- 相關(guān)推薦
因式分解公式
因式分解公式 篇1
因式分解是第九章的重難點(diǎn),公式法是多項(xiàng)式因式中應(yīng)用最廣泛的方法之一,課本中主要介紹了平方差公式和完全平方公式,雖然應(yīng)用的公式只有平方差公式和完全平方公式,但要靈活應(yīng)用于解題卻不容易,所以我決定一個(gè)公式一節(jié)課。
在新課引入的過程中,我首先讓學(xué)生回憶了前面在整式的乘法中遇到的乘法公式,比如平方差公式、完全平方公式。接著就讓學(xué)生利用平方差公式做兩個(gè)整式乘法的運(yùn)算。然后,我巧妙的將剛才用平方差公式計(jì)算得出的兩個(gè)多項(xiàng)式作為因式分解的題目請學(xué)生嘗試一下。只見我的題目一出來,學(xué)生就爭先恐后地回答出來了。待學(xué)生回答完之后,我馬上追問“為什么”時(shí),學(xué)生輕而易舉地講出是將原來的平方差公式反過來運(yùn)用,馬上使學(xué)生形成了一種逆向的思維方式。之后,我就順利地和同學(xué)們一起分析了因式分解中的平方差公式——兩數(shù)的平方差等于這兩個(gè)數(shù)的和與這兩個(gè)數(shù)的差的積,討論了“怎樣的多項(xiàng)式能用平方差公式因式分解?”可以說,對新問題的引入,我是采取了由淺入深的方法,使學(xué)生對新知識不產(chǎn)生任何的畏懼感。接下來,通過例題的.講解、練習(xí)的鞏固讓學(xué)生逐步掌握了運(yùn)用平方差公式進(jìn)行因式分解。
本節(jié)課主要存在以下幾個(gè)問題:1靈活運(yùn)用公式(特別與冪的運(yùn)算性質(zhì)相結(jié)合的公式)的能力較差,如要將9(m+n)2-(m-n)2化成(3(m+n))2-(m-n)2然后應(yīng)用平方差公式這樣的題目卻無從下手。2因式分解沒有先想提公因式的習(xí)慣,在結(jié)果也沒有注意是否進(jìn)行到每一個(gè)多項(xiàng)式因式都不能再分解為止,比如最簡單的將a3-a提公因式后應(yīng)用平方差公式,但很多同學(xué)都是只化到a(a2-1)而沒有化到最后結(jié)果a(a+1)(a-1)。
因式分解公式 篇2
平方差公式:a2-b2=(a+b)(a-b)
、俟阶筮呅问缴鲜且粋(gè)二項(xiàng)式,且兩項(xiàng)的符號相反;
、诿恳豁(xiàng)都可以化成某個(gè)數(shù)或式的平方形式;
、塾疫吺沁@兩個(gè)數(shù)或式的和與它們差的積,相當(dāng)于兩個(gè)一次二項(xiàng)式的積。
完全平方公式:(a+b)2 =a2+2ab+b2
(a-b)2=a2-2ab+b2
①左邊相當(dāng)于一個(gè)二次三項(xiàng)式;
、谧筮吺啄﹥身(xiàng)符號相同且均能寫成某個(gè)數(shù)或式的完全平方式;
③左邊中間一項(xiàng)是這兩個(gè)數(shù)或式的積的'2倍,符號可正可負(fù);
、苡疫吺沁@兩個(gè)數(shù)或式的和(或差)的完全平方,其和或差由左邊中間一項(xiàng)的符號決定。
因式分解公式 篇3
a2-b2=(a+b)(a-b)
a2±2ab+b2=(a±b)2
a3+b3=(a+b)(a2-ab+b2)
a3-b3=(a-b)(a2+ab+b2)
a3±3a2b+3ab2±b2=(a±b)3
a2+b2+c2+2ab+2bc+2ac=(a+b+c)2
a12+a22+…+an2+2a1a2+…+2an-1an=(a1+a2+…+an)2
a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-ac-bc)
an+bn=(a+b)(an-1-an-2b+…+bn-1)(n為奇數(shù))
說明由因式定理,即對一元多項(xiàng)式f(x),若f(b)=0,則一定含有一次因式x-b?膳袛喈(dāng)n為偶數(shù)時(shí),當(dāng)a=b,a=-b時(shí),均有an-bn=0故an-bn中一定含有a+b,a-b因式。
例2分解因式:①64x6-y12②1+x+x2+…+x15
解析各小題均可套用公式
解①64x6-y12=(8x3-y6)(8x3+y6)
=(2x-y2)(4x2+2xy2+y4)(2x+y2)(4x2-2xy2+y4)
、1+x+x2+…+x15=
=(1+x)(1+x2)(1+x4)(1+x8)
注多項(xiàng)式分解時(shí),先構(gòu)造公式再分解。
因式分解公式 篇4
《公式法因式分解(第一課時(shí))》是北師大版八年級下冊第 四章第三節(jié)的內(nèi)容。聽完鄭老師的課,主要有以下亮點(diǎn):
亮點(diǎn)一、鄭老師用她特有的溫柔如水的聲音,親切的微笑,與學(xué)生課前交流“我的青春我做主,我們的課堂我們做主”,“老師喜歡在課堂上微笑的學(xué)生”,給學(xué)生提出課堂要求,給人一種如沐春風(fēng)的感覺。
亮點(diǎn)二、整節(jié)課設(shè)計(jì)合理,講解點(diǎn)撥細(xì)致,并善于給學(xué)生總結(jié)記憶規(guī)律,教給學(xué)生記憶的方法,且能及時(shí)評價(jià)鼓勵(lì)學(xué)生,“數(shù)學(xué)課堂上,你的.膽子有多大,你的收獲就有多少”,給學(xué)生學(xué)習(xí)的信心。
亮點(diǎn)三、習(xí)題設(shè)置開放,提高學(xué)生的學(xué)習(xí)興趣,拓展他們的思維,使學(xué)生從學(xué)習(xí)者——命題者——閱卷人,角色的變化,使所有學(xué)生都“動”了起來,課堂氣氛活躍。
亮點(diǎn)四、老師整節(jié)課站位合適,能夠走到學(xué)生之間,拉進(jìn)老師與學(xué)生的距離。
亮點(diǎn)五、教會學(xué)生學(xué)習(xí)數(shù)學(xué)的四個(gè)法寶:學(xué)會觀察——學(xué)會表達(dá)——學(xué)會用符號表示——學(xué)會思考,滲透數(shù)學(xué)思想,培養(yǎng)學(xué)生素養(yǎng)。
建議:
1. 學(xué)習(xí)目標(biāo)設(shè)置應(yīng)簡介直觀,有異議的不能出現(xiàn)。
2. 語言需在精煉,評價(jià)學(xué)生語言單調(diào)。
3. 開放習(xí)題的設(shè)置風(fēng)險(xiǎn)過大,不適合賽講。
4. 數(shù)學(xué)思想需滲透,數(shù)學(xué)方法要學(xué)生體會,而不是老師總結(jié)強(qiáng)加給學(xué)生。
因式分解公式 篇5
公式法進(jìn)行因式分解,雖然應(yīng)用的公式只是三條,但要靈活應(yīng)用于解題卻不容易。逆用平方差公式進(jìn)行因式分解相對來說還是稍微簡單些。
逆用平方差公式進(jìn)行因式分解關(guān)鍵還是要搞清平方差公式(a+b)(a-b)=a2-b2的結(jié)構(gòu)特點(diǎn):公式的左邊是這兩個(gè)二項(xiàng)式的積,且這兩個(gè)二項(xiàng)式有一項(xiàng)完全相同,另一項(xiàng)互為相反數(shù),公式的右邊是這兩項(xiàng)的平方差,且是左邊的相同的一項(xiàng)的平方減去互為相反數(shù)的一項(xiàng)的平方。
有了前邊學(xué)習(xí)平方差公式為基礎(chǔ),逆用平方差公式進(jìn)行因式分解只需要轉(zhuǎn)換思維即可。但對學(xué)生來說,還是相當(dāng)困難的。逆用平方差公式進(jìn)行因式分解的步驟可分三步:
1、寫成兩項(xiàng)平方、差的形式,即找到相當(dāng)于公式中a、b的項(xiàng)
2、按公式寫出兩項(xiàng)積的形式,即因式分解
3、兩項(xiàng)中能合并同類項(xiàng)的各自合并。
例題及練習(xí)的呈現(xiàn)次序盡量本著先易后難的螺旋上升原則。
1、a、b代表單獨(dú)的數(shù)字或字母,如:(1)m2-9(2)16-y2
2、a、b代表單獨(dú)的數(shù)字、字母或只含數(shù)字、字母的單項(xiàng)式,
如:(1)4b2-9c2(2)m2n2-25
3、a、b代表多項(xiàng)式,如:(1)(2a+b)2-(a-b)2
(2)-(a+b+c)2+(a-b-c)2
在此要有“整體思想”的意識,注意:+部分的底數(shù)作為一個(gè)整體相當(dāng)于a,-部分的'底數(shù)作為一個(gè)整體相當(dāng)于b,然后再套用公式。
盡管課前進(jìn)行了充分的準(zhǔn)備工作,但是學(xué)生作業(yè)中仍暴露出許多問題:
1、不會找a、b
2、思維僵化,對于與公式相同或者相似的式子而需要轉(zhuǎn)化的或者多種公式混合使用的式子難以入手,說明靈活運(yùn)用公式的能力較差,如要將9-25X2化成32-(5X)2然后應(yīng)用平方差公式這樣的題目卻無從下手
3、因式分解要養(yǎng)成先提公因式的習(xí)慣,結(jié)果要注意到是否進(jìn)行到每一個(gè)多項(xiàng)式因式都不能再分解為止,比如最簡單的將a3-a提公因式后應(yīng)用平方差公式,但很多同學(xué)都是只化到a(a2-1)而沒有化到最后結(jié)果a(a+1)(a-1)
因式分解是一個(gè)重要的內(nèi)容,也是難點(diǎn),要根據(jù)學(xué)生的接受能力,注意到計(jì)算題在練習(xí)方面的鞏固及題型的多樣化,相應(yīng)地對教材內(nèi)容及教學(xué)進(jìn)度做出調(diào)整。
因式分解公式 篇6
一、運(yùn)用平方差公式分解因式
教學(xué)目標(biāo)1、使學(xué)生了解運(yùn)用公式來分解因式的意義。
2、使學(xué)生理解平方差公式的意義,弄清平方差公式的形式和特點(diǎn);使學(xué)生知道把乘法公式反過來就可以得到相應(yīng)的因式分解。
3、掌握運(yùn)用平方差公式分解因式的方法,能正確運(yùn)用平方差公式把多項(xiàng)式分解因式(直接用公式不超過兩次)
重點(diǎn)運(yùn)用平方差公式分解因式
難點(diǎn)靈活運(yùn)用平方差公式分解因式
教學(xué)方法對比發(fā)現(xiàn)法課型新授課教具投影儀
教師活動學(xué)生活動
情景設(shè)置:
同學(xué)們,你能很快知道992-1是100的倍數(shù)嗎?你是怎么想出來的?
(學(xué)生或許還有其他不同的.解決方法,教師要給予充分的肯定)
新課講解:
從上面992-1=(99+1)(99-1),我們?nèi)菀卓闯?這種方法利用了我們剛學(xué)過的哪一個(gè)乘法公式?
首先我們來做下面兩題:(投影)
1.計(jì)算下列各式:
(1)(a+2)(a-2)=;
(2)(a+b)(a-b)=;
(3)(3a+2b)(3a-2b)=.
2.下面請你根據(jù)上面的算式填空:
(1)a2-4=;
(2)a2-b2=;
(3)9a2-4b2=;
請同學(xué)們對比以上兩題,你發(fā)現(xiàn)什么呢?
事實(shí)上,像上面第2題那樣,把一個(gè)多項(xiàng)式寫成幾個(gè)整式積的形式叫做多項(xiàng)式的因式分解。(投影)
比如:a2–16=a2–42=(a+4)(a–4)
例題1:把下列各式分解因式;(投影)
(1)36–25x2;(2)16a2–9b2;
(3)9(a+b)2–4(a–b)2.
(讓學(xué)生弄清平方差公式的形式和特點(diǎn)并會運(yùn)用)
例題2:如圖,求圓環(huán)形綠化區(qū)的面積
練習(xí):第87頁練一練第1、2、3題
小結(jié):
這節(jié)課你學(xué)到了什么知識,掌握什么方法?
教學(xué)素材:
A組題:
1.填空:81x2-=(9x+y)(9x-y);=
利用因式分解計(jì)算:=。
2、下列多項(xiàng)式中能用平方差公式分解因式的是()(A)(B)(C)(D)3.把下列各式分解因式
(1)1-16a2(2)9a2x2-b2y2
(3).49(a-b)2-16(a+b)2
B組題:
1分解因式81a4-b4=
2若a+b=1,a2+b2=1,則ab=;
3若26+28+2n是一個(gè)完全平方數(shù),則n=.
由學(xué)生自己先做(或互相討論),然后回答,若有答不全的,教師(或其他學(xué)生)補(bǔ)充.
學(xué)生回答1:
992-1=99×99-1=9801-1
=9800
學(xué)生回答2:992-1就是(99+1)(99-1)即100×98
學(xué)生回答:平方差公式
學(xué)生回答:
(1):a2-4
(2):a2-b2
(3):9a2-4b2
學(xué)生輕松口答
(a+2)(a-2)
(a+b)(a-b)
(3a+2b)(3a-2b)
學(xué)生回答:
把乘法公式
(a+b)(a-b)=a2-b2
反過來就得到
a2-b2=(a+b)(a-b)
學(xué)生上臺板演:
36–25x2=62–(5x)2
=(6+5x)(6–5x)
16a2–9b2=(4a)2–(3b)2
=(4a+3b)(4a–3b)
9(a+b)2–4(a–b)2
=[3(a+b)]2–[2(a–b)]2
=[3(a+b)+2(a–b)]
[3(a+b)–2(a–b)]
=(5a+b)(a+5b)
解:352π–152π
=π(352–152)
=(35+15)(35–15)π
=50×20π
=1000π(m2)
這個(gè)綠化區(qū)的面積是
1000πm2
學(xué)生歸納總結(jié)
因式分解公式 篇7
教學(xué)目標(biāo):運(yùn)用平方差公式和完全平方公式分解因式,能說出平方差公式和完全平方公式的特點(diǎn),會用提公因式法與公式法分解因式.培養(yǎng)學(xué)生的.觀察、聯(lián)想能力,進(jìn)一步了解換元的思想方法.并能說出提公因式在這類因式分解中的作用,能靈活應(yīng)用提公因式法、公式法分解因式以及因式分解的標(biāo)準(zhǔn).
教學(xué)重點(diǎn)和難點(diǎn):1.平方差公式;2.完全平方公式;3.靈活運(yùn)用3種方法.
教學(xué)過程:
一、提出問題,得到新知
觀察下列多項(xiàng)式:x24和y225
學(xué)生思考,教師總結(jié):
(1)它們有兩項(xiàng),且都是兩個(gè)數(shù)的平方差;(2)會聯(lián)想到平方差公式.
公式逆向:a2b2=(a+b)(ab)
如果多項(xiàng)式是兩數(shù)差的形式,并且這兩個(gè)數(shù)又都可以寫成平方的形式,那么這個(gè)多項(xiàng)式可以運(yùn)用平方差公式分解因式.
二、運(yùn)用公式
例1:填空
、4a2=()2②b2=()2③0.16a4=()2
、1.21a2b2=()2⑤2x4=()2⑥5x4y2=()2
解答:①4a2=(2a)2;②b2=(b)2③0.16a4=(0.4a2)2
④1.21a2b2=(1.1ab)2⑤2x4=(x2)2⑥5x4y2=(x2y)2
例2:下列多項(xiàng)式能否用平方差公式進(jìn)行因式分解
、1.21a2+0.01b2②4a2+625b2③16x549y4④4x236y2
解答:①1.21a2+0.01b2能用
、4a2+625b2不能用
、16x549y4不能用
④4x236y2不能用
因式分解公式 篇8
一、教材分析
1、教材的地位與作用
“整式的乘法”是整式的加減的后續(xù)學(xué)習(xí)從冪的運(yùn)算到各種整式的乘法,整章教材都突出了學(xué)生的自主探索過程,依據(jù)原有的知識基礎(chǔ),或運(yùn)用乘法的各種運(yùn)算規(guī)律,或借助直觀而又形象的圖形面積,得到各種運(yùn)算的基本法則、兩個(gè)主要的乘法公式及因式分解的基本方法學(xué)生自己對知識內(nèi)容的探索、認(rèn)識與體驗(yàn),完全有利于學(xué)生形成合理的知識結(jié)構(gòu),提高數(shù)學(xué)思維能力.利用公式法進(jìn)行因式分解時(shí),注意把握多項(xiàng)式的特點(diǎn),對比乘法公式乘積結(jié)果的形式,選擇正確的分解方法。
因式分解是一種常用的代數(shù)式的恒等變形,因式分解是多項(xiàng)式乘法公式的逆向變形,它是將一個(gè)多項(xiàng)式變形為多項(xiàng)式與多項(xiàng)式的'乘積。
2、教學(xué)目標(biāo)
。1)會推導(dǎo)乘法公式
。2)在應(yīng)用乘法公式進(jìn)行計(jì)算的基礎(chǔ)上,感受乘法公式的作用和價(jià)值。
。3)會用提公因式法、公式法進(jìn)行因式分解。
(4)了解因式分解的一般步驟。
。5)在因式分解中,經(jīng)歷觀察、探索和做出推斷的過程,提高分析問題和解決問題的能力。
3、重點(diǎn)、難點(diǎn)和關(guān)鍵
重點(diǎn):乘法公式的意義、分式的由來和正確運(yùn)用;用提公因式法和公式法進(jìn)行因式分解。
難點(diǎn):正確運(yùn)用乘法公式;正確分解因式。
關(guān)鍵:正確理解乘法公式和因式分解的意義。
二、本單元教學(xué)的方法和策略:
1.注重知識形成的探索過程,讓學(xué)生在探索過程中領(lǐng)悟知識,在領(lǐng)悟過程中建構(gòu)體系,從而更好地實(shí)現(xiàn)知識體系的更新和知識的正向遷移.
2.知識內(nèi)容的呈現(xiàn)方式力求與學(xué)生已有的知識結(jié)構(gòu)相聯(lián)系,同時(shí)兼顧學(xué)生的思維水平和心理特征.
3.讓學(xué)生掌握基本的數(shù)學(xué)事實(shí)與數(shù)學(xué)活動經(jīng)驗(yàn),減輕不必要的記憶負(fù)擔(dān).
4.注意從生活中選取素材,給學(xué)生提供一些交流、討論的空間,讓學(xué)生從中體會數(shù)學(xué)的應(yīng)用價(jià)值,逐步養(yǎng)成談數(shù)學(xué)、想數(shù)學(xué)、做數(shù)學(xué)的良好習(xí)慣.
三、課時(shí)安排:
2.1平方差公式 1課時(shí)
2.2完全平方公式 2課時(shí)
2.3用提公因式法進(jìn)行因式分解 1課時(shí)
2.4用公式法進(jìn)行因式分解 2課時(shí)
因式分解公式 篇9
因式分解的定義
把一個(gè)多項(xiàng)式在一個(gè)范圍化為幾個(gè)整式的積的形式,這種式子變形叫做這個(gè)多項(xiàng)式的因式分解,也叫作把這個(gè)多項(xiàng)式分解因式。
因式分解主要有十字相乘法,待定系數(shù)法,雙十字相乘法,對稱多項(xiàng)式,輪換對稱多項(xiàng)式法,余式定理法等方法,求根公因式分解沒有普遍適用的方法,初中數(shù)學(xué)教材中主要介紹了提公因式法、運(yùn)用公式法、分組分解法。而在競賽上,又有拆項(xiàng)和添減項(xiàng)法式法,換元法,長除法,短除法,除法等。
因式分解常用公式
1、平方差公式:a2—b2=(a+b)(a—b)。
2、完全平方公式:a2+2ab+b2=(a+b)2。
3、立方和公式:a3+b3=(a+b)(a2—ab+b2)。
4、立方差公式:a3—b3=(a—b)(a2+ab+b2)。
5、完全立方和公式:a3+3a2b+3ab2+b3=(a+b)3。
6、完全立方差公式:a3—3a2b+3ab2—b3=(a—b)3。
7、三項(xiàng)完全平方公式:a2+b2+c2+2ab+2bc+2ac=(a+b+c)2。
8、三項(xiàng)立方和公式:a3+b3+c3—3abc=(a+b+c)(a2+b2+c2—ab—bc—ac)。
拓展閱讀:因式分解方法
1、提公因式法
如果一個(gè)多項(xiàng)式的各項(xiàng)有公因式,可以把這個(gè)公因式提出來,從而將多項(xiàng)式化成兩個(gè)因式乘積的形式,這種分解因式的方法叫做提公因式法。
各項(xiàng)都含有的公共的因式叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式。公因式可以是單項(xiàng)式,也可以是多項(xiàng)式。
具體方法:在確定公因式前,應(yīng)從系數(shù)和因式兩個(gè)方面考慮。當(dāng)各項(xiàng)系數(shù)都是整數(shù)時(shí),公因式的系數(shù)應(yīng)取各項(xiàng)系數(shù)的最大公約數(shù)字母取各項(xiàng)的相同的字母,而且各字母的指數(shù)取次數(shù)最低的。當(dāng)各項(xiàng)的系數(shù)有分?jǐn)?shù)時(shí),公因式系數(shù)為各分?jǐn)?shù)的最大公約數(shù)。如果多項(xiàng)式的第一項(xiàng)為負(fù),要提出負(fù)號,使括號內(nèi)的第一項(xiàng)的系數(shù)成為正數(shù)。提出負(fù)號時(shí),多項(xiàng)式的各項(xiàng)都要變號。
基本步驟:
。1)找出公因式;
。2)提公因式并確定另一個(gè)因式;
、僬夜蚴娇砂凑沾_定公因式的方法先確定系數(shù)再確定字母;
②提公因式并確定另一個(gè)因式,注意要確定另一個(gè)因式,可用原多項(xiàng)式除以公因式,所得的商即是提公因 式后剩下的一個(gè)因式,也可用公因式分別除去原多項(xiàng)式的每一項(xiàng),求的剩下的另一個(gè)因式;
、厶嵬旯蚴胶,另一因式的項(xiàng)數(shù)與原多項(xiàng)式的項(xiàng)數(shù)相同。
口訣:找準(zhǔn)公因式,一次要提盡,全家都搬走,留1把家守,提負(fù)要變號,變形看奇偶。
2、公式法
如果把乘法公式的等號兩邊互換位置,就可以得到用于分解因式的'公式,用來把某些具有特殊形式的多項(xiàng)式分解因式,這種分解因式的方法叫做公式法。
3、十字相乘法
十字左邊相乘等于二次項(xiàng)系數(shù),右邊相乘等于常數(shù)項(xiàng),交叉相乘再相加等于一次項(xiàng)。
口訣:分二次項(xiàng),分常數(shù)項(xiàng),交叉相乘求和得一次項(xiàng)。(拆兩頭,湊中間)
。1)用十字相乘法分解二次項(xiàng),得到一個(gè)十字相乘圖(有兩列);
。2)把常數(shù)項(xiàng)f分解成兩個(gè)因式填在第三列上,要求第二、第三列構(gòu)成的十字交叉之積的和等于原式中的ey,第一、第三列構(gòu)成的十字交叉之積的和等于原式中的dx。
。3)先以一個(gè)字母的一次系數(shù)分?jǐn)?shù)常數(shù)項(xiàng);
。4)再按另一個(gè)字母的一次系數(shù)進(jìn)行檢驗(yàn);
。5)橫向相加,縱向相乘。
4、輪換對稱法
當(dāng)題目為一個(gè)輪換對稱式時(shí),可用輪換對稱法進(jìn)行分解。
5、分組分解法
通過分組分解的方式來分解提公因式法和公式分解法無法直接分解的因式,這種分解因式的方法叫做分組分解法。能分組分解的多項(xiàng)式有四項(xiàng)或大于四項(xiàng),一般的分組分解有兩種形式:二二分法,三一分法。
6、拆添項(xiàng)法
把多項(xiàng)式的某一項(xiàng)拆開或填補(bǔ)上互為相反數(shù)的兩項(xiàng)(或幾項(xiàng)),使原式適合于提公因式法、運(yùn)用公式法或分組分解法進(jìn)行分解,這種分解因式的方法叫做拆項(xiàng)補(bǔ)項(xiàng)法。要注意,必須在與原多項(xiàng)式相等的原則下進(jìn)行變形。
7、配方法
對于某些不能利用公式法的多項(xiàng)式,可以將其配成一個(gè)完全平方式,然后再利用平方差公式,就能將其因式分解,這種分解因式的方法叫做配方法。屬于拆項(xiàng)、補(bǔ)項(xiàng)法的一種特殊情況。也要注意必須在與原多項(xiàng)式相等的原則下進(jìn)行變形。
因式分解公式 篇10
王老師上課時(shí)通過學(xué)生自己的試算、觀察、發(fā)現(xiàn)、總結(jié)、歸納,得出用平方差公式進(jìn)行因式分解,這樣得出平方差公式后,并且把乘法公式進(jìn)行對比,通過例題、練習(xí)與小結(jié),教會學(xué)生如何正確應(yīng)用平方差公式.這里特別要求學(xué)生注意公式的結(jié)構(gòu),教師可以用對應(yīng)思想來加強(qiáng)對公式結(jié)構(gòu)的理解和訓(xùn)練。王老師放手讓學(xué)生探索,促進(jìn)學(xué)生主動發(fā)展的教學(xué)方法貫穿于這節(jié)課的始終。
從學(xué)生的練習(xí)情況來看,許多同學(xué)都掌握了這節(jié)課的知識,整個(gè)課堂中,以學(xué)生練為主,王老師能敢于創(chuàng)新、敢于探索, 整節(jié)課的學(xué)習(xí),教師始終是學(xué)生學(xué)習(xí)活動的組織者、指導(dǎo)者和合作者,而學(xué)生始終都是一個(gè)發(fā)現(xiàn)者、探索者,充分發(fā)揮他們的學(xué)習(xí)主體作用。這樣大大提高了這節(jié)課的效率。
教師講課語言簡捷、清晰,有較強(qiáng)的.表達(dá)和應(yīng)變能力,課堂教學(xué)基本功好。乘法公式的引入由兩種形式的引入,又形象直觀地理解了乘法公式的內(nèi)在實(shí)質(zhì)。做到以點(diǎn)撥為主的教學(xué)。對于公式的牲能嚴(yán)格要求學(xué)生理解,并能讓學(xué)生自己舉例符合公式形狀的例子,課堂內(nèi)的練習(xí)量、內(nèi)容及安排上恰當(dāng)好處,有基本運(yùn)用公式,有變式運(yùn)用公式,也有適當(dāng)?shù)募由顟?yīng)用,滿足了不同層次的學(xué)生的學(xué)習(xí)。效果是比較顯著的。
因式分解公式 篇11
學(xué)習(xí)目標(biāo)
1、 學(xué)會用公式法因式法分解
2、綜合運(yùn)用提取公式法、公式法分解因式
學(xué)習(xí)重難點(diǎn) 重點(diǎn):
完全平方公式分解因式.
難點(diǎn):綜合運(yùn)用兩種公式法因式分解
自學(xué)過程設(shè)計(jì)
完全平方公式:
完全平方公式的逆運(yùn)用:
做一做:
1.(1)16x2-8x+_______=(4x-1)2;
(2)_______+6x+9=(x+3)2;
(3)16x2+_______+9y2=(4x+3y)2;
(4)(a-b)2-2(a-b)+1=(______-1)2.
2.在代數(shù)式(1)a2+ab+b2;(2)4a2+4a+1;(3)a2-b2+2ab;(4)-4a2+12ab-9b2中,可用完全平方公式因式分解的是_________(填序號)
3.下列因式分解正確的是( )
A.x2+y2=(x+y)2 B.x2-xy+x2=(x-y)2
C.1+4x-4x2=(1-2x)2 D.4-4x+x2=(x-2)2
4.分解因式:(1)x2-22x+121 (2)-y2-14y-49 (3)(a+b)2+2(a+b)+1
5.計(jì)算:20062-40102006+20052=___________________.
6.若x+y=1,則 x2+xy+ y2的值是_________________.
想一想
你還有哪些地方不是很懂?請寫出來。
____________________________________________________________________________________ 預(yù)習(xí)展示一:
1.判別下列各式是不是完全平方式.
2、把下列各式因式分解:
(1)-x2+4xy-4y2
(2)3ax2+6axy+3ay2
(3)(2x+y)2-6(2x+y)+9
應(yīng)用探究:
1、用簡便方法計(jì)算
49.92+9.98 +0.12
拓展提高:
(1)( a2+b2)( a2+b2 10)+25=0 求a2+b2
(2)4x2+y2-4xy-12x+6y+9=0
求x、y關(guān)系
(3)分解因式:m4+4
教后反思 考察利用公式法因式分解的.題目不會很難,但是需要學(xué)生記住公式的形式,之后利用公式把式子進(jìn)行變形,從而達(dá)到進(jìn)行因式分解的目的,但是這里有用到實(shí)際中去的例子,對學(xué)生來說會難一些。
因式分解公式 篇12
王老師的《因式分解》這節(jié)課,他上的這節(jié)課每個(gè)環(huán)節(jié)層層遞進(jìn),落實(shí)有效,教學(xué)流程自然流暢,有獨(dú)創(chuàng)性。教學(xué)設(shè)計(jì)張弛有度,實(shí)施過程中有水到渠成的銜接美。教師教態(tài)大方,親和力強(qiáng),對學(xué)生啟發(fā)點(diǎn)撥到位,駕馭課堂的能力強(qiáng),整節(jié)課,學(xué)生在愉悅、寬松和諧的學(xué)習(xí)氛圍中,學(xué)得輕松,學(xué)得愉快。收到良好的教學(xué)效果。其中印象最深的環(huán)節(jié)有:
1. 新課引入十分好,但沒把握好進(jìn)一步解讀課題的機(jī)會。
2. 教師結(jié)構(gòu)設(shè)計(jì)的很好,教學(xué)過程中相當(dāng)自然。
3. 課堂小結(jié)很好,把因式分解(平方差公式)的特點(diǎn)進(jìn)行了全面的概括,但略顯課堂時(shí)間較緊。
4. 練習(xí)設(shè)計(jì)由易到難,層層遞進(jìn),若教師再講的少一點(diǎn),教學(xué)效果可能較 佳。
5. 作為一名實(shí)習(xí)教師,在原有的基礎(chǔ)上有很多進(jìn)步,課上得相當(dāng)不錯(cuò)。
6. 教師的.語言親和力強(qiáng),學(xué)生和教師配合默契,課堂氣氛高漲,但略顯教師講課過多。
7. 陳老師能根據(jù)我班級學(xué)生特點(diǎn),設(shè)計(jì)教學(xué)內(nèi)容,教學(xué)效果體現(xiàn)得更佳。
8. 教師在教學(xué)過程中缺少讓學(xué)生“感悟”的過程。
9. 教師教學(xué)語言規(guī)范,教態(tài)自然,對學(xué)生有親和力,教室互相到位,對學(xué)生的學(xué)習(xí)有一定的幫助。
10.能為學(xué)生提供大量數(shù)學(xué)活動的機(jī)會,讓學(xué)生成為課堂學(xué)習(xí)的主人。
通過這次評課,讓我在教材教法、課堂教學(xué)策略等方面受益匪淺,并希望課堂上一些新理念、策略充實(shí)以后教學(xué)實(shí)踐中。
因式分解公式 篇13
公式法進(jìn)行因式分解,除了逆用平方差公式之外,還有兩個(gè)相對來說較難的公式逆用即完全平方和(或差)公式:(a+b)2=a2+2ab+b2。
逆用完全平方公式進(jìn)行因式分解關(guān)鍵同樣是搞清完全平方公式的結(jié)構(gòu)特點(diǎn):等號左邊是一個(gè)二項(xiàng)式的平方,等號右邊是一個(gè)二次三項(xiàng)式,其中有兩項(xiàng)是公式左邊二項(xiàng)式中每一項(xiàng)的平方,另一項(xiàng)是左邊二項(xiàng)式中那兩項(xiàng)乘積的2倍;虻忍栍疫呌涀鳎菏灼椒,尾平方,2倍之積中間放。
有了前邊學(xué)習(xí)完全平方公式為基礎(chǔ),逆用完全平方公式進(jìn)行因式分解只需要“顛倒使用”即可:等號右邊作為“條件”,左邊作為“結(jié)果”,但對學(xué)生來說,還是相當(dāng)困難的'。
逆用完全平方公式進(jìn)行因式分解的步驟可分三步:
1、寫成“首平方,尾平方,2倍之積中間放”的形式
2、按公式寫出“兩項(xiàng)和的平方”的形式,即因式分解
3、兩項(xiàng)和中能合并同類項(xiàng)的合并。
例題及練習(xí)的呈現(xiàn)次序盡量本著先易后難、先單一后綜合的螺旋上升原則。
1、a、b代表單獨(dú)單項(xiàng)式,如:(1)m2-6m+9(2)4a2-4ab+b2
2、a、b代表多項(xiàng)式,如:(1)(a+2b)2-8a(a+2b)+16a2
。2)4(x+y)2+25-20(x+y)
在此要有“整體思想”的意識,注意:相同部分作為一個(gè)整體然后再套用公式。
3、先提取公因式,再用完全平方和(或差)公式如:
(1)ay2-2a2y+a3
。2)16xy2-9x2y-y2
4、先轉(zhuǎn)化一步,再用完全平方和(或差)公式,如:
。1)-m2+2mn-n2(2)3a2+6a+27
盡管課前進(jìn)行了充分的準(zhǔn)備工作,但是學(xué)生作業(yè)中仍暴露出許多問題,如部分學(xué)生直接感到無從下手。
因式分解公式 篇14
設(shè)計(jì)思路:
教師是學(xué)習(xí)活動的引導(dǎo)者和組織者,學(xué)生是課堂的主人。教師在教學(xué)中要充分體現(xiàn)教師的導(dǎo)向作用,尊重學(xué)生的個(gè)體差異,選擇適合自己的學(xué)習(xí)方式,鼓勵(lì)學(xué)生自主探索與合作交流,讓學(xué)生經(jīng)歷數(shù)學(xué)知識的形成與應(yīng)用過程,鼓勵(lì)學(xué)生的直覺并且運(yùn)用基本方法進(jìn)行相關(guān)的驗(yàn)證,指導(dǎo)學(xué)生注重?cái)?shù)學(xué)知識之間的聯(lián)系,不斷提高解決問題的能力。
教學(xué)過程:
師生問好,組織上課。
師:我們在初一第二學(xué)期就已經(jīng)學(xué)習(xí)了乘法完全平方公式,請一位同學(xué)用文字語言來描述一下這個(gè)公式的內(nèi)容?
生1:(答略)
師:你能用符號語言來表示這個(gè)公式嗎?
生1:(a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2
師:不錯(cuò),請坐。由此我們可以看出完全平方公式其實(shí)包含幾個(gè)公式?
生齊答:兩個(gè)。
師:接下來有兩道填空題,我們該怎么進(jìn)行填空?
a2+ +1=(a+1)2 4a2-4ab+ =(2a-b)2
生2:(答略)
師:你能否告訴大家,你是根據(jù)什么來進(jìn)行填空的嗎?
生2:根據(jù)完全平方公式,將等號右邊的展開。
師:很好。(將四個(gè)式子分別標(biāo)上○1○2○3○4)
問題:○1、○2兩個(gè)式子由左往右是什么變形?
○3、○4兩個(gè)式子由左往右是什么變形?
生3:(答略)
師:剛才的○1和○2是我們以前學(xué)過的完全平方公式,那么將這兩個(gè)公式反過來就有:
a2+2ab+b2=(a+b)2 a2-2ab+b2=(a-b)2 (板書)
問題:這兩個(gè)式子由左到右的變形又是什么呢?
生齊答:因式分解。
師:可以看出,我們已將左邊多項(xiàng)式寫成完全平方的形式,即將左邊的多項(xiàng)式分解因式了。
這兩個(gè)公式我們也將它們稱之為完全平方公式,也是我們今天來共同學(xué)習(xí)的知識(板書課題)
師:既然這兩個(gè)是公式,那么我們以后遇到形如這種類型的多項(xiàng)式可以直接運(yùn)用這個(gè)公式進(jìn)行分解。這個(gè)公式到底有哪些特征呢?請同學(xué)們仔細(xì)觀察思考一下,同座的或前后的同學(xué)可以討論一下。
。ń(jīng)過討論之后)
生4:左邊是三項(xiàng),右邊是完全平方的形式。
生5:左邊有兩項(xiàng)能夠?qū)懗善椒胶偷男问健?/p>
師:說得很好,其他同學(xué)有沒有補(bǔ)充的?
生6:還有一項(xiàng)是兩個(gè)數(shù)的乘積的2倍。
師:這“兩個(gè)數(shù)的乘積”中“兩個(gè)數(shù)”是不是任意的?
生6:不是,而是剛才兩項(xiàng)的底數(shù)。
師:剛才三位同學(xué)都回答得不錯(cuò),每人都找出了一些特征。再請一位同學(xué)來綜合一下。
生7:左邊的多項(xiàng)式要有三項(xiàng),有兩項(xiàng)是平方和的形式,還有一項(xiàng)是這兩個(gè)數(shù)的積的2倍。右邊是兩個(gè)數(shù)的和或差的平方。
教師在學(xué)生回答的基礎(chǔ)上總結(jié):
1)多項(xiàng)式是三項(xiàng)式
2)有兩項(xiàng)都為正且能夠?qū)懗善椒降男问?/p>
3)另一項(xiàng)是剛才寫成平方項(xiàng)兩底數(shù)乘積的2倍,但這一項(xiàng)可以是正,也可以是負(fù)
4)等號右邊為兩平方項(xiàng)底數(shù)和或差的平方。
師:我們?nèi)绾螌⒎栒Z言轉(zhuǎn)化為文字語言呢?
生8:a、b兩個(gè)數(shù)的平方和加上a、b乘積的2倍,等于a與b的和的平方;
a、b兩個(gè)數(shù)的平方和減去a、b乘積的2倍,等于a與b的差的平方。
師:如果不用字母a、b,又怎么表達(dá)?能否將兩句合并成一句呢?
生9:兩個(gè)數(shù)的平方和加上或減去這兩個(gè)數(shù)的乘積的2倍,等于這兩個(gè)數(shù)的和或差的平方。
師:非常好!我們以后只要遇到這種類型的多項(xiàng)式可以直接利用完全平方公式方便地進(jìn)行因式分解了。
通過剛才的學(xué)習(xí),我們已經(jīng)初步掌握了利用完全平方公式分解因式的有關(guān)知識,下面有幾道練習(xí)題向我們同學(xué)提出了挑戰(zhàn),看你掌握知識的情況:
判斷下列各式是不是完全平方式,并說出理由。
。1)a2-4a+4 (2 )x2+4x+4y2 (3 )4a2+2ab+ b2
(4 )a2-ab+b2 (5 )x2-6x-9 (6 )a2+a+0.25
生10:第一題是完全平方式。有三項(xiàng),其中有兩項(xiàng)正且能寫成平方的形式,另一項(xiàng)是減去這兩個(gè)數(shù)的積的2倍。
…… ……
生11:第四題不是完全平方式,因?yàn)橹虚g一項(xiàng)不是兩個(gè)數(shù)的乘積的2倍。
生12:第五題是完全平方式。三項(xiàng),有兩項(xiàng)能寫成平方的形式,另一項(xiàng)也是兩個(gè)數(shù)的積的2倍。
師:其它同學(xué)同意他的意見嗎?有沒有補(bǔ)充的?
生13:這一題不是完全平方式,雖然有兩部分能寫成平方的形式,但這兩項(xiàng)不是平方和。
師:同意他的意見嗎?
生齊答:同意。
師:因此我們在觀察一個(gè)多項(xiàng)式是否符合完全平方式的特點(diǎn)時(shí),不僅要找有沒有兩項(xiàng)能夠?qū)懗善椒降男问,同時(shí)還要看這兩項(xiàng)的符號是否同為正,更要看另一項(xiàng)是不是這兩數(shù)的積的2倍。像剛才的第2題和第4題都只滿足特征中的.一部分。
引例講解:將下列各式分解因式。
1、x2+6x+9 2、4x2-20x+25
問題:這兩題首先怎么分析?
生14:將9改寫成32,6x正好是x與3的乘積的2倍。(學(xué)生回答,教師板書)
生15:將4x2寫成(2x)2,25寫成52,20x寫成2×2x×5
x2+6x+9=x2+2×x×3+32=(x+3)2
4x2-20x+25=(2x)2-2×2x×5+52=(2x-5)2
(聯(lián)系字母表達(dá)式用箭頭對應(yīng)表示,加深學(xué)生印象。)
師:由剛才的例子,我們同學(xué)能否發(fā)現(xiàn)將因式分解為兩數(shù)的和或差的平方,如何確定是兩數(shù)的和還是兩數(shù)的差的平方呢?
生16:由符號來決定。
師:能不能具體點(diǎn)。
生16:由中間一項(xiàng)的符號決定,就是兩個(gè)數(shù)乘積2倍這項(xiàng)的符號決定,是正,就是兩個(gè)數(shù)的和;是負(fù),就是兩個(gè)數(shù)的差。
師:總之,在分解完全平方式時(shí),要根據(jù)第二項(xiàng)的符號來選擇運(yùn)用哪一個(gè)完全平方公式。
例題1:把25x4+10x2+1分解因式。
師:這道題目能否運(yùn)用以前所學(xué)的方法分解?就題目本身有什么特點(diǎn)?可以怎么分解?
生17:題目符合完全平方式的特點(diǎn),可以將25x4改寫成(5x2)2,1就是12,10x2改寫成2×5x2×1。(此學(xué)生板演,過程略)
例題2:把-x2-4y2+4xy分解因式。
師:按照常規(guī)我們首先怎么辦?
生齊答:提取負(fù)號!步處煱鍟海▁2+4y2-4xy) 〕以下過程學(xué)生板演。
師:如果是這道題:4xy-x2-4y2 怎么分解呢?(教師改變剛才題型)
提示:從項(xiàng)的特征進(jìn)行考慮,怎樣轉(zhuǎn)化比較合理?四人小組討論。
生18:同樣還是將負(fù)號提取改變成完全平方式的形式。
師:從這里我們可以發(fā)現(xiàn),只要三項(xiàng)式中能改寫成平方的兩項(xiàng)是同號,且另一項(xiàng)為兩底數(shù)積的2倍,我們都能利用這個(gè)公式分解,若這兩項(xiàng)同為正則可直接分解,若同為負(fù)則先提取負(fù)號再分解。
練習(xí)題:課本p21 練習(xí):第1題,學(xué)生板演,教師講解,學(xué)生板演的同時(shí),教師提示注意點(diǎn)、多項(xiàng)式
【因式分解公式】相關(guān)文章:
數(shù)列公式大全03-12
高二物理公式【經(jīng)典】03-02
數(shù)列公式大全【優(yōu)秀】03-12
高二物理公式03-02
高三數(shù)學(xué)公式03-09
數(shù)學(xué)計(jì)算公式大全(薦)03-12
數(shù)列公式大全匯總【15篇】03-12
數(shù)列公式大全(匯總15篇)03-12