關(guān)于航空航天論文
無論是在學(xué)習(xí)還是在工作中,大家都經(jīng)?吹秸撐牡纳碛鞍桑撐氖菍(duì)某些學(xué)術(shù)問題進(jìn)行研究的手段。為了讓您在寫論文時(shí)更加簡(jiǎn)單方便,下面是小編收集整理的航空航天論文,歡迎大家分享。
航空航天論文 篇1
摘要:本文扼要引見航空航天范疇熱防護(hù)技術(shù)的開展概略,重點(diǎn)引見碳/碳復(fù)合資料、多孔纖維陶瓷資料、陶瓷基復(fù)合資料、熱涂層技術(shù)、隔熱資料、輕質(zhì)燒蝕資料等,并對(duì)熱防護(hù)技術(shù)的開展趨向作扼要評(píng)述。
關(guān)鍵詞:熱防護(hù)技術(shù); 碳泡沫資料; 多孔纖維陶瓷; 陶瓷基復(fù)合資料;熱障涂層 ;隔熱資料; 輕質(zhì)燒蝕資料
前言
在航空航天范疇,航天飛行器以高馬赫數(shù)穿越稠密大氣層飛行,飛行器外表會(huì)產(chǎn)生嚴(yán)重的氣動(dòng)加熱,容易產(chǎn)生熱損傷。因而熱防護(hù)技術(shù)是航空航天范疇至關(guān)重要的關(guān)鍵技術(shù)之一。
在航空航天范疇,熱防護(hù)主要采用防隔熱資料的方式。下面扼要引見目前比擬前沿的幾種防隔熱資料,輕質(zhì)燒蝕資料、碳泡沫資料、多孔纖維陶瓷、陶瓷基復(fù)合資料、無機(jī)纖維隔熱資料等的開展現(xiàn)狀與應(yīng)用。
1熱防護(hù)資料開展概略
燒蝕類熱防護(hù)資料發(fā)張歷史較長(zhǎng),應(yīng)用較普遍,如以纖維為加強(qiáng)填充資料的纖維加強(qiáng)酚醛資料和以酚醛樹脂為粘合劑的熱防護(hù)復(fù)合資料。目前應(yīng)用最普遍的是纖維加強(qiáng)酚醛資料[1]。傳統(tǒng)的燒蝕熱防護(hù)是以犧牲熱防護(hù)資料質(zhì)量來?yè)Q取防熱的效果,無法應(yīng)對(duì)當(dāng)今航天器外形不變的請(qǐng)求,于是提出了非燒蝕資料的概念。非燒蝕資料是一種能夠反復(fù)應(yīng)用的新型熱防護(hù)資料。關(guān)于該種資料來說,提高極限運(yùn)用溫度和高溫性能、提高標(biāo)明抗輻射、抗氧化才能、防隔熱一體化和能量引導(dǎo)耗散機(jī)制的分離是目前研討的熱點(diǎn)和重點(diǎn)[2]。
因而下面將先簡(jiǎn)單引見一下輕質(zhì)燒蝕資料,然后重點(diǎn)引見幾種非熱燒蝕資料,如碳泡沫資料、多孔纖維陶瓷、陶瓷基復(fù)合資料、無機(jī)纖維隔熱資料以及熱涂層技術(shù)。
2 輕質(zhì)燒蝕資料[3]
2.1 基體資料;w是燒蝕資料的主要組成局部,不只能將資料中的各種組分分離成型,其性能好壞還直接影響整體構(gòu)造性能。輕質(zhì)燒蝕資料的基體資料普通包括彈性體和樹脂基體兩大類。
彈性體基體主要是各種橡膠及其混合物。硅橡膠具有延展率高、耐燒蝕和抗高溫燃?xì)鉀_刷的性能優(yōu)點(diǎn)。但是,硅橡膠有密度較高、機(jī)械強(qiáng)度低和界面粘性差等缺陷,因而應(yīng)用遭到一定限制。為此,研討人員對(duì)硅橡膠進(jìn)行了大量的改性研討,其中改性的開展方向之一是共混改性,使燒蝕后碳層愈加致密、鞏固,提高了燒蝕性能。
樹脂基體燒蝕資料普通具有高芳基化、高分子質(zhì)量、高C/O比、高交聯(lián)密度,高殘?zhí)悸实忍匦,是一類性能?yōu)良的燒蝕資料。目前較為成熟的樹脂基體主要有硅樹脂、酚醛樹脂以及新型的聚芳基乙炔樹脂等。
2.2 填料。作為燒蝕資料另一重要組成局部,填料主要起著提高燒蝕資料的機(jī)械性能、降低絕熱層的導(dǎo)熱系數(shù)、提高隔熱效率、加強(qiáng)碳化層耐高溫燃?xì)鉀_刷性能和降低燒蝕率等作用。
3碳泡沫資料
碳泡沫主要有兩種形態(tài):一種是韌帶網(wǎng)絡(luò)型泡沫,另一種是微球型碳泡沫。
3.1韌帶網(wǎng)絡(luò)型泡沫。韌帶網(wǎng)絡(luò)型碳泡沫是一種石墨加強(qiáng)韌帶網(wǎng)絡(luò)型泡沫資料。該泡沫以瀝青或聚合物等作為先驅(qū)體,經(jīng)過石墨化和高溫炭化處置,將無定形碳轉(zhuǎn)化為多孔石墨韌帶微構(gòu)造,構(gòu)成網(wǎng)狀泡沫韌帶,其性能與構(gòu)造優(yōu)于現(xiàn)有的碳/碳復(fù)合資料[1]。該種碳泡沫資料具有以下特性:一是泡沫和韌帶是恣意排列于三維空間,因而具有各向同性的力學(xué)性能;二是韌帶具有纖維構(gòu)造的性能特征。并且這種碳泡沫資料的熱導(dǎo)率大約是銅的6倍,是一種良好的導(dǎo)熱泡沫資料。
3.2微球型碳泡沫。 空心碳微球泡沫是以高殘?zhí)紭渲蛑虚g相瀝青為先驅(qū)體,先制成幾何尺寸為微米的納米級(jí)的空心微球,再用恰當(dāng)?shù)臉渲髡澈蟿⿲⑵渥⒛3尚,在氮(dú)夂蜌鍤獾姆諊薪?jīng)1100―2400℃的碳化和石墨化,得到空心微球構(gòu)造的碳泡沫,當(dāng)將其從室溫高速加熱到3100℃時(shí),這種資料依然具有良好的力學(xué)性能,導(dǎo)熱率較低,且由于微球大多是開孔的,力學(xué)性能欠佳。但用甲階酚醛樹脂為原型,經(jīng)過微膠囊法先制備出酚醛樹脂空心微球,注模成型,再經(jīng)過碳化和石墨化處置,所制得的碳泡沫資料中的微球均是閉孔的,隔熱性能和力學(xué)性能更為理想。
4多孔纖維陶瓷
多孔陶瓷具有化學(xué)性質(zhì)穩(wěn)定、比外表積大、耐熱才能強(qiáng)、密度較低、剛度高、熱導(dǎo)率低等優(yōu)點(diǎn),并且在力學(xué)、化學(xué)、熱學(xué)、光學(xué)、電學(xué)等方面具有共同的性能,目前在別離過濾、換熱、載體、蓄熱、吸聲隔音、隔熱、曝氣、電極、傳感器、生物植入等諸多方面都有著普遍的應(yīng)用。在航空航天范疇也不例外,如熱防護(hù)系統(tǒng)中應(yīng)用多孔陶瓷熱障資料,在飛行器外殼隔熱、發(fā)汗冷卻構(gòu)件、燃?xì)廨啓C(jī)高溫合金部件外表熱防護(hù)等方面,可起到低金屬外表溫度、提高燃?xì)夤ぷ鳒囟、改善燃(xì)庑省⒀娱L(zhǎng)熱端部件運(yùn)用壽命的重要作用。
多孔纖維陶瓷具有各向異性的導(dǎo)熱性能,有很多應(yīng)用。作為熱防護(hù)資料的陶瓷熱障,因其導(dǎo)熱的各向異性,在厚度方向上熱導(dǎo)率較小,在垂直于厚度方向上的熱導(dǎo)率較大,可以起到隔熱和均布外表溫度的效果,依據(jù)文獻(xiàn)[4]中的計(jì)算和實(shí)驗(yàn)標(biāo)明,多孔纖維陶瓷資料在一個(gè)方向的熱導(dǎo)率是另一個(gè)方向的3倍左右,因而在厚度方向能夠有效隔熱的同時(shí),還能夠在外表方向上均布溫度場(chǎng),能十分有效的避免部分高溫的呈現(xiàn)。
5 陶瓷基復(fù)合資料
陶瓷基復(fù)合資料是在陶瓷集體中引入第二相資料所構(gòu)成的的多相復(fù)合資料。在陶瓷中參加纖維能大幅度提高資料的強(qiáng)度、改善陶瓷資料脆的缺陷,并提高運(yùn)用溫度。因而陶瓷基復(fù)合資料不只具有陶瓷耐高溫、抗氧化、耐磨、耐腐蝕的.優(yōu)點(diǎn),同時(shí)由于纖維的引入,時(shí)其具有相似金屬的斷裂行為,對(duì)裂紋不敏感,克制普通陶瓷資料脆性大、牢靠性差的致命弱點(diǎn)[5]。
克制陶瓷脆性的辦法主要包括連續(xù)纖維增韌、想變?cè)鲰g、微裂紋增韌以及晶須晶片增韌等。其中連續(xù)纖維增韌碳化硅基復(fù)合資料是目前最受關(guān)注的陶瓷基復(fù)合資料。
連續(xù)纖維加強(qiáng)陶瓷基復(fù)合資料具有高比強(qiáng)、高比模、高牢靠性、耐高溫等優(yōu)點(diǎn),曾經(jīng)成為軍事、航天、能源等范疇理想的高溫構(gòu)造資料。主要應(yīng)用于發(fā)起機(jī)熄滅室、喉襯、噴管等熱構(gòu)造件以及飛行器機(jī)翼前緣、控制面、機(jī)身頂風(fēng)面、鼻錐等防熱構(gòu)件。
6 無機(jī)纖維隔熱資料
隔熱資料分為剛性隔熱資料和柔性隔熱資料,其中剛性隔熱資料的研討曾經(jīng)根本成熟,這里主要引見柔性隔熱資料。
近幾年比擬受關(guān)注的新型隔熱資料有:納米隔熱資料和功用梯度資料。
納米隔熱資料由于其共同的微構(gòu)造特征賦予了資料極端優(yōu)良的隔熱性能 。 艾姆斯研討中心、馬賽爾空間飛行中心和肯尼迪空間中心分別展開了納米隔熱資料的研討工作。在1999年時(shí)納米隔熱資料的研討就曾經(jīng)到達(dá)了相當(dāng)成熟的階段。 在適用化方面,納米隔熱資料曾經(jīng)勝利應(yīng)用于火星探測(cè)器的個(gè)別溫度敏感部件及星云捕獲器上。此外德國(guó)、瑞典、以色列、日本等國(guó)也展開了新型納米隔熱資料的研討工作。目前曾經(jīng)報(bào)道的常溫常壓下納米隔熱資料最低的熱導(dǎo)率為0.013 W/ (mk),比靜止空氣的低一半。有材料報(bào)道的納米隔熱資料的運(yùn)用溫度普通都小于500 ℃,機(jī)械強(qiáng)度比擬差。進(jìn)一步提高納米隔熱資料的運(yùn)用溫度及其它綜合性能將是今后研討工作的重點(diǎn)。
功用梯度資料的是由日本學(xué)者平井敏雄等在20世紀(jì)80年代首先提出的,他們最初打算將該資料應(yīng)用于航天飛機(jī)的熱防護(hù)系統(tǒng)和發(fā)起機(jī)的熱端部件。功用梯度資料一種其構(gòu)成資料的要素組成和構(gòu)造沿厚度方向由一側(cè)向另一側(cè)呈連續(xù)變化,從而使資料的性能也呈梯度變化的新型資料。功用梯度資料在處理航空航天資料耐熱性、短命命、隔熱性和強(qiáng)韌性等特性時(shí)顯現(xiàn)了非常宏大的應(yīng)用潛力。在導(dǎo)熱系數(shù)到達(dá)設(shè)計(jì)請(qǐng)求的前提下,它能克制多層熱防護(hù)資料之間的層間缺陷和小塊資料之間銜接艱難的缺乏。這應(yīng)該是會(huì)成為將來航空航天熱防護(hù)系統(tǒng)新一代的隔熱資料。
7 熱障涂層技術(shù)
當(dāng)今航空發(fā)起機(jī)的主要開展方向之一是提高發(fā)起機(jī)渦輪行進(jìn)口溫度,以此來提高發(fā)起機(jī)的熱效率。但隨著渦輪行進(jìn)口溫度的提高,發(fā)起機(jī)熱端部件所禁受的燃?xì)鉁囟群腿細(xì)鈮毫Σ粫r(shí)提高。從上世紀(jì)40年代到上世紀(jì)末,航空發(fā)起機(jī)的工作溫度快速上升,燃?xì)鉁囟纫殉?1650 ℃。估計(jì)很快將到達(dá)1930℃。這樣高的溫度曾經(jīng)大大超越現(xiàn)有合金的極限工作溫度,因而,必需采用相應(yīng)的措施。
一方面,能夠向上面提到的一樣繼續(xù)研制新型高溫資料,提高高溫合金的耐熱性能;另一方面,采用先進(jìn)的冷卻技術(shù),如葉片冷卻氣膜設(shè)計(jì)及制造工藝的改良。在過去的50多年中,隔熱資料對(duì)提高發(fā)起機(jī)工作溫度曾經(jīng)做出了很大奉獻(xiàn)。但是在當(dāng)前運(yùn)用的發(fā)起機(jī)的工作溫度下,燃?xì)鉁囟纫殉芥嚮辖鸬娜埸c(diǎn),基體資料自身以及發(fā)起機(jī)構(gòu)造設(shè)計(jì)的改良使高溫合金以至單晶高溫合金簡(jiǎn)直已到達(dá)其耐熱極限,因而要想經(jīng)過合金資料大幅度提高熱端部件、特別是葉片的工作溫度曾經(jīng)極端艱難。70 年代先進(jìn)氣膜冷卻技術(shù)也由于高性能發(fā)起機(jī)的開展,發(fā)起機(jī)中可用冷氣流量越來越少,依托氣膜冷卻技術(shù)進(jìn)一步提高降溫效果已沒有太大的空間。在這種狀況下,為了滿足先進(jìn)航空發(fā)起機(jī)對(duì)資料更苛刻的性能請(qǐng)求,熱障涂層技術(shù)得到了普遍的應(yīng)用和開展。
熱障涂層是有導(dǎo)熱性較差的陶瓷氧化物和起粘性作用的底層組成的防熱系統(tǒng),能夠明顯降低基體溫度,具有硬度高、高化學(xué)穩(wěn)定性等優(yōu)點(diǎn),可以避免高溫腐蝕、延長(zhǎng)熱端部件的運(yùn)用壽命,提高發(fā)起機(jī)功率和減少燃油耗費(fèi)。
熱障涂層的制備技術(shù)主要有:常規(guī)等離子噴涂、高能等離子噴涂、低壓等離子噴涂、電子束物理氣相堆積等[6]。
目前,已獲實(shí)踐工程應(yīng)用的雙層構(gòu)造熱障涂層的資料體系主要由4個(gè)資料基元組成:高溫合金基體、陶瓷層、基體與涂層間的金屬粘結(jié)層及在陶瓷涂層與過渡層之間構(gòu)成的熱生長(zhǎng)氧化層(以氧化鋁為主要物質(zhì)成分)。其中,合金基體主要接受機(jī)械載荷;陶瓷涂層是隔熱資料;粘結(jié)層在涂層受熱和冷卻過程中能緩解基體與陶瓷層的熱不匹配。在熱循環(huán)載荷作用下,各資料基元間遵照動(dòng)力學(xué)原理互相作用,以動(dòng)態(tài)均衡方式控制整體資料的熱力學(xué)性能和運(yùn)用壽命。
8完畢語
在航空航天范疇,熱防護(hù)是重要研討課題之一,隨著新一代航天器的研發(fā),對(duì)熱防護(hù)提出了越來越高的請(qǐng)求。在研討傳統(tǒng)防熱資料的同時(shí),許多新型資料相繼被人們關(guān)注。上面提到的碳泡沫資料、多孔纖維陶瓷、陶瓷基復(fù)合資料、隔熱資料、輕質(zhì)燒蝕資料都是十分有前景的防熱資料,在將來的航空航天范疇中將繼續(xù)發(fā)揮越來越大的作用。同時(shí),冷卻和熱涂層技術(shù)也將會(huì)不時(shí)完善已面對(duì)新的請(qǐng)求。
航空航天論文 篇2
摘 要:航空航天工業(yè)中, 合金因強(qiáng)度大、易焊接等特點(diǎn)成為備受關(guān)注的工程材料。本文通過分析鈮合金、鋁鋰合金、鈦鋁合金、鎂合金在航空航天工程中的應(yīng)用, 揭示合金材料在該領(lǐng)域不可替代的作用, 同時(shí)指出合金存在的不足, 以及改進(jìn)的措施。同時(shí), 筆者認(rèn)為合金未來的發(fā)展方向是輕量化, 提出對(duì)現(xiàn)有合金進(jìn)行技術(shù)處理, 促進(jìn)合金的發(fā)展。
關(guān)鍵詞:航空航; 鈮合金; 鋁鋰合金; 鈦鋁合金; 鎂合金;
一、前言
近年來, 新興合金工業(yè)快速發(fā)展, 有力地推動(dòng)新興合金在航空航天工程的應(yīng)用。其中鈮合金、鋁鋰合金、鈦鋁合金、鎂合金等合金由于其優(yōu)異的性能被廣泛應(yīng)用于航空航天工程。本文就該四種合金在航空航天及相關(guān)領(lǐng)域的應(yīng)用進(jìn)行探討, 希望能對(duì)促進(jìn)合金性能的改進(jìn)及其應(yīng)用有幫助。
二、新型鈮合金
鈮元素位于元素周期表第五周期VB族。單質(zhì)鈮是灰白色金屬, 具有化學(xué)性質(zhì)穩(wěn)定、順磁性、熔點(diǎn)高、密度小的特點(diǎn)。高溫下與硫、碳等單質(zhì)可以直接化合, 能與鈦、鋯、鎢等金屬形成合金, 用于新型航空航天工程的材料。鈮合金分為高強(qiáng)度鈮合金和低密度鈮合金。
(一) 高強(qiáng)度鈮合金
以固溶強(qiáng)化、彌散強(qiáng)化為主。一般添加鎢、鉬、鉿及0.06%-0.12%的碳進(jìn)行固溶強(qiáng)化。固溶強(qiáng)化后的合金, 高溫強(qiáng)度比較高, 是用于航空航天工程的理想材料。但由于鈮單質(zhì)隨著雜質(zhì)含量的升高會(huì)變硬, 室溫可塑性較差 (斷后延展率≤10%) 。為此, 我們一般添加大量的鉿, 以及少量的碳制成WC3009鈮合金。另外, 我們可以采用彌散強(qiáng)化的方法解決該問題。彌散強(qiáng)化過程中, 一般加入5%-10%的鉬或鎢, 使得合金的塑性大大提升了, 斷后延伸率≥25%, 而且沒有喪失比強(qiáng)度高的特點(diǎn)。
(二) 低密度鈮合金
低密度鈮合金, 它的抗氧化性比高鈮含量 (質(zhì)量分?jǐn)?shù)Nb+W﹥80%) 的鈮合金要好, 能在550℃-800℃的大氣環(huán)境中不加任何抗氧化涂層而不被氧化。低密度鈮合金的制備方法很多, 如粉末冶金法、等離子熔煉法等。與其他方法相比, 粉末冶金法很容易得到合金材料, 成份十分均勻。隨著科技不斷發(fā)展, 3D打印技術(shù)不斷成熟, 用該技術(shù)制備復(fù)雜形狀的合金, 可以成為新的研究方向。
三、鋁鋰合金
鋰位于元素周期表第二周期ⅠA族, 是最輕的金屬, 在鋁中的溶解度比較高, 且鋰的比重小, 所以長(zhǎng)期以來它一直被認(rèn)為可以與鋁制成合金。據(jù)有關(guān)數(shù)據(jù)統(tǒng)計(jì), 在鋁合金中平均加1%的鋰, 可使其密度降低3%, 使其彈性模量提高6%, 所以鋁鋰合金在航空航天領(lǐng)域的作用不可小覷。
(一) 鋁鋰合金的發(fā)展
上個(gè)世紀(jì)50年代到60年代初, 第一代鋁鋰合金由美國(guó)Alcoa公司和蘇聯(lián)科學(xué)家開發(fā)出來。1958年, 美國(guó)Alcoa公司研制出2020合計(jì)板材, 用在海軍RA-5C軍用預(yù)警機(jī)上。20世紀(jì)70年代到80年代后期, 是鋁鋰合金發(fā)展的第二階段。70年代的能源危機(jī)迫使航空工業(yè)要對(duì)飛機(jī)材料進(jìn)行大刀闊斧的改良, 此階段研究出的第三代鋁鋰合金, 重量減輕了7%-10%, 彈性模量提高了10%-16%, 有良好的疲勞性能。第四代鋁鋰合金, 鋰合量有所降低, 與之前相比, 其合金強(qiáng)度韌性進(jìn)一步提升。2010年, 中國(guó)航空工業(yè)集團(tuán)采用美國(guó)達(dá)文波特軋制廠的新一代鋁鋰合金成功制造出C919國(guó)產(chǎn)大型客機(jī)的直部段。鋁鋰合金的不斷發(fā)展, 將導(dǎo)致我國(guó)鋁鋰合金的廣注應(yīng)用。
(二) 鋁鋰合金的超塑性研究及航空航天工程的應(yīng)用
鋁鋰合金密度小、比強(qiáng)度高、比彈性模量大, 廣泛應(yīng)用航空航天工程。但是, 室溫塑性差、易開裂、力學(xué)性能各向異性嚴(yán)重, 成為限制其發(fā)展的主要因素。經(jīng)過科研人員的不懈努力, 以形變熱處理技術(shù)形成的超塑性鋁合金誕生, 超塑性鋁合金的誕生, 標(biāo)志著航空航天工程迎來了新的曙光。例如, 在航空領(lǐng)域內(nèi), 麥道公司在1990年3月對(duì)由鋁鋰合金 (8090) 制造的F-15B鷹戰(zhàn)斗機(jī)的整流罩進(jìn)行試驗(yàn), 它可以替代由鑄件和鈑金件裝配成的構(gòu)件。超塑性鋁鋰合金技術(shù)在航空航天領(lǐng)域正在迅猛發(fā)展。
四、變形鈦鋁合金
鈦, 位于元素周期表第四周期IVB族, 具有強(qiáng)度大的優(yōu)點(diǎn)。與鋁制成的鈦鋁合金, 密度低、強(qiáng)度高、抗氧化能力好, 這些優(yōu)點(diǎn)使之成為有巨大前景的高溫結(jié)構(gòu)材料之一。鈦鋁合金經(jīng)過長(zhǎng)時(shí)間發(fā)展在國(guó)外已經(jīng)開始被工程化地應(yīng)用到航空航天領(lǐng)域。
(一) 合金化鈦鋁合金
目前, 鈦鋁合金化研究取得三類成果:γ-Ti Al合金、高鈮鈦鋁合金和β-γ鈦鋁合金。傳統(tǒng)的γ-Ti Al合金中, 鋁無疑是最重要的元素。但是研究發(fā)現(xiàn)鋁占45%-48%的鈦鋁合金在凝固時(shí), 發(fā)生包晶反應(yīng), 形成柱狀晶組織, 導(dǎo)致其室溫性能一般。為了防止包晶反應(yīng)的發(fā)生, 我們必須要將鋁的含量降至45%以下。鋁含量降低后, 在加工溫度條件下引入無序體心立方β相, 從而改善一合金的熱加工性。此外, 鈮可以提高合金使用溫度, 進(jìn)一步改善合金的高溫性能。
(二) 鈦鋁合金熱加工技術(shù)
合金熱加工, 可以校正偏析、細(xì)化組織、改善鈦鋁合金的綜合力學(xué)性能。其中, 熱加工技術(shù)分為含金鍛造技術(shù)、熱擠壓技術(shù)、軋制技術(shù)、粉末冶金技術(shù)等。合金熱加工技術(shù)的關(guān)鍵之處在于精確的工藝設(shè)計(jì)與參數(shù)。目前, 鈦鋁合金發(fā)展的限制因素在于其熱加工性差、窗口窄, 這樣一來, 對(duì)加工設(shè)備要求高。因此, 設(shè)計(jì)熱加工的計(jì)算機(jī)模擬可以成為完善熱加工技術(shù)的一個(gè)發(fā)展方向。
五、鎂合金
鎂, 位于元素周期表第三周期ⅡA族, 屬于堿土金屬元素。鎂合金尺寸穩(wěn)定、比強(qiáng)度高、易回收等優(yōu)秀特征, 被譽(yù)為“21世紀(jì)綠色工程材料”。
(一) 鎂合金成型新工藝
眾所周知, 航空航天工程對(duì)機(jī)件的復(fù)雜程度要求很高。為了滿足航空航天工程的需求, 鎂合金成型新工藝應(yīng)運(yùn)而生。其中包括涂層轉(zhuǎn)移精密鑄造技術(shù)、表面超聲波陽極氧化技術(shù)等新方法。
涂層轉(zhuǎn)移精密鑄造技術(shù)中, 砂芯的制備是關(guān)鍵。老式制備砂芯的方法是芯盒成型后, 在芯面上進(jìn)行涂料。傳統(tǒng)方法難以形成均勻的涂料層, 而涂料層的均勻度影響的是鑄件的光潔度與尺寸。新的工藝方法是, 運(yùn)用涂料自上充填的造型材料, 使涂層經(jīng)固化后, 自動(dòng)轉(zhuǎn)移到型芯表面, 該方法又稱“非占位式轉(zhuǎn)移涂料技術(shù)”。典型應(yīng)用就是鎂合金導(dǎo)樣殼體表面以及輪胎模具的制作。
(二) 鎂合金在航空航天工程的應(yīng)用與未來發(fā)展
鎂合金的自身優(yōu)異性能, 加上新技術(shù)的強(qiáng)化, 現(xiàn)已成為航空航天工業(yè)中不可或缺的材料。如, JDM2鎂合金經(jīng)常規(guī)等溫?zé)釘D壓技術(shù)處理后, 成功制備出輕型導(dǎo)彈的彈翼;JDM1鎂合金經(jīng)常規(guī)等溫?zé)釘D壓技術(shù)處理后, 可以制備出Φ145mm的無縫管道等等。我國(guó)是鎂合金資源大國(guó), 而且目前航空航天工業(yè)發(fā)展的態(tài)勢(shì)是“輕量化”, 所以我國(guó)更應(yīng)大力發(fā)展鎂科技, 在鎂資源優(yōu)勢(shì)基礎(chǔ)上, 讓技術(shù)處于世界領(lǐng)先水平, 才能在行業(yè)競(jìng)爭(zhēng)中獲得生機(jī)。
六、結(jié)論
在未來航空航天工業(yè)中, 輕量化必將成為發(fā)展的重要趨勢(shì), 合金正以它優(yōu)異的物理化學(xué)性能在航空航天領(lǐng)域中發(fā)揮著巨大的作用。如果能在合金優(yōu)異性能的基礎(chǔ)上, 使其輕量化, 將會(huì)引起合金在該領(lǐng)域更廣泛地應(yīng)用。目前, 合金的易被腐蝕、價(jià)格昂貴、制造成本高、可塑性等缺點(diǎn)有待進(jìn)一步提高。強(qiáng)化合金的結(jié)構(gòu)功能一體化, 不僅能增強(qiáng)其機(jī)械性能, 而且能賦予其所不具備的特性, 可以使其在航空航天生產(chǎn)領(lǐng)域的應(yīng)用價(jià)值提升。
參考文獻(xiàn)
[1]鄭欣, 白潤(rùn), 蔡曉梅, 等.新型鈮合金研究進(jìn)展[J].中國(guó)材料進(jìn)展, 2014, 33 (9) :586-594.
[2]丁文江,付彭懷, 彭立明, 等.先進(jìn)鎂合金材料及其在航空航天領(lǐng)域中的應(yīng)用[J].航天器環(huán)境工程, 2011, 28 (2) :103-109.
【關(guān)于航空航天論文】相關(guān)文章:
航空航天領(lǐng)域下的舞蹈編創(chuàng)分析論文02-15
南京航空航天大學(xué)排名11-16
China’s Flying Dream-航空航天04-05
關(guān)于論文的格式 -論文01-01
2021沈陽航空航天大學(xué)排名11-19
關(guān)于歷史小論文05-18