一级毛片免费不卡在线视频,国产日批视频免费在线观看,菠萝菠萝蜜在线视频免费视频,欧美日韩亚洲无线码在线观看,久久精品这里精品,国产成人综合手机在线播放,色噜噜狠狠狠综合曰曰曰,琪琪视频

奧數(shù)杯賽試題揭秘-數(shù)論

時間:2024-10-17 09:05:10 詩琳 教育 我要投稿
  • 相關推薦

奧數(shù)杯賽試題揭秘-數(shù)論

  在學習、工作生活中,我們都離不開試題,借助試題可以更好地考核參考者的知識才能。大家知道什么樣的試題才是好試題嗎?下面是小編精心整理的奧數(shù)杯賽試題揭秘-數(shù)論,僅供參考,歡迎大家閱讀。

奧數(shù)杯賽試題揭秘-數(shù)論

  奧數(shù)杯賽試題揭秘-數(shù)論 1

  例1.在四位數(shù)56□2中,被蓋住的十位數(shù)分別等于幾時,這個四位數(shù)分別能被9,8,4整除?

  解:如果56□2能被9整除,那么

  5+6+□+2=13+□

  應能被9整除,所以當十位數(shù)是5,即四位數(shù)是5652時能被9整除;

  如果56□2能被8整除,那么6□2應能被8整除,所以當十位數(shù)是3或7,即四位數(shù)是5632或5672時能被8整除;

  如果56□2能被4整除,那么□2應能被4整除,所以當十位數(shù)是1,3,5,7,9,即四位數(shù)是5612,5632,5652,5672,5692時能被4整除。

  到現(xiàn)在為止,我們已經(jīng)學過能被2,3,5,4,8,9整除的數(shù)的特征。根據(jù)整除的`性質3,我們可以把判斷整除的范圍進一步擴大。例如,判斷一個數(shù)能否被6整除,因為6=2×3,2與3互質,所以如果這個數(shù)既能被2整除又能被3整除,那么根據(jù)整除的性質3,可判定這個數(shù)能被6整除。同理,判斷一個數(shù)能否被12整除,只需判斷這個數(shù)能否同時被3和4整除;判斷一個數(shù)能否被72整除,只需判斷這個數(shù)能否同時被8和9整除;如此等等。

  奧數(shù)杯賽試題揭秘-數(shù)論 2

  奧數(shù)是一種理性的精神,使人類的思維得以運用到最完善的程度.讓我們一起來閱讀數(shù)論奧數(shù)練習:整數(shù)拆分9,感受奧數(shù)的奇異世界!

  一道簡單的問題是:用1、+、×、()的運算來分別表示23和27,哪個數(shù)用的1較少?要表達2008,最少要用多少個1?

  我們先給出從1到15的表達式。

  1=1,

  2=1+1,

  3=1+1+1,

  4=(1+1)×(1+1),

  5=(1+1)×(1+1)+1,

  6=(1+1)×(1+1+1),

  7=(1+1)×(1+1+1)+1,

  8=(1+1)×(1+1)×(1+1),

  9=(1+1+1)×(1+1+1),

  10=(1+1)×((1+1)×(1+1)+1),

  11=(1+1)×((1+1)×(1+1)+1)+1,

  12=(1+1+1)×(1+1)×(1+1),

  13=(1+1+1)×(1+1)×(1+1)+1,

  14=(1+1)×((1+1)×(1+1+1)+1),

  15=(1+1+1)×((1+1)×(1+1)+1)。

  把用1的'個數(shù)寫成數(shù)列,就是{1,2,3,4,5,5,6,6,6,7,8,7,8,8,8,...}。

  對于23,

  23=(1+1)×((1+1)×((1+1)×(1+1)+1)+1)+1,

  1的個數(shù)為11。

  對于27,

  27=(1+1+1)×(1+1+1)×(1+1+1)

  1的個數(shù)為9。

  對于2008這樣的大數(shù),要尋找表達式很困難。

  我找到的表達式是

  (((1+1)×(1+1)×(1+1+1)×(1+1+1)+1)×(1+1)×(1+1+1)+1)×(1+1+1)×(1+1+1)+1=2008

  一共用了24個1,但是不是用了最少的1,證明起來有一定難度。

【奧數(shù)杯賽試題揭秘-數(shù)論】相關文章:

奧數(shù)杯賽試題揭秘-幾何05-07

奧數(shù)杯賽試題揭秘-行程05-07

奧數(shù)杯賽試題揭秘-應用題05-07

奧數(shù)杯賽試題揭秘-計算題05-07

華杯賽數(shù)論問題知識點06-12

奧數(shù)的作文09-28

走進奧數(shù)04-28

杯賽的意思, 杯賽的解釋04-30

奧數(shù)太難了02-19