生只習(xí)慣于順向思維,而不習(xí)慣于逆向思維。在應(yīng)用題教學(xué)中,在引導(dǎo)學(xué)生分析題意時(shí),一方面可以從問(wèn)題入手,推導(dǎo)出解題的思路;另一方面也可以從條件入手,一步一步歸納出解題的方法。更重要的是,教師要十分注意在題目的設(shè)置上進(jìn)行正逆向的變式訓(xùn)練。如:二年級(jí)數(shù)學(xué)中又這樣一題訓(xùn)練:(1)牛16只,羊比牛多8只,羊幾只?(2)牛16只,羊24只,羊比牛多多少只?這兩道題目有相似的地方,但意思是完全不同的,經(jīng)過(guò)多次實(shí)踐,我領(lǐng)悟到:從低年級(jí)開始就重視正逆向思維的對(duì)比訓(xùn)練,將有利于學(xué)生突破已有的思維方式。
三、一題多解
[1] [2]
【小學(xué)數(shù)學(xué)教學(xué)中發(fā)散性思維的培養(yǎng)】相關(guān)文章:
數(shù)學(xué)教學(xué)中的發(fā)散性思維培養(yǎng)04-30
如何培養(yǎng)發(fā)散性思維05-02
在語(yǔ)文教學(xué)中對(duì)學(xué)生發(fā)散性思維的培養(yǎng)04-29
英語(yǔ)教學(xué)中對(duì)學(xué)生發(fā)散性思維的培養(yǎng)05-02
在小學(xué)數(shù)學(xué)教學(xué)中如何培養(yǎng)學(xué)生的發(fā)散思維能力04-29
淺議在初中數(shù)學(xué)教學(xué)中培養(yǎng)學(xué)生的發(fā)散性04-29
運(yùn)用發(fā)散型習(xí)題培養(yǎng)學(xué)生的發(fā)散思維04-30
在英語(yǔ)教學(xué)中訓(xùn)練發(fā)散思維培養(yǎng)創(chuàng)新意識(shí)04-27