- 相關(guān)推薦
如何證明線面垂直
如何證明線面垂直∵PA⊥平面α,直線L∈平面α
∴PA⊥L========================①
∵PB⊥平面β,直線L∈平面β
∴PB⊥L========================②
綜合①②得:
直線L⊥平面PAB(垂直于平面兩條相交直線的直線垂直于這個平面)
∴L⊥AB(垂直于平面的直線垂直于平面內(nèi)的任一直線)
線面垂直的判定定理證明,我一直覺得證明過程太過復(fù)雜。前年曾經(jīng)這樣證明,今天寫在這里。m和n為平面中兩條相交直線,通過平移或者說原本就在,使得l經(jīng)過m、n的交點O,我們只需證明l垂直與平面中的任意一條直線g 即可!在m、n上分別以O(shè)點為中點截取AC、BD,則得到平行四邊形ABCD。此時不難由三角形全等的知識得到l⊥g。
答案補充
證明:已知直線L1 L22相交于O點且都與直線L垂直,L3是L1 L2所在平面內(nèi)任意1條不與L1 L2重合或平行的直線(重合或平行直接可得它與L1平行) 在L3上取E、F令OE=OF, 分別過E、F作ED、FB交L2于D、B (令OD=OB)則⊿OED ≌⊿ OFB (SAS) 延長DE、BF分別交L1于A、C 則⊿OEA≌⊿OFC(ASA)(注意角AEO與角CFO的補角相等所以它們相等)。 所以O(shè)A=OC,所以⊿OAD≌⊿OBC(SAS)所以AD=CB 因為L3垂直于L1 L2所以MA=MC,MD=MB 所以⊿MAD≌⊿MCD(SSS)所以 角MAE= 角MCF 所以⊿MAE≌⊿MCF(SAS) 所以ME=MF,所以⊿MOE≌⊿MOF(SSS),所以角MOE=角MOF 又因為 角MOE與 角MOF互補,所以角MOE=角MOF=90度,即L⊥L3
1利用直角三角形中兩銳角互余證明
由直角三角形的定義與三角形的內(nèi)角和定理可知直角三角形的兩個銳角和等于90° ,即直角三角形的兩個銳角互余。
2勾股定理逆定理
3圓周角定理的推論:直徑所對的圓周角是直角,一個三角形的一邊中線等于這邊的一半,則這個三角形是直角三角形。
二、高中部分
線線垂直分為共面與不共面。不共面時,兩直線經(jīng)過平移后相交成直角,則稱兩條直線互相垂直。
1向量法 兩條直線的方向向量數(shù)量積為0
2斜率 兩條直線斜率積為-1
3線面垂直,則這條直線垂直于該平面內(nèi)的所有直線
一條直線垂直于三角形的兩邊,那么它也垂直于另外一邊
4三垂線定理 在平面內(nèi)的一條直線,如果和穿過這個平面的一條斜線在這個平面內(nèi)的射影垂直,那么它也和這條斜線垂直。
5三垂線定理逆定理 如果平面內(nèi)一條直線和平面的一條斜線垂直,那么這條直線也垂直于這條斜線在平面內(nèi)的射影。
2高中立體幾何的.證明主要是平行關(guān)系與垂直關(guān)系的證明。方法如下(難以建立坐標系時再考慮):
Ⅰ.平行關(guān)系:
線線平行:1.在同一平面內(nèi)無公共點的兩條直線平行。2.公理4(平行公理)。3.線面平行的性質(zhì)。4.面面平行的性質(zhì)。5.垂直于同一平面的兩條直線平行。
線面平行:1.直線與平面無公共點。2.平面外的一條直線與平面內(nèi)的一條直線平行。3.兩平面平行,一個平面內(nèi)的任一直線與另一平面平行。
面面平行:1.兩個平面無公共點。2.一個平面內(nèi)的兩條相交直線分別與另一平面平行。
Ⅱ.垂直關(guān)系:
線線垂直:1.直線所成角為90°。2.一條直線與一個平面垂直,那么這條直線與平面內(nèi)的任一直線垂直。
線面垂直:1.一條直線與一個平面內(nèi)的任一直線垂直。2.一條直線與一個平面內(nèi)的兩條相交直線都垂直。3.面面垂直的性質(zhì)。4.兩條平行直線中的一條垂直與一個平面,那么另一直線也與此平面垂直。5.一條直線垂直與兩個平行平面中的一個,那么這條直線也與另一平面垂直。
面面垂直:1.面面所成二面角為直二面角。2.一個平面過另一平面的垂線,那么這兩個平面垂直
線線垂直分為共面與不共面。不共面時,兩直線經(jīng)過平移后相交成直角,則稱兩條直線互相垂直。
1向量法 兩條直線的方向向量數(shù)量積為0
2斜率 兩條直線斜率積為-1
3線面垂直,則這條直線垂直于該平面內(nèi)的所有直線
一條直線垂直于三角形的兩邊,那么它也垂直于另外一邊
4三垂線定理 在平面內(nèi)的一條直線,如果和穿過這個平面的一條斜線在這個平面內(nèi)的射影垂直,那么它也和這條斜線垂直。
5三垂線定理逆定理 如果平面內(nèi)一條直線和平面的一條斜線垂直,那么這條直線也垂直于這條斜線在平面內(nèi)的射影。
3高中立體幾何的證明主要是平行關(guān)系與垂直關(guān)系的證明。方法如下(難以建立坐標系時再考慮):
。
【如何證明線面垂直】相關(guān)文章:
證明線面垂直12-07
如何證明面面垂直12-07
證明線面平行11-18
怎么證明垂直12-07
證明垂直的方法12-07
證明線面平行的方法12-07
用向量證明線面平行12-07
證明面面垂直12-07
怎樣證明面面垂直12-07