- 相關(guān)推薦
怎么證明垂直
怎么證明垂直1、
利用勾股定理的逆定理證明
勾股定理的逆定理提供了用計算方法證明兩線垂直的方法,即證明三角形其中一個角等于 ,由于利用代數(shù)的方法,只要能計算出待證直角的對邊的平方和等于另兩邊的平方和即可。
2、
利用“三線合一”證明
要證二線垂直,若能證二線之一是等腰三角形的底邊,另一線是等腰三角形頂角的平分線或底邊上的中線,則二線互相垂直。
3、
利用直角三角形中兩銳角互余證明
由直角三角形的定義與三角形的內(nèi)角和定理可知直角三角形的兩個銳角和等于90° ,即直角三角形的兩個銳角互余。
4、
圓周角定理的推論:直徑所對的圓周角是直角,一個三角形的一邊中線等于這邊的一半,則這個三角形是直角三角形。
5、
利用菱形的對角線互相垂直證明
菱形的對角線互相垂直。
6、
利用全等三角形證明
主要是找出兩線所成的角中有兩角是鄰補角,并且證明這兩角相等,于是就可知這兩角都為,從而直線垂直.
贊同
35
| 評論
1利用直角三角形中兩銳角互余證明
由直角三角形的定義與三角形的內(nèi)角和定理可知直角三角形的兩個銳角和等于90° ,即直角三角形的兩個銳角互余。
2勾股定理逆定理
3圓周角定理的推論:直徑所對的圓周角是直角,一個三角形的一邊中線等于這邊的一半,則這個三角形是直角三角形。
二、高中部分
線線垂直分為共面與不共面。不共面時,兩直線經(jīng)過平移后相交成直角,則稱兩條直線互相垂直。
1向量法 兩條直線的方向向量數(shù)量積為0
2斜率 兩條直線斜率積為-1
3線面垂直,則這條直線垂直于該平面內(nèi)的所有直線
一條直線垂直于三角形的兩邊,那么它也垂直于另外一邊
4三垂線定理 在平面內(nèi)的一條直線,如果和穿過這個平面的一條斜線在這個平面內(nèi)的射影垂直,那么它也和這條斜線垂直。
5三垂線定理逆定理 如果平面內(nèi)一條直線和平面的一條斜線垂直,那么這條直線也垂直于這條斜線在平面內(nèi)的射影。
2高中立體幾何的證明主要是平行關(guān)系與垂直關(guān)系的證明。方法如下(難以建立坐標(biāo)系時再考慮):
Ⅰ.平行關(guān)系:
線線平行:1.在同一平面內(nèi)無公共點的兩條直線平行。2.公理4(平行公理)。3.線面平行的性質(zhì)。4.面面平行的性質(zhì)。5.垂直于同一平面的兩條直線平行。
線面平行:1.直線與平面無公共點。2.平面外的一條直線與平面內(nèi)的一條直線平行。3.兩平面平行,一個平面內(nèi)的任一直線與另一平面平行。
面面平行:1.兩個平面無公共點。2.一個平面內(nèi)的兩條相交直線分別與另一平面平行。
Ⅱ.垂直關(guān)系:
線線垂直:1.直線所成角為90°。2.一條直線與一個平面垂直,那么這條直線與平面內(nèi)的任一直線垂直。
線面垂直:1.一條直線與一個平面內(nèi)的.任一直線垂直。2.一條直線與一個平面內(nèi)的兩條相交直線都垂直。3.面面垂直的性質(zhì)。4.兩條平行直線中的一條垂直與一個平面,那么另一直線也與此平面垂直。5.一條直線垂直與兩個平行平面中的一個,那么這條直線也與另一平面垂直。
面面垂直:1.面面所成二面角為直二面角。2.一個平面過另一平面的垂線,那么這兩個平面垂直
線線垂直分為共面與不共面。不共面時,兩直線經(jīng)過平移后相交成直角,則稱兩條直線互相垂直。
1向量法 兩條直線的方向向量數(shù)量積為0
2斜率 兩條直線斜率積為-1
3線面垂直,則這條直線垂直于該平面內(nèi)的所有直線
一條直線垂直于三角形的兩邊,那么它也垂直于另外一邊
4三垂線定理 在平面內(nèi)的一條直線,如果和穿過這個平面的一條斜線在這個平面內(nèi)的射影垂直,那么它也和這條斜線垂直。
5三垂線定理逆定理 如果平面內(nèi)一條直線和平面的一條斜線垂直,那么這條直線也垂直于這條斜線在平面內(nèi)的射影。
3高中立體幾何的證明主要是平行關(guān)系與垂直關(guān)系的證明。方法如下(難以建立坐標(biāo)系時再考慮):
。
【怎么證明垂直】相關(guān)文章:
怎么證明面面垂直12-07
證明垂直的方法12-07
證明面面垂直12-07
證明線面垂直12-07
怎樣證明面面垂直12-07
證明面面垂直的方法12-07
如何證明線面垂直12-07
如何證明面面垂直12-07
證明兩條直線垂直12-07