- 相關(guān)推薦
最新高二數(shù)學(xué)導(dǎo)數(shù)知識(shí)要點(diǎn)歸納
在我們平凡無奇的學(xué)生時(shí)代,大家都背過各種知識(shí)要點(diǎn)吧?知識(shí)要點(diǎn)是傳遞信息的基本單位,知識(shí)要點(diǎn)對(duì)提高學(xué)習(xí)導(dǎo)航具有重要的作用。哪些才是我們真正需要的知識(shí)要點(diǎn)呢?下面是小編幫大家整理的最新高二數(shù)學(xué)導(dǎo)數(shù)知識(shí)要點(diǎn)歸納,歡迎大家分享。
最新高二數(shù)學(xué)導(dǎo)數(shù)知識(shí)要點(diǎn)歸納1
廣大同學(xué)要想順利通過高考,接受更好的高等教育,就要做好考試前的復(fù)習(xí)準(zhǔn)備。小編為大家整理了高二數(shù)學(xué)導(dǎo)數(shù)知識(shí)點(diǎn)歸納,希望對(duì)大家有所幫助。
導(dǎo)數(shù): 導(dǎo)數(shù)的意義-導(dǎo)數(shù)公式-導(dǎo)數(shù)應(yīng)用(極值最值問題、曲線切線問題)
1、導(dǎo)數(shù)的定義: 在點(diǎn) 處的導(dǎo)數(shù)記作 .
2. 導(dǎo)數(shù)的幾何物理意義:曲線 在點(diǎn) 處切線的斜率
、賙=f/(x0)表示過曲線y=f(x)上P(x0,f(x0))切線斜率。V=s/(t) 表示即時(shí)速度。a=v/(t) 表示加速度。
3.常見函數(shù)的導(dǎo)數(shù)公式: ① ;② ;③ ;
、 ;⑥ ;⑦ ;⑧ 。
4.導(dǎo)數(shù)的四則運(yùn)算法則:
5.導(dǎo)數(shù)的應(yīng)用:
(1)利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性:設(shè)函數(shù) 在某個(gè)區(qū)間內(nèi)可導(dǎo),如果 ,那么 為增函數(shù);如果 ,那么為減函數(shù);
注意:如果已知 為減函數(shù)求字母取值范圍,那么不等式 恒成立。
(2)求極值的步驟:
、偾髮(dǎo)數(shù) ;
②求方程 的.根;
、哿斜恚簷z驗(yàn) 在方程 根的左右的符號(hào),如果左正右負(fù),那么函數(shù) 在這個(gè)根處取得極大值;如果左負(fù)右正,那么函數(shù) 在這個(gè)根處取得極小值;
(3)求可導(dǎo)函數(shù)最大值與最小值的步驟:
、∏ 的根; ⅱ把根與區(qū)間端點(diǎn)函數(shù)值比較,最大的為最大值,最小的是最小值。
以上就是高二數(shù)學(xué)導(dǎo)數(shù)知識(shí)點(diǎn)歸納,以供同學(xué)們參考。
最新高二數(shù)學(xué)導(dǎo)數(shù)知識(shí)要點(diǎn)歸納2
一、早期導(dǎo)數(shù)概念————特殊的形式大約在1629年法國數(shù)學(xué)家費(fèi)馬研究了作曲線的切線和求函數(shù)極值的方法1637年左右他寫一篇手稿《求最大值與最小值的方法》。在作切線時(shí)他構(gòu)造了差分f(A+E)—f(A),發(fā)現(xiàn)的因子E就是我們所說的導(dǎo)數(shù)f(A)。
二、17世紀(jì)————廣泛使用的“流數(shù)術(shù)”17世紀(jì)生產(chǎn)力的發(fā)展推動(dòng)了自然科學(xué)和技術(shù)的發(fā)展在前人創(chuàng)造性研究的基礎(chǔ)上大數(shù)學(xué)家牛頓、萊布尼茨等從不同的角度開始系統(tǒng)地研究微積分。牛頓的微積分理論被稱為“流數(shù)術(shù)”他稱變量為流量稱變量的.變化率為流數(shù)相當(dāng)于我們所說的導(dǎo)數(shù)。牛頓的有關(guān)“流數(shù)術(shù)”的主要著作是《求曲邊形面積》、《運(yùn)用無窮多項(xiàng)方程的計(jì)算法》和《流數(shù)術(shù)和無窮級(jí)數(shù)》流數(shù)理論的實(shí)質(zhì)概括為他的重點(diǎn)在于一個(gè)變量的函數(shù)而不在于多變量的方程在于自變量的變化與函數(shù)的變化的比的構(gòu)成最在于決定這個(gè)比當(dāng)變化趨于零時(shí)的極限。
三、19世紀(jì)導(dǎo)數(shù)————逐漸成熟的理論1750年達(dá)朗貝爾在為法國科學(xué)家院出版的《百科全書》第五版寫的“微分”條目中提出了關(guān)于導(dǎo)數(shù)的一種觀點(diǎn)可以用現(xiàn)代符號(hào)簡單表示{dy/dx)=lim(oy/ox)。1823年柯西在他的《無窮小分析概論》中定義導(dǎo)數(shù)如果函數(shù)y=f(x)在變量x的兩個(gè)給定的界限之間保持連續(xù)并且我們?yōu)檫@樣的變量指定一個(gè)包含在這兩個(gè)不同界限之間的值那么是使變量得到一個(gè)無窮小增量。19世紀(jì)60年代以后魏爾斯特拉斯創(chuàng)造了ε—δ語言對(duì)微積分中出現(xiàn)的各種類型的極限重加表達(dá)導(dǎo)數(shù)的定義也就獲得了今天常見的形式。
四、實(shí)無限將異軍突起微積分第二輪初等化或成為可能微積分學(xué)理論基礎(chǔ)大體可以分為兩個(gè)部分。一個(gè)是實(shí)無限理論即無限是一個(gè)具體的東西一種真實(shí)的存在另一種是潛無限指一種意識(shí)形態(tài)上的過程比如無限接近。就歷史來看兩種理論都有一定的道理。其中實(shí)無限用了150年后來極限論就是現(xiàn)在所使用的。光是電磁波還是粒子是一個(gè)物理學(xué)長期爭論的問題后來由波粒二象性來統(tǒng)一。微積分無論是用現(xiàn)代極限論還是150年前的理論都不是最好的手段。
最新高二數(shù)學(xué)導(dǎo)數(shù)知識(shí)要點(diǎn)歸納3
1、求函數(shù)的單調(diào)性:
利用導(dǎo)數(shù)求函數(shù)單調(diào)性的基本方法:設(shè)函數(shù)yf(x)在區(qū)間(a,b)內(nèi)可導(dǎo),(1)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為增函數(shù);(2)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為減函數(shù);(3)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為常數(shù)函數(shù)。
利用導(dǎo)數(shù)求函數(shù)單調(diào)性的基本步驟:①求函數(shù)yf(x)的定義域;②求導(dǎo)數(shù)f(x);③解不等式f(x)0,解集在定義域內(nèi)的不間斷區(qū)間為增區(qū)間;④解不等式f(x)0,解集在定義域內(nèi)的不間斷區(qū)間為減區(qū)間。
反過來,也可以利用導(dǎo)數(shù)由函數(shù)的單調(diào)性解決相關(guān)問題(如確定參數(shù)的取值范圍):設(shè)函數(shù)yf(x)在區(qū)間(a,b)內(nèi)可導(dǎo),
(1)如果函數(shù)yf(x)在區(qū)間(a,b)上為增函數(shù),則f(x)0(其中使f(x)0的x值不構(gòu)成區(qū)間);
。2)如果函數(shù)yf(x)在區(qū)間(a,b)上為減函數(shù),則f(x)0(其中使f(x)0的x值不構(gòu)成區(qū)間);
(3)如果函數(shù)yf(x)在區(qū)間(a,b)上為常數(shù)函數(shù),則f(x)0恒成立。
2、求函數(shù)的極值:
設(shè)函數(shù)yf(x)在x0及其附近有定義,如果對(duì)x0附近的所有的點(diǎn)都有f(x)f(x0)(或f(x)f(x0)),則稱f(x0)是函數(shù)f(x)的極小值(或極大值)。
可導(dǎo)函數(shù)的極值,可通過研究函數(shù)的單調(diào)性求得,基本步驟是:
。1)確定函數(shù)f(x)的定義域;
。2)求導(dǎo)數(shù)f(x);
。3)求方程f(x)0的全部實(shí)根,x1x2xn,順次將定義域分成若干個(gè)小區(qū)間,并列表:x變化時(shí),f(x)和f(x)值的變化情況:
。4)檢查f(x)的符號(hào)并由表格判斷極值。
3、求函數(shù)的最大值與最小值:
如果函數(shù)f(x)在定義域I內(nèi)存在x0,使得對(duì)任意的xI,總有f(x)f(x0),則稱f(x0)為函數(shù)在定義域上的最大值。函數(shù)在定義域內(nèi)的極值不一定唯一,但在定義域內(nèi)的最值是唯一的。
求函數(shù)f(x)在區(qū)間[a,b]上的最大值和最小值的步驟:(1)求f(x)在區(qū)間(a,b)上的極值;
(2)將第一步中求得的極值與f(a),f(b)比較,得到f(x)在區(qū)間[a,b]上的最大值與最小值。
4、解決不等式的有關(guān)問題:
。1)不等式恒成立問題(絕對(duì)不等式問題)可考慮值域。
f(x)(xA)的`值域是[a,b]時(shí),
不等式f(x)0恒成立的充要條件是f(x)max0,即b0;
不等式f(x)0恒成立的充要條件是f(x)min0,即a0。
f(x)(xA)的值域是(a,b)時(shí),
不等式f(x)0恒成立的充要條件是b0;不等式f(x)0恒成立的充要條件是a0。
(2)證明不等式f(x)0可轉(zhuǎn)化為證明f(x)max0,或利用函數(shù)f(x)的單調(diào)性,轉(zhuǎn)化為證明f(x)f(x0)0。
5、導(dǎo)數(shù)在實(shí)際生活中的應(yīng)用:
實(shí)際生活求解最大(。┲祮栴},通常都可轉(zhuǎn)化為函數(shù)的最值。在利用導(dǎo)數(shù)來求函數(shù)最值時(shí),一定要注意,極值點(diǎn)唯一的單峰函數(shù),極值點(diǎn)就是最值點(diǎn),在解題時(shí)要加以說明。
【最新高二數(shù)學(xué)導(dǎo)數(shù)知識(shí)要點(diǎn)歸納】相關(guān)文章:
高二化學(xué)知識(shí)點(diǎn)歸納最新03-07
最新高二化學(xué)知識(shí)點(diǎn)歸納03-04
高二語文知識(shí)點(diǎn)歸納03-04
高二化學(xué)知識(shí)點(diǎn)歸納03-03
高二最新化學(xué)必考知識(shí)點(diǎn)歸納梳理大全03-03
最新高二化學(xué)知識(shí)點(diǎn)歸納(必備9篇)03-04
高二化學(xué)知識(shí)點(diǎn)歸納大全03-04