- 相關(guān)推薦
高中數(shù)學(xué)證明公式
高中數(shù)學(xué)證明公式數(shù)學(xué)公式
拋物線:y = ax *+ bx + c
就是y等于ax 的平方加上 bx再加上 c
a > 0時(shí)開口向上
a < 0時(shí)開口向下
c = 0時(shí)拋物線經(jīng)過原點(diǎn)
b = 0時(shí)拋物線對稱軸為y軸
還有頂點(diǎn)式y(tǒng) = a(x+h)* + k
就是y等于a乘以(x+h)的平方+k
-h是頂點(diǎn)坐標(biāo)的x
k是頂點(diǎn)坐標(biāo)的y
一般用于求最大值與最小值
拋物線標(biāo)準(zhǔn)方程:y^2=2px
它表示拋物線的焦點(diǎn)在x的正半軸上,焦點(diǎn)坐標(biāo)為(p/2,0) 準(zhǔn)線方程為x=-p/2
由于拋物線的焦點(diǎn)可在任意半軸,故共有標(biāo)準(zhǔn)方程y^2=2px y^2=-2px x^2=2py x^2=-2py
圓:體積=4/3(pi)(r^3)
面積=(pi)(r^2)
周長=2(pi)r
圓的標(biāo)準(zhǔn)方程 (x-a)2+(y-b)2=r2 注:(a,b)是圓心坐標(biāo)
圓的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
(一)橢圓周長計(jì)算公式
橢圓周長公式:L=2πb+4(a-b)
橢圓周長定理:橢圓的周長等于該橢圓短半軸長為半徑的圓周長(2πb)加上四倍的該橢圓長半軸長(a)與短半軸長(b)的差。
(二)橢圓面積計(jì)算公式
橢圓面積公式: S=πab
橢圓面積定理:橢圓的面積等于圓周率(π)乘該橢圓長半軸長(a)與短半軸長(b)的乘積。
以上橢圓周長、面積公式中雖然沒有出現(xiàn)橢圓周率T,但這兩個(gè)公式都是通過橢圓周率T推導(dǎo)演變而來。常數(shù)為體,公式為用。
橢圓形物體 體積計(jì)算公式橢圓 的 長半徑*短半徑*PAI*高
三角函數(shù):
兩角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA)
倍角公式
tan2A=2tanA/(1-tan2A) cot2A=(cot2A-1)/2cota
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0
cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及
sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2
tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0
·萬能公式:
sinα=2tan(α/2)/[1+tan^2(α/2)]
cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]
tanα=2tan(α/2)/[1-tan^2(α/2)]
半角公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA))
和差化積
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
cotA+cotBsin(A+B)/sinAsinB -cotA+cotBsin(A+B)/sinAsinB
某些數(shù)列前n項(xiàng)和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6
1^3+2^3+3^3+4^3+5^3+6^3+…n^3=(n(n+1)/2)^2 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圓半徑
余弦定理 b2=a2+c2-2accosB 注:角B是邊a和邊c的夾角
乘法與因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)
三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
根與系數(shù)的關(guān)系 x1+x2=-b/a x1*x2=c/a 注:韋達(dá)定理
判別式 b2-4a=0 注:方程有相等的兩實(shí)根
b2-4ac>0 注:方程有兩個(gè)不相等的個(gè)實(shí)根
b2-4ac<0 注:方程有共軛復(fù)數(shù)根
公式分類 公式表達(dá)式
圓的標(biāo)準(zhǔn)方程 (x-a)2+(y-b)2=r2 注:(a,b)是圓心坐標(biāo)
圓的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
拋物線標(biāo)準(zhǔn)方程 y2=2px y2=-2px x2=2py x2=-2py
直棱柱側(cè)面積 S=c*h 斜棱柱側(cè)面積 S=c'*h
正棱錐側(cè)面積 S=1/2c*h' 正棱臺(tái)側(cè)面積 S=1/2(c+c')h'
圓臺(tái)側(cè)面積 S=1/2(c+c')l=pi(R+r)l 球的表面積 S=4pi*r2
圓柱側(cè)面積 S=c*h=2pi*h 圓錐側(cè)面積 S=1/2*c*l=pi*r*l
弧長公式 l=a*r a是圓心角的弧度數(shù)r >0 扇形面積公式 s=1/2*l*r
錐體體積公式 V=1/3*S*H 圓錐體體積公式 V=1/3*pi*r2h
斜棱柱體積 V=S'L 注:其中,S'是直截面面積, L是側(cè)棱長
柱體體積公式 V=s*h 圓柱體 V=pi*r2h
圖形周長 面積 體積公式
長方形的周長=(長+寬)×2
正方形的周長=邊長×4
長方形的面積=長×寬
正方形的'面積=邊長×邊長
三角形的面積
已知三角形底a,高h(yuǎn),則S=ah/2
已知三角形三邊a,b,c,半周長p,則S= √[p(p - a)(p - b)(p - c)] (海倫-公式)(p=(a+b+c)/2)
和:(a+b+c)*(a+b-c)*1/4
已知三角形兩邊a,b,這兩邊夾角C,則S=absinC/2
設(shè)三角形三邊分別為a、b、c,內(nèi)切圓半徑為r
則三角形面積=(a+b+c)r/2
設(shè)三角形三邊分別為a、b、c,外接圓半徑為r
則三角形面積=abc/4r
已知三角形三邊a、b、c,則S= √{1/4[c^2a^2-((c^2+a^2-b^2)/2)^2]} (“三斜求積” 南宋秦九韶)
| a b 1 |
S△=1/2 * | c d 1 |
| e f 1 |
【| a b 1 |
| c d 1 | 為三階行列式,此三角形ABC在平面直角坐標(biāo)系內(nèi)A(a,b),B(c,d), C(e,f),這里ABC
| e f 1 |
選區(qū)取最好按逆時(shí)針順序從右上角開始取,因?yàn)檫@樣取得出的結(jié)果一般都為正值,如果不按這個(gè)規(guī)則取,可能會(huì)得到負(fù)值,但不要緊,只要取絕對值就可以了,不會(huì)影響三角形面積的大小!】
秦九韶三角形中線面積公式:
S=√[(Ma+Mb+Mc)*(Mb+Mc-Ma)*(Mc+Ma-Mb)*(Ma+Mb-Mc)]/3
其中Ma,Mb,Mc為三角形的中線長.
平行四邊形的面積=底×高
梯形的面積=(上底+下底)×高÷2
直徑=半徑×2 半徑=直徑÷2
圓的周長=圓周率×直徑=
圓周率×半徑×2
圓的面積=圓周率×半徑×半徑
長方體的表面積=
(長×寬+長×高+寬×高)×2
長方體的體積 =長×寬×高
正方體的表面積=棱長×棱長×6
正方體的體積=棱長×棱長×棱長
圓柱的側(cè)面積=底面圓的周長×高
圓柱的表面積=上下底面面積+側(cè)面積
圓柱的體積=底面積×高
圓錐的體積=底面積×高÷3
長方體(正方體、圓柱體)
的體積=底面積×高
平面圖形
名稱 符號(hào) 周長C和面積S
正方形 a—邊長 C=4a
S=a2
長方形 a和b-邊長 C=2(a+b)
S=ab
三角形 a,b,c-三邊長
h-a邊上的高
s-周長的一半
A,B,C-內(nèi)角
其中s=(a+b+c)/2 S=ah/2
=ab/2?sinC
=[s(s-a)(s-b)(s-c)]1/2
=a2sinBsinC/(2sinA)
1 過兩點(diǎn)有且只有一條直線
2 兩點(diǎn)之間線段最短
3 同角或等角的補(bǔ)角相等
4 同角或等角的余角相等
5 過一點(diǎn)有且只有一條直線和已知直線垂直
6 直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短
7 平行公理 經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行
8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9 同位角相等,兩直線平行
10 內(nèi)錯(cuò)角相等,兩直線平行
11 同旁內(nèi)角互補(bǔ),兩直線平行
12兩直線平行,同位角相等
13 兩直線平行,內(nèi)錯(cuò)角相等
14 兩直線平行,同旁內(nèi)角互補(bǔ)
15 定理 三角形兩邊的和大于第三邊
16 推論 三角形兩邊的差小于第三邊
17 三角形內(nèi)角和定理 三角形三個(gè)內(nèi)角的和等于180°
18 推論1 直角三角形的兩個(gè)銳角互余
19 推論2 三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和
20 推論3 三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角
21 全等三角形的對應(yīng)邊、對應(yīng)角相等
22邊角邊公理(sas) 有兩邊和它們的夾角對應(yīng)相等的兩個(gè)三角形全等
23 角邊角公理( asa)有兩角和它們的夾邊對應(yīng)相等的兩個(gè)三角形全等
24 推論(aas) 有兩角和其中一角的對邊對應(yīng)相等的兩個(gè)三角形全等
25 邊邊邊公理(sss) 有三邊對應(yīng)相等的兩個(gè)三角形全等
26 斜邊、直角邊公理(hl) 有斜邊和一條直角邊對應(yīng)相等的兩個(gè)直角三角形全等
27 定理1 在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等
28 定理2 到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上
29 角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合
30 等腰三角形的性質(zhì)定理 等腰三角形的兩個(gè)底角相等 (即等邊對等角)
31 推論1 等腰三角形頂角的平分線平分底邊并且垂直于底邊
32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33 推論3 等邊三角形的各角都相等,并且每一個(gè)角都等于60°
34 等腰三角形的判定定理 如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對的邊也相等(等角對等邊)
35 推論1 三個(gè)角都相等的三角形是等邊三角形
36 推論 2 有一個(gè)角等于
【高中數(shù)學(xué)證明公式】相關(guān)文章:
高中數(shù)學(xué)公式02-02
高中數(shù)學(xué)公式:等比數(shù)列公式01-15
高中數(shù)學(xué)公式口訣01-15
高中數(shù)學(xué)公式大全01-15
高中數(shù)學(xué)常用公式總結(jié)01-13
高中數(shù)學(xué)必背公式總結(jié)01-15
高中數(shù)學(xué)證明12-07